Nano-Inspired Technologies for Peptide Delivery

Author(s): Obdulia Covarrubias-Zambrano, Jing Yu, Stefan H. Bossmann*.

Journal Name: Current Protein & Peptide Science

Volume 21 , Issue 4 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Nano-inspired technologies offer unique opportunities to treat numerous diseases by using therapeutic peptides. Therapeutic peptides have attractive pharmacological profiles and can be manufactured at relatively low costs. The major advantages of using a nanodelivery approach comprises significantly lower required dosages compared to systemic delivery, and thus reduced toxicity and immunogenicity. The combination of therapeutic peptides with delivery peptides and nanoparticles or small molecule drugs offers systemic treatment approaches, instead of aiming for single biological targets or pathways. This review article discusses exemplary state-of-the-art nanosized delivery systems for therapeutic peptides and antibodies, as well as their biochemical and biophysical foundations and emphasizes still remaining challenges. The competition between using different nanoplatforms, such as liposome-, hydrogel-, polymer-, silica nanosphere-, or nanosponge-based delivery systems is still “on” and no clear frontrunner has emerged to date.

Keywords: Peptide drug, nanodelivery, physiological barriers, toxicity, immunogenicity, therapeutic peptides.

[1]
Acar, H.; Ting, J.M.; Srivastava, S.; LaBelle, J.L.; Tirrell, M.V. Molecular engineering solutions for therapeutic peptide delivery. Chem. Soc. Rev., 2017, 46(21), 6553-6569.
[http://dx.doi.org/10.1039/C7CS00536A] [PMID: 28902203]
[2]
Gallo, M.; Defaus, S.; Andreu, D. 1988-2018: Thirty years of drug smuggling at the nano scale. Challenges and opportunities of cell-penetrating peptides in biomedical research. Arch. Biochem. Biophys., 2019, 661, 74-86.
[http://dx.doi.org/10.1016/j.abb.2018.11.010] [PMID: 30447207]
[3]
Zuconelli, C.R.; Brock, R.; Adjobo-Hermans, M.J.W. Linear Peptides in Intracellular Applications. Curr. Med. Chem., 2017, 24(17), 1862-1873.
[http://dx.doi.org/10.2174/0929867324666170508143523] [PMID: 28482790]
[4]
Di, L. Strategic approaches to optimizing peptide ADME properties. AAPS J., 2015, 17(1), 134-143.
[http://dx.doi.org/10.1208/s12248-014-9687-3] [PMID: 25366889]
[5]
Raucher, D. Tumor targeting peptides: novel therapeutic strategies in glioblastoma. Curr. Opin. Pharmacol., 2019, 47, 14-19.
[http://dx.doi.org/10.1016/j.coph.2019.01.006] [PMID: 30776641]
[6]
Liu, X.; Wu, F.; Ji, Y.; Yin, L. Recent Advances in Anti-cancer Protein/Peptide Delivery. Bioconjug. Chem., 2019, 30(2), 305-324.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00750] [PMID: 30428665]
[7]
Acar, H.; Srivastava, S.; Chung, E.J.; Schnorenberg, M.R.; Barrett, J.C.; LaBelle, J.L.; Tirrell, M. Self-assembling peptide-based building blocks in medical applications. Adv. Drug Deliv. Rev., 2017, 110-111, 65-79.
[http://dx.doi.org/10.1016/j.addr.2016.08.006] [PMID: 27535485]
[8]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[9]
Kim, K-M. Conceptual progress for the improvements in the selectivity and efficacy of G protein-coupled receptor therapeutics: an overview. Biomol. Ther. (Seoul), 2017, 25(1), 1-3.
[http://dx.doi.org/10.4062/biomolther.2016.262] [PMID: 28035077]
[10]
Wells, J.A.; McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature, 2007, 450(7172), 1001-1009.
[http://dx.doi.org/10.1038/nature06526] [PMID: 18075579]
[11]
Cesa, L.C.; Mapp, A.K.; Gestwicki, J.E. Direct and propagated effects of small molecules on protein-protein interaction networks. Front. Bioeng. Biotechnol., 2015, 3, 119.
[http://dx.doi.org/10.3389/fbioe.2015.00119] [PMID: 26380257]
[12]
Cheng, A.C.; Coleman, R.G.; Smyth, K.T.; Cao, Q.; Soulard, P.; Caffrey, D.R.; Salzberg, A.C.; Huang, E.S. Structure-based maximal affinity model predicts small-molecule druggability. Nat. Biotechnol., 2007, 25(1), 71-75.
[http://dx.doi.org/10.1038/nbt1273] [PMID: 17211405]
[13]
Maes, M.; Loyter, A.; Friedler, A. Peptides that inhibit HIV-1 integrase by blocking its protein-protein interactions. FEBS J., 2012, 279(16), 2795-2809.
[http://dx.doi.org/10.1111/j.1742-4658.2012.08680.x] [PMID: 22742518]
[14]
Stumpf, M.P.H.; Thorne, T.; de Silva, E.; Stewart, R.; An, H.J.; Lappe, M.; Wiuf, C. Estimating the size of the human interactome. Proc. Natl. Acad. Sci. USA, 2008, 105(19), 6959-6964.
[http://dx.doi.org/10.1073/pnas.0708078105] [PMID: 18474861]
[15]
Iyer, V.V. A review of stapled peptides and small molecules to inhibit protein-protein interactions in cancer. Curr. Med. Chem., 2016, 23(27), 3025-3043.
[http://dx.doi.org/10.2174/0929867323666160627103134] [PMID: 27356541]
[16]
Semenova, G.; Chernoff, J. Targeting PAK1. Biochem. Soc. Trans., 2017, 45(1), 79-88.
[http://dx.doi.org/10.1042/BST20160134] [PMID: 28202661]
[17]
Dalecki, A.G.; Malalasekera, A.P.; Schaaf, K.; Kutsch, O.; Bossmann, S.H.; Wolschendorf, F. Combinatorial phenotypic screen uncovers unrecognized family of extended thiourea inhibitors with copper-dependent anti-staphylococcal activity. Metallomics, 2016, 8(4), 412-421.
[http://dx.doi.org/10.1039/C6MT00003G] [PMID: 26935206]
[18]
Haeili, M.; Moore, C.; Davis, C.J.C.; Cochran, J.B.; Shah, S.; Shrestha, T.B.; Zhang, Y.; Bossmann, S.H.; Benjamin, W.H.; Kutsch, O.; Wolschendorf, F. Copper complexation screen reveals compounds with potent antibiotic properties against methicillinresistant Staphylococcus aureus. In: Antimicrob. Agents Chemother; , 2014, pp. 58, p. (7). 3727-3736.
[http://dx.doi.org/10.1128/AAC.02316-13]
[19]
Isidro-Llobet, A.; Kenworthy, M. N.; Mukherjee, S.; Kopach, M. E.; Wegner, K.; Gallou, F.; Smith, A. G.; Roschangar, F. Sustainability challenges in peptide synthesis and purification: From R&D to production. J. Org. Chem., 2019. Ahead of Print
[20]
Behnam, M.A.M.; Graf, D.; Bartenschlager, R.; Zlotos, D.P.; Klein, C.D. Discovery of nanomolar dengue and west nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J. Med. Chem., 2015, 58(23), 9354-9370.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01441] [PMID: 26562070]
[21]
Gfeller, D.; Michielin, O.; Zoete, V. SwissSidechain: a molecular and structural database of non-natural sidechains. Nucleic Acids Res., 2013, 41(Database issue), D327-D332.
[PMID: 23104376]
[22]
Jabbari, E.; Yang, X.; Moeinzadeh, S.; He, X. Drug release kinetics, cell uptake, and tumor toxicity of hybrid VVVVVVKK peptide-assembled polylactide nanoparticles. Eur. J. Pharm. Biopharm., 2013, 84(1), 49-62.
[http://dx.doi.org/10.1016/j.ejpb.2012.12.012] [PMID: 23275111]
[23]
Lee, D.; Zhao, J.; Yang, H.; Xu, S.; Kim, H.; Pacheco, S.; Keshavjee, S.; Liu, M. Effective delivery of a rationally designed intracellular peptide drug with gold nanoparticle-peptide hybrids. Nanoscale, 2015, 7(29), 12356-12360.
[http://dx.doi.org/10.1039/C5NR02377G] [PMID: 26151444]
[24]
Li, S.; Roberts, R.W. A novel strategy for in vitro selection of peptide-drug conjugates. Chem. Biol., 2003, 10(3), 233-239.
[http://dx.doi.org/10.1016/S1074-5521(03)00047-4] [PMID: 12670537]
[25]
Yapa, A.S.; Shrestha, T.B.; Wendel, S.O.; Kalubowilage, M.; Yu, J.; Wang, H.; Pyle, M.; Basel, M.T.; Toledo, Y.; Ortega, R.; Malalasekera, A.P.; Thapa, P.S.; Troyer, D.L.; Bossmann, S.H. Peptide nanosponges designed for the delivery of perillyl alcohol to glioma cells. ACS Appl. Bio Mater., 2019, 2(1), 49-60.
[http://dx.doi.org/10.1021/acsabm.8b00305]
[26]
Abayaweera, G. S.; Wang, H.; Shrestha, T. B.; Yu, J.; Angle, K.; Thapa, P.; Malalasekera, A. P.; Maurmann, L.; Troyer, D. L.; Bossmann, S. H. Synergy of iron chelators and therapeutic peptide sequences delivered via a magnetic nanocarrier. J. Funct. Biomater., 2017, 8(3), 23/1-23/18.
[27]
London, N.; Raveh, B.; Schueler-Furman, O. Druggable protein-protein interactions--from hot spots to hot segments. Curr. Opin. Chem. Biol., 2013, 17(6), 952-959.
[http://dx.doi.org/10.1016/j.cbpa.2013.10.011] [PMID: 24183815]
[28]
Morelli, X.; Bourgeas, R.; Roche, P. Chemical and structural lessons from recent successes in protein-protein interaction inhibition (2P2I). Curr. Opin. Chem. Biol., 2011, 15(4), 475-481.
[http://dx.doi.org/10.1016/j.cbpa.2011.05.024] [PMID: 21684802]
[29]
Moellering, R.E.; Cornejo, M.; Davis, T.N.; Del Bianco, C.; Aster, J.C.; Blacklow, S.C.; Kung, A.L.; Gilliland, D.G.; Verdine, G.L.; Bradner, J.E. Direct inhibition of the NOTCH transcription factor complex. Nature, 2009, 462(7270), 182-188.
[http://dx.doi.org/10.1038/nature08543] [PMID: 19907488]
[30]
Walensky, L.D.; Kung, A.L.; Escher, I.; Malia, T.J.; Barbuto, S.; Wright, R.D.; Wagner, G.; Verdine, G.L.; Korsmeyer, S.J. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science, 2004, 305(5689), 1466-1470.
[http://dx.doi.org/10.1126/science.1099191] [PMID: 15353804]
[31]
Stone, T.A.; Deber, C.M. Therapeutic design of peptide modulators of protein-protein interactions in membranes. Biochim. Biophys. Acta Biomembr., 2017, 1859(4), 577-585.
[http://dx.doi.org/10.1016/j.bbamem.2016.08.013] [PMID: 27580024]
[32]
Ferrucci, V.; Pennino, F.P.; Siciliano, R.; Asadzadeh, F.; Zollo, M. A competitive cell-permeable peptide impairs Nme-1 (NDPK-A) and Prune-1 interaction: therapeutic applications in cancer. Lab. Invest., 2018, 98(5), 571-581.
[http://dx.doi.org/10.1038/s41374-017-0011-6] [PMID: 29449633]
[34]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P. Peptide toxicity prediction.Computational Peptidology; Springer, 2015, pp. 143-157.
[http://dx.doi.org/10.1007/978-1-4939-2285-7_7]
[35]
He, Q.; Han, W.; He, Q.; Huo, L.; Zhang, J.; Lin, Y.; Chen, P.; Liang, S. ATDB 2.0: A database integrated toxin-ion channel interaction data. Toxicon, 2010, 56(4), 644-647.
[http://dx.doi.org/10.1016/j.toxicon.2010.05.013] [PMID: 20677374]
[36]
[37]
Chen, L.; Xiong, Z.; Sun, L.; Yang, J.; Jin, Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res., 2012, 40(Database issue), D641-D645.
[http://dx.doi.org/10.1093/nar/gkr989] [PMID: 22067448]
[38]
Available from. http://www.mgc.ac.cn/VFs/
[39]
Chakraborty, A.; Ghosh, S.; Chowdhary, G.; Maulik, U.; Chakrabarti, S. DBETH: a database of bacterial exotoxins for human. Nucleic Acids Res., 2012, 40(Database issue), D615-D620.
[http://dx.doi.org/10.1093/nar/gkr942] [PMID: 22102573]
[40]
[41]
Apweiler, R.; Bairoch, A.; Wu, C. H.; Barker, W. C.; Boeckmann, B.; Ferro, S.; Gasteiger, E.; Huang, H.; Lopez, R.; Magrane, M. UniProt: The universal protein knowledgebase. Nucleic Acids Res., 2004, 32(suppl_1), D115-D119.
[http://dx.doi.org/10.1093/nar/gkh131]
[42]
Available from. www.uniprot.org
[43]
Saha, S.; Raghava, G. P. BTXpred: prediction of bacterial toxins., In silico Biol., 2007, 7(4,5). , 405-412.
[45]
Saha, S.; Raghava, G. P. Prediction of neurotoxins based on their function and source. In silico biology, 2007, 7(4,5). , 369-387.
[46]
[47]
Gupta, S.; Kapoor, P.; Chaudhary, K.; Gautam, A.; Kumar, R.; Raghava, G.P.; Consortium, O.S.D.D. In silico approach for predicting toxicity of peptides and proteins. PLoS One, 2013, 8(9), e73957
[http://dx.doi.org/10.1371/journal.pone.0073957] [PMID: 24058508]
[49]
Uchide, N.; Ohyama, K.; Bessho, T.; Toyoda, H. Lactate dehydrogenase leakage as a marker for apoptotic cell degradation induced by influenza virus infection in human fetal membrane cells. Intervirology, 2009, 52(3), 164-173.
[http://dx.doi.org/10.1159/000224644] [PMID: 19521105]
[50]
Fotakis, G.; Timbrell, J.A. In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol. Lett., 2006, 160(2), 171-177.
[http://dx.doi.org/10.1016/j.toxlet.2005.07.001] [PMID: 16111842]
[51]
Kalcheim, C.; Goldstein, R.S. Segmentation of sensory and sympathetic ganglia: interactions between neural crest and somite cells. J. Physiol. (Paris), 1991, 85(3), 110-116.
[PMID: 1818106]
[52]
Cree, I.A.; Andreotti, P.E. Measurement of cytotoxicity by ATP-based luminescence assay in primary cell cultures and cell lines. Toxicol. In Vitro, 1997, 11(5), 553-556.
[http://dx.doi.org/10.1016/S0887-2333(97)00060-X] [PMID: 20654351]
[53]
Tugyi, R.; Uray, K.; Iván, D.; Fellinger, E.; Perkins, A.; Hudecz, F. Partial D-amino acid substitution: Improved enzymatic stability and preserved Ab recognition of a MUC2 epitope peptide. Proc. Natl. Acad. Sci. USA, 2005, 102(2), 413-418.
[http://dx.doi.org/10.1073/pnas.0407677102] [PMID: 15630090]
[54]
Braunstein, A.; Papo, N.; Shai, Y. In vitro activity and potency of an intravenously injected antimicrobial peptide and its DL amino acid analog in mice infected with bacteria. Antimicrob. Agents Chemother., 2004, 48(8), 3127-3129.
[http://dx.doi.org/10.1128/AAC.48.8.3127-3129.2004] [PMID: 15273131]
[55]
Rosenfeld, Y.; Sahl, H-G.; Shai, Y. Parameters involved in antimicrobial and endotoxin detoxification activities of antimicrobial peptides. Biochemistry, 2008, 47(24), 6468-6478.
[http://dx.doi.org/10.1021/bi800450f] [PMID: 18498177]
[56]
Makovitzki, A.; Fink, A.; Shai, Y. Suppression of human solid tumor growth in mice by intratumor and systemic inoculation of histidine-rich and pH-dependent host defense-like lytic peptides. Cancer Res., 2009, 69(8), 3458-3463.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3021] [PMID: 19351852]
[57]
Goodman, M.; Chorev, M. On the concept of linear modified retro-peptide structures. Acc. Chem. Res., 1979, 12(1), 1-7.
[http://dx.doi.org/10.1021/ar50133a001]
[58]
Srinivasan, M. Wardrop, R. M.; Whitacre, C. C.; Kaumaya, P. T. P.A CD28 CDR3 peptide analog inhibits CD4+ T-cell proliferation in vitro; Kluwer Academic Publishers, 2000, pp. 689-690.
[59]
Fischer, P.M. The design, synthesis and application of stereochemical and directional peptide isomers: a critical review. Curr. Protein Pept. Sci., 2003, 4(5), 339-356.
[http://dx.doi.org/10.2174/1389203033487054] [PMID: 14529528]
[60]
Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 2010, 16(28), 3185-3203.
[http://dx.doi.org/10.2174/138161210793292555] [PMID: 20687878]
[61]
White, C.J.; Yudin, A.K. Contemporary strategies for peptide macrocyclization. Nat. Chem., 2011, 3(7), 509-524.
[http://dx.doi.org/10.1038/nchem.1062] [PMID: 21697871]
[62]
Werle, M.; Bernkop-Schnürch, A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids, 2006, 30(4), 351-367.
[http://dx.doi.org/10.1007/s00726-005-0289-3] [PMID: 16622600]
[63]
Gokhale, A.S.; Satyanarayanajois, S. Peptides and peptidomimetics as immunomodulators. Immunotherapy, 2014, 6(6), 755-774.
[http://dx.doi.org/10.2217/imt.14.37] [PMID: 25186605]
[64]
Neefjes, J.; Jongsma, M.L.M.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol., 2011, 11(12), 823-836.
[http://dx.doi.org/10.1038/nri3084] [PMID: 22076556]
[65]
Rockel, B.; Kopec, K.O.; Lupas, A.N.; Baumeister, W. Structure and function of tripeptidyl peptidase II, a giant cytosolic protease. Biochim. Biophys. Acta, 2012, 1824(1), 237-245.
[http://dx.doi.org/10.1016/j.bbapap.2011.07.002] [PMID: 21771670]
[66]
Ray, K.; Hines, C.S.; Coll-Rodriguez, J.; Rodgers, D.W. Crystal structure of human thimet oligopeptidase provides insight into substrate recognition, regulation, and localization. J. Biol. Chem., 2004, 279(19), 20480-20489.
[http://dx.doi.org/10.1074/jbc.M400795200] [PMID: 14998993]
[67]
Kessler, J.H.; Khan, S.; Seifert, U.; Le Gall, S.; Chow, K.M.; Paschen, A.; Bres-Vloemans, S.A.; de Ru, A.; van Montfoort, N.; Franken, K.L.M.C.; Benckhuijsen, W.E.; Brooks, J.M.; van Hall, T.; Ray, K.; Mulder, A.; Doxiadis, I.I.N.; van Swieten, P.F.; Overkleeft, H.S.; Prat, A.; Tomkinson, B.; Neefjes, J.; Kloetzel, P.M.; Rodgers, D.W.; Hersh, L.B.; Drijfhout, J.W.; van Veelen, P.A.; Ossendorp, F.; Melief, C.J.M. Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat. Immunol., 2011, 12(1), 45-53.
[http://dx.doi.org/10.1038/ni.1974] [PMID: 21151101]
[68]
Checler, F.; Ferro, E.S. Neurolysin: From Initial Detection to Latest Advances. Neurochem. Res., 2018, 43(11), 2017-2024.
[http://dx.doi.org/10.1007/s11064-018-2624-6] [PMID: 30159819]
[69]
Chesneau, V. Foulon, T.; Cohen, P. Nardilysin; Elsevier, 2004, pp. 876-879.
[70]
Babkova, K.; Korabecny, J.; Soukup, O.; Nepovimova, E.; Jun, D.; Kuca, K. Prolyl oligopeptidase and its role in the organism: attention to the most promising and clinically relevant inhibitors. Future Med. Chem., 2017, 9(10), 1015-1038.
[http://dx.doi.org/10.4155/fmc-2017-0030] [PMID: 28632451]
[71]
Akkad, N.; Schatz, M.; Dengjel, J.; Tenzer, S.; Schild, H. Census of cytosolic aminopeptidase activity reveals two novel cytosolic aminopeptidases. Med. Microbiol. Immunol. (Berl.), 2012, 201(4), 463-473.
[http://dx.doi.org/10.1007/s00430-012-0266-x] [PMID: 22976555]
[72]
Byzia, A.; Szeffler, A.; Kalinowski, L.; Drag, M. Activity profiling of aminopeptidases in cell lysates using a fluorogenic substrate library. Biochimie, 2016, 122, 31-37.
[http://dx.doi.org/10.1016/j.biochi.2015.09.035] [PMID: 26449746]
[73]
Böttger, R.; Hoffmann, R.; Knappe, D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One, 2017, 12(6), e0178943
[http://dx.doi.org/10.1371/journal.pone.0178943] [PMID: 28575099]
[74]
Fields, G.B. Interstitial collagen catabolism. J. Biol. Chem., 2013, 288(13), 8785-8793.
[http://dx.doi.org/10.1074/jbc.R113.451211] [PMID: 23430258]
[75]
Wendel, S. O.; Menon, S.; Alshetaiwi, H.; Shrestha, T. B.; Chlebanowski, L.; Hsu, W.-W.; Bossmann, S. H.; Narayanan, S.; Troyer, D. L. Cell based drug delivery: Micrococcus luteus loaded neutrophils as chlorhexidine delivery vehicles in a mouse model of liver abscesses in cattle. PLoS One,, 2015, 10(5), e0128144/1-e0128144/13.
[76]
Rachakatla, R.S.; Balivada, S.; Seo, G-M.; Myers, C.B.; Wang, H.; Samarakoon, T.N.; Dani, R.; Pyle, M.; Kroh, F.O.; Walker, B.; Leaym, X.; Koper, O.B.; Chikan, V.; Bossmann, S.H.; Tamura, M.; Troyer, D.L. Attenuation of mouse melanoma by A/C magnetic field after delivery of bi-magnetic nanoparticles by neural progenitor cells. ACS Nano, 2010, 4(12), 7093-7104.
[http://dx.doi.org/10.1021/nn100870z] [PMID: 21058696]
[77]
Basel, M.T.; Shrestha, T.B.; Bossmann, S.H.; Troyer, D.L. Cells as delivery vehicles for cancer therapeutics. Ther. Deliv., 2014, 5(5), 555-567.
[http://dx.doi.org/10.4155/tde.14.24] [PMID: 24998274]
[78]
Torrice, M. Does Nanomedicine Have a Delivery Problem? ACS Cent. Sci., 2016, 2(7), 434-437.
[http://dx.doi.org/10.1021/acscentsci.6b00190] [PMID: 27504489]
[79]
Ruoslahti, E. Specialization of tumour vasculature. Nat. Rev. Cancer, 2002, 2(2), 83-90.
[http://dx.doi.org/10.1038/nrc724] [PMID: 12635171]
[80]
Maeda, H.; Nakamura, H.; Fang, J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev., 2013, 65(1), 71-79.
[http://dx.doi.org/10.1016/j.addr.2012.10.002] [PMID: 23088862]
[81]
Melo, M.N.; Ferre, R.; Castanho, M.A.R.B. Antimicrobial peptides: linking partition, activity and high membrane-bound concentrations. Nat. Rev. Microbiol., 2009, 7(3), 245-250.
[http://dx.doi.org/10.1038/nrmicro2095] [PMID: 19219054]
[82]
Baumann, G.; Mueller, P. A molecular model of membrane excitability. J. Supramol. Struct., 1974, 2(5-6), 538-557.
[http://dx.doi.org/10.1002/jss.400020504] [PMID: 4461846]
[83]
Ludtke, S.J.; He, K.; Heller, W.T.; Harroun, T.A.; Yang, L.; Huang, H.W. Membrane pores induced by magainin. Biochemistry, 1996, 35(43), 13723-13728.
[http://dx.doi.org/10.1021/bi9620621] [PMID: 8901513]
[84]
Leontiadou, H.; Mark, A.E.; Marrink, S.J. Antimicrobial peptides in action. J. Am. Chem. Soc., 2006, 128(37), 12156-12161.
[http://dx.doi.org/10.1021/ja062927q] [PMID: 16967965]
[85]
Pouny, Y.; Rapaport, D.; Mor, A.; Nicolas, P.; Shai, Y. Interaction of antimicrobial dermaseptin and its fluorescently labeled analogues with phospholipid membranes. Biochemistry, 1992, 31(49), 12416-12423.
[http://dx.doi.org/10.1021/bi00164a017] [PMID: 1463728]
[86]
Rai, V.; Abdo, J.; Alsuwaidan, A.N.; Agrawal, S.; Sharma, P.; Agrawal, D.K. Cellular and molecular targets for the immunotherapy of hepatocellular carcinoma. Mol. Cell. Biochem., 2018, 437(1-2), 13-36.
[http://dx.doi.org/10.1007/s11010-017-3092-z] [PMID: 28593566]
[87]
Pang, H-B.; Braun, G.B.; Friman, T.; Aza-Blanc, P.; Ruidiaz, M.E.; Sugahara, K.N.; Teesalu, T.; Ruoslahti, E. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat. Commun., 2014, 5, 4904.
[http://dx.doi.org/10.1038/ncomms5904] [PMID: 25277522]
[88]
Voltan, A.R.; Alarcon, K.M.; Fusco-Almeida, A.M.; Soares, C.P.; Mendes-Giannini, M.J.S.; Chorilli, M. Highlights in Endocytosis of Nanostructured Systems. Curr. Med. Chem., 2017, 24(18), 1909-1929.
[http://dx.doi.org/10.2174/0929867324666170214111205] [PMID: 28201970]
[89]
Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer, 2006, 6(9), 688-701.
[http://dx.doi.org/10.1038/nrc1958] [PMID: 16900224]
[90]
Keefe, A.J.; Jiang, S. Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity. Nat. Chem., 2011, 4(1), 59-63.
[http://dx.doi.org/10.1038/nchem.1213] [PMID: 22169873]
[91]
Ruoslahti, E.; Bhatia, S.N.; Sailor, M.J. Targeting of drugs and nanoparticles to tumors. J. Cell Biol., 2010, 188(6), 759-768.
[http://dx.doi.org/10.1083/jcb.200910104] [PMID: 20231381]
[92]
Dreher, M.R.; Liu, W.; Michelich, C.R.; Dewhirst, M.W.; Yuan, F.; Chilkoti, A. Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J. Natl. Cancer Inst., 2006, 98(5), 335-344.
[http://dx.doi.org/10.1093/jnci/djj070] [PMID: 16507830]
[93]
Penchala, S.C.; Miller, M.R.; Pal, A.; Dong, J.; Madadi, N.R.; Xie, J.; Joo, H.; Tsai, J.; Batoon, P.; Samoshin, V.; Franz, A.; Cox, T.; Miles, J.; Chan, W.K.; Park, M.S.; Alhamadsheh, M.M. A biomimetic approach for enhancing the in vivo half-life of peptides. Nat. Chem. Biol., 2015, 11(10), 793-798.
[http://dx.doi.org/10.1038/nchembio.1907] [PMID: 26344696]
[94]
Erazo-Oliveras, A.; Muthukrishnan, N.; Baker, R.; Wang, T-Y.; Pellois, J-P. Improving the endosomal escape of cell-penetrating peptides and their cargos: strategies and challenges. Pharmaceuticals (Basel), 2012, 5(11), 1177-1209.
[http://dx.doi.org/10.3390/ph5111177] [PMID: 24223492]
[95]
Brock, D.J.; Kondow-McConaghy, H.M.; Hager, E.C.; Pellois, J-P. Endosomal Escape and Cytosolic Penetration of Macromolecules Mediated by Synthetic Delivery Agents. Bioconjug. Chem., 2019, 30(2), 293-304.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00799] [PMID: 30462487]
[96]
Kinnear, C.; Moore, T.L.; Rodriguez-Lorenzo, L.; Rothen-Rutishauser, B.; Petri-Fink, A. Form Follows Function: Nanoparticle Shape and Its Implications for Nanomedicine. Chem. Rev., 2017, 117(17), 11476-11521.
[http://dx.doi.org/10.1021/acs.chemrev.7b00194] [PMID: 28862437]
[97]
Sternson, L.A. Obstacles to polypeptide delivery. Ann. N. Y. Acad. Sci., 1987, 507(1), 19-21.
[http://dx.doi.org/10.1111/j.1749-6632.1987.tb45788.x] [PMID: 3442365]
[98]
Frankel, A.D.; Pabo, C.O. Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988, 55(6), 1189-1193.
[http://dx.doi.org/10.1016/0092-8674(88)90263-2] [PMID: 2849510]
[99]
Ramsey, J.D.; Flynn, N.H. Cell-penetrating peptides transport therapeutics into cells. Pharmacol. Ther., 2015, 154, 78-86.
[http://dx.doi.org/10.1016/j.pharmthera.2015.07.003] [PMID: 26210404]
[100]
Vivès, E.; Brodin, P.; Lebleu, B. A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J. Biol. Chem., 1997, 272(25), 16010-16017.
[http://dx.doi.org/10.1074/jbc.272.25.16010] [PMID: 9188504]
[101]
Park, J.; Ryu, J.; Kim, K-A.; Lee, H.J.; Bahn, J.H.; Han, K.; Choi, E.Y.; Lee, K.S.; Kwon, H.Y.; Choi, S.Y. Mutational analysis of a human immunodeficiency virus type 1 Tat protein transduction domain which is required for delivery of an exogenous protein into mammalian cells. J. Gen. Virol., 2002, 83(Pt 5), 1173-1181.
[http://dx.doi.org/10.1099/0022-1317-83-5-1173] [PMID: 11961273]
[102]
Guidotti, G.; Brambilla, L.; Rossi, D. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci., 2017, 38(4), 406-424.
[http://dx.doi.org/10.1016/j.tips.2017.01.003] [PMID: 28209404]
[103]
Tesauro, D.; Accardo, A.; Diaferia, C.; Milano, V.; Guillon, J.; Ronga, L.; Rossi, F. Peptide-based drug-delivery systems in biotechnological applications: recent advances and perspectives. Molecules, 2019, 24(2), 351.
[http://dx.doi.org/10.3390/molecules24020351] [PMID: 30669445]
[104]
Zhang, Q.; Tang, J.; Fu, L.; Ran, R.; Liu, Y.; Yuan, M.; He, Q. A pH-responsive α-helical cell penetrating peptide-mediated liposomal delivery system. Biomaterials, 2013, 34(32), 7980-7993.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.014] [PMID: 23891517]
[105]
Gagat, M.; Zielińska, W.; Grzanka, A. Cell-penetrating peptides and their utility in genome function modifications (Review). Int. J. Mol. Med., 2017, 40(6), 1615-1623. [review]
[http://dx.doi.org/10.3892/ijmm.2017.3172] [PMID: 29039455]
[106]
Joliot, A.; Pernelle, C.; Deagostini-Bazin, H.; Prochiantz, A. Antennapedia homeobox peptide regulates neural morphogenesis. Proc. Natl. Acad. Sci. USA, 1991, 88(5), 1864-1868.
[http://dx.doi.org/10.1073/pnas.88.5.1864] [PMID: 1672046]
[107]
Derossi, D.; Joliot, A.H.; Chassaing, G.; Prochiantz, A. The third helix of the Antennapedia homeodomain translocates through biological membranes. J. Biol. Chem., 1994, 269(14), 10444-10450.
[PMID: 8144628]
[108]
Futaki, S.; Suzuki, T.; Ohashi, W.; Yagami, T.; Tanaka, S.; Ueda, K.; Sugiura, Y. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J. Biol. Chem., 2001, 276(8), 5836-5840.
[http://dx.doi.org/10.1074/jbc.M007540200] [PMID: 11084031]
[109]
Fajac, I.; Grosse, S.; Briand, P.; Monsigny, M. Targeting of cell receptors and gene transfer efficiency: a balancing act. Gene Ther., 2002, 9(11), 740-742.
[http://dx.doi.org/10.1038/sj.gt.3301738] [PMID: 12032700]
[110]
De Coupade, C.; Fittipaldi, A.; Chagnas, V.; Michel, M.; Carlier, S.; Tasciotti, E.; Darmon, A.; Ravel, D.; Kearsey, J.; Giacca, M.; Cailler, F. Novel human-derived cell-penetrating peptides for specific subcellular delivery of therapeutic biomolecules. Biochem. J., 2005, 390(Pt 2), 407-418.
[http://dx.doi.org/10.1042/BJ20050401] [PMID: 15859953]
[111]
Ragin, A.D.; Morgan, R.A.; Chmielewski, J. Cellular import mediated by nuclear localization signal Peptide sequences. Chem. Biol., 2002, 9(8), 943-948.
[http://dx.doi.org/10.1016/S1074-5521(02)00189-8] [PMID: 12204694]
[112]
Nasrolahi Shirazi, A.; Tiwari, R.; Chhikara, B.S.; Mandal, D.; Parang, K. Design and biological evaluation of cell-penetrating peptide-doxorubicin conjugates as prodrugs. Mol. Pharm., 2013, 10(2), 488-499.
[http://dx.doi.org/10.1021/mp3004034] [PMID: 23301519]
[113]
Rodrigues, M.; Andreu, D.; Santos, N.C. Uptake and cellular distribution of nucleolar targeting peptides (NrTPs) in different cell types. Biopolymers, 2015, 104(2), 101-109.
[http://dx.doi.org/10.1002/bip.22610] [PMID: 25620660]
[114]
Wang, H.; Ma, J.; Yang, Y.; Zeng, F.; Liu, C. Highly efficient delivery of functional cargoes by a novel cell-penetrating peptide derived from sp140-like protein. Bioconjug. Chem., 2016, 27(5), 1373-1381.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00161] [PMID: 27070736]
[115]
Pujals, S.; Giralt, E. Proline-rich, amphipathic cell-penetrating peptides. Adv. Drug Deliv. Rev., 2008, 60(4-5), 473-484.
[http://dx.doi.org/10.1016/j.addr.2007.09.012] [PMID: 18187229]
[116]
Pooga, M.; Hällbrink, M.; Zorko, M.; Langel, U. Cell penetration by transportan. FASEB J., 1998, 12(1), 67-77.
[http://dx.doi.org/10.1096/fasebj.12.1.67] [PMID: 9438412]
[117]
Milletti, F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov. Today, 2012, 17(15-16), 850-860.
[http://dx.doi.org/10.1016/j.drudis.2012.03.002] [PMID: 22465171]
[118]
Elliott, G.; O’Hare, P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 1997, 88(2), 223-233.
[http://dx.doi.org/10.1016/S0092-8674(00)81843-7] [PMID: 9008163]
[119]
Elmquist, A.; Hansen, M.; Langel, U. Structure-activity relationship study of the cell-penetrating peptide pVEC. Biochim. Biophys. Acta, 2006, 1758(6), 721-729.
[http://dx.doi.org/10.1016/j.bbamem.2006.05.013] [PMID: 16808894]
[120]
Magzoub, M.; Sandgren, S.; Lundberg, P.; Oglecka, K.; Lilja, J.; Wittrup, A.; Göran Eriksson, L.E.; Langel, U.; Belting, M.; Gräslund, A. N-terminal peptides from unprocessed prion proteins enter cells by macropinocytosis. Biochem. Biophys. Res. Commun., 2006, 348(2), 379-385.
[http://dx.doi.org/10.1016/j.bbrc.2006.07.065] [PMID: 16893522]
[121]
Johansson, H.J.; El-Andaloussi, S.; Holm, T.; Maee, M.; Jaenes, J.; Maimets, T.; Langel, U. Characterization of a Novel Cytotoxic Cell-penetrating Peptide Derived From p14ARF Protein. Mol. Ther., 2008, 16(1), 115-123.
[http://dx.doi.org/10.1038/sj.mt.6300346]
[122]
Oehlke, J.; Krause, E.; Wiesner, B.; Beyermann, M.; Bienert, M. Extensive cellular uptake into endothelial cells of an amphipathic β-sheet forming peptide. FEBS Lett., 1997, 415(2), 196-199.
[http://dx.doi.org/10.1016/S0014-5793(97)01123-X] [PMID: 9350995]
[123]
Oehlke, J.; Scheller, A.; Wiesner, B.; Krause, E.; Beyermann, M.; Klauschenz, E.; Melzig, M.; Bienert, M. Cellular uptake of an α-helical amphipathic model peptide with the potential to deliver polar compounds into the cell interior non-endocytically. Biochim. Biophys. Acta, 1998, 1414(1-2), 127-139.
[http://dx.doi.org/10.1016/S0005-2736(98)00161-8] [PMID: 9804921]
[124]
Yamada, T.; Christov, K.; Shilkaitis, A.; Bratescu, L.; Green, A.; Santini, S.; Bizzarri, A.R.; Cannistraro, S.; Gupta, T.K.D.; Beattie, C.W. p28, a first in class peptide inhibitor of cop1 binding to p53. Br. J. Cancer, 2013, 108(12), 2495-2504.
[http://dx.doi.org/10.1038/bjc.2013.266] [PMID: 23736031]
[125]
Rhee, M.; Davis, P. Mechanism of uptake of C105Y, a novel cell-penetrating peptide. J. Biol. Chem., 2006, 281(2), 1233-1240.
[http://dx.doi.org/10.1074/jbc.M509813200] [PMID: 16272160]
[126]
Marks, J.R.; Placone, J.; Hristova, K.; Wimley, W.C. Spontaneous membrane-translocating peptides by orthogonal high-throughput screening. J. Am. Chem. Soc., 2011, 133(23), 8995-9004.
[http://dx.doi.org/10.1021/ja2017416] [PMID: 21545169]
[127]
Gao, C.; Mao, S.; Ditzel, H.J.; Farnaes, L.; Wirsching, P.; Lerner, R.A.; Janda, K.D. A cell-penetrating peptide from a novel pVII-pIX phage-displayed random peptide library. Bioorg. Med. Chem., 2002, 10(12), 4057-4065.
[http://dx.doi.org/10.1016/S0968-0896(02)00340-1] [PMID: 12413859]
[128]
Zavaglia, D.; Favrot, M.C.; Eymin, B.; Tenaud, C.; Coll, J.L. Intercellular trafficking and enhanced in vivo antitumour activity of a non-virally delivered P27-VP22 fusion protein. Gene Ther., 2003, 10(4), 314-325.
[http://dx.doi.org/10.1038/sj.gt.3301904] [PMID: 12595890]
[129]
Chatterjee, J.; Gilon, C.; Hoffman, A.; Kessler, H. N-methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res., 2008, 41(10), 1331-1342.
[http://dx.doi.org/10.1021/ar8000603] [PMID: 18636716]
[130]
Ahmed, S.; Kaur, K. The proteolytic stability and cytotoxicity studies of L-aspartic acid and L-diaminopropionic acid derived β-peptides and a mixed α/β-peptide. Chem. Biol. Drug Des., 2009, 73(5), 545-552.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00803.x] [PMID: 19317848]
[131]
Frackenpohl, J.; Arvidsson, P.I.; Schreiber, J.V.; Seebach, D. The outstanding biological stability of β- and γ-peptides toward proteolytic enzymes: an in vitro investigation with fifteen peptidases. ChemBioChem, 2001, 2(6), 445-455.
[http://dx.doi.org/10.1002/1439-7633(20010601)2:6<445:AID-CBIC445>3.0.CO;2-R] [PMID: 11828476]
[132]
Pujals, S.; Fernández-Carneado, J.; Ludevid, M.D.; Giralt, E. D-SAP: a new, noncytotoxic, and fully protease resistant cell-penetrating peptide. ChemMedChem, 2008, 3(2), 296-301.
[http://dx.doi.org/10.1002/cmdc.200700267] [PMID: 18058782]
[133]
Youngblood, D.S.; Hatlevig, S.A.; Hassinger, J.N.; Iversen, P.L.; Moulton, H.M. Stability of cell-penetrating peptide-morpholino oligomer conjugates in human serum and in cells. Bioconjug. Chem., 2007, 18(1), 50-60.
[http://dx.doi.org/10.1021/bc060138s] [PMID: 17226957]
[134]
Verdurmen, W.P.R.; Bovee-Geurts, P.H.; Wadhwani, P.; Ulrich, A.S.; Hällbrink, M.; van Kuppevelt, T.H.; Brock, R. Preferential uptake of L- versus D-amino acid cell-penetrating peptides in a cell type-dependent manner. Chem. Biol., 2011, 18(8), 1000-1010.
[http://dx.doi.org/10.1016/j.chembiol.2011.06.006] [PMID: 21867915]
[135]
Otvos, L., Jr; Cappelletto, B.; Varga, I.; Wade, J.D.; Xiang, Z.Q.; Kaiser, K.; Stephens, L.J.; Ertl, H.C.J. The effects of post-translational side-chain modifications on the stimulatory activity, serum stability and conformation of synthetic peptides carrying T helper cell epitopes. Biochim. Biophys. Acta, 1996, 1313(1), 11-19.
[http://dx.doi.org/10.1016/0167-4889(96)00046-8] [PMID: 8781544]
[136]
Hamley, I.W. PEG-peptide conjugates. Biomacromolecules, 2014, 15(5), 1543-1559.
[http://dx.doi.org/10.1021/bm500246w] [PMID: 24720400]
[137]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[138]
Danial, M.; van Dulmen, T.H.H.; Aleksandrowicz, J.; Pötgens, A.J.G.; Klok, H-A. Site-specific PEGylation of HR2 peptides: effects of PEG conjugation position and chain length on HIV-1 membrane fusion inhibition and proteolytic degradation. Bioconjug. Chem., 2012, 23(8), 1648-1660.
[http://dx.doi.org/10.1021/bc3002248] [PMID: 22770564]
[139]
Dozier, J.K.; Distefano, M.D. Site-specific pegylation of therapeutic proteins. Int. J. Mol. Sci., 2015, 16(10), 25831-25864.
[http://dx.doi.org/10.3390/ijms161025831] [PMID: 26516849]
[140]
Nischan, N.; Chakrabarti, A.; Serwa, R.A.; Bovee-Geurts, P.H.M.; Brock, R.; Hackenberger, C.P.R. Stabilization of peptides for intracellular applications by phosphoramidate-linked polyethylene glycol chains. Angew. Chem. Int. Ed. Engl., 2013, 52(45), 11920-11924.
[http://dx.doi.org/10.1002/anie.201303467] [PMID: 24039043]
[141]
Teesalu, T.; Sugahara, K. N.; Kotamraju, V. R.; Erkki, R. C-end rule peptides mediate neuropilin-1-dependent cell, vascular, and tissue penetration. Proc. Natl. Acad. Sci. U. S. A., 2009, 106(38), 16157-16162. S16157/1-S16157/15
[142]
Roth, L.; Agemy, L.; Kotamraju, V.R.; Braun, G.; Teesalu, T.; Sugahara, K.N.; Hamzah, J.; Ruoslahti, E. Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene, 2012, 31(33), 3754-3763.
[http://dx.doi.org/10.1038/onc.2011.537] [PMID: 22179825]
[143]
Alberici, L.; Roth, L.; Sugahara, K.N.; Agemy, L.; Kotamraju, V.R.; Teesalu, T.; Bordignon, C.; Traversari, C.; Rizzardi, G-P.; Ruoslahti, E. De novo design of a tumor-penetrating peptide. Cancer Res., 2013, 73(2), 804-812.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-1668] [PMID: 23151901]
[144]
Teesalu, T.; Sugahara, K.N.; Ruoslahti, E. Tumor-penetrating peptides. Front. Oncol., 2013, 3, 216.
[http://dx.doi.org/10.3389/fonc.2013.00216] [PMID: 23986882]
[145]
Pang, H-B.; Braun, G.B.; She, Z-G.; Kotamraju, V.R.; Sugahara, K.N.; Teesalu, T.; Ruoslahti, E. A free cysteine prolongs the half-life of a homing peptide and improves its tumor-penetrating activity. J. Control. Release, 2014, 175, 48-53.
[http://dx.doi.org/10.1016/j.jconrel.2013.12.006] [PMID: 24345789]
[146]
Sugahara, K.N.; Braun, G.B.; de Mendoza, T.H.; Kotamraju, V.R.; French, R.P.; Lowy, A.M.; Teesalu, T.; Ruoslahti, E. Tumor-penetrating iRGD peptide inhibits metastasis. Mol. Cancer Ther., 2015, 14(1), 120-128.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0366] [PMID: 25392370]
[147]
Ewert, K.K.; Kotamraju, V.R.; Majzoub, R.N.; Steffes, V.M.; Wonder, E.A.; Teesalu, T.; Ruoslahti, E.; Safinya, C.R. Synthesis of linear and cyclic peptide-PEG-lipids for stabilization and targeting of cationic liposome-DNA complexes. Bioorg. Med. Chem. Lett., 2016, 26(6), 1618-1623.
[http://dx.doi.org/10.1016/j.bmcl.2016.01.079] [PMID: 26874401]
[148]
Nel, A.; Ruoslahti, E.; Meng, H. New insights into “permeability” as in the enhanced permeability and retention effect of cancer nanotherapeutics. ACS Nano, 2017, 11(10), 9567-9569.
[http://dx.doi.org/10.1021/acsnano.7b07214] [PMID: 29065443]
[149]
Sharma, S.; Kotamraju, V.R.; Mölder, T.; Tobi, A.; Teesalu, T.; Ruoslahti, E. Tumor-Penetrating Nanosystem Strongly Suppresses Breast Tumor Growth. Nano Lett., 2017, 17(3), 1356-1364.
[http://dx.doi.org/10.1021/acs.nanolett.6b03815] [PMID: 28178415]
[150]
Pierschbacher, M.D.; Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature, 1984, 309(5963), 30-33.
[http://dx.doi.org/10.1038/309030a0] [PMID: 6325925]
[151]
Sheldrake, H.M.; Patterson, L.H. Strategies to inhibit tumor associated integrin receptors: rationale for dual and multi-antagonists. J. Med. Chem., 2014, 57(15), 6301-6315.
[http://dx.doi.org/10.1021/jm5000547] [PMID: 24568695]
[152]
Liu, S. Radiolabeled cyclic RGD peptide bioconjugates as radiotracers targeting multiple integrins. Bioconjug. Chem., 2015, 26(8), 1413-1438.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00327] [PMID: 26193072]
[153]
Temming, K.; Schiffelers, R.M.; Molema, G.; Kok, R.J. RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumour vasculature. Drug Resist. Updat., 2005, 8(6), 381-402.
[http://dx.doi.org/10.1016/j.drup.2005.10.002] [PMID: 16309948]
[154]
Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm., 2012, 9(11), 2961-2973.
[http://dx.doi.org/10.1021/mp3002733] [PMID: 22967287]
[155]
Schottelius, M.; Laufer, B.; Kessler, H.; Wester, H-J. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc. Chem. Res., 2009, 42(7), 969-980.
[http://dx.doi.org/10.1021/ar800243b] [PMID: 19489579]
[156]
Sugahara, K.N.; Teesalu, T.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.; Mattrey, R.F.; Ruoslahti, E. Tissue-penetrating delivery of compounds and nanoparticles into tumors. Cancer Cell, 2009, 16(6), 510-520.
[http://dx.doi.org/10.1016/j.ccr.2009.10.013] [PMID: 19962669]
[157]
Cho, H-J.; Park, S-J.; Lee, Y-S.; Kim, S. Theranostic iRGD peptide containing cisplatin prodrug: Dual-cargo tumor penetration for improved imaging and therapy. J. Control. Release, 2019, 300, 73-80.
[http://dx.doi.org/10.1016/j.jconrel.2019.02.043] [PMID: 30831135]
[158]
Kirschner, N.; Brandner, J.M. Barriers and more: functions of tight junction proteins in the skin. Ann. N. Y. Acad. Sci., 2012, 1257(1), 158-166.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06554.x] [PMID: 22671602]
[159]
Serlin, Y.; Shelef, I.; Knyazer, B.; Friedman, A. Anatomy and physiology of the blood-brain barrier. Semin. Cell Dev. Biol., 2015, 38, 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002] [PMID: 25681530]
[160]
Daneman, R.; Prat, A. The blood-brain barrier. Cold Spring Harb. Perspect. Biol., 2015, 7(1), a020412
[http://dx.doi.org/10.1101/cshperspect.a020412] [PMID: 25561720]
[161]
Oldendorf, W.H. Lipid solubility and drug penetration of the blood brain barrier. Proc. Soc. Exp. Biol. Med., 1974, 147(3), 813-815.
[http://dx.doi.org/10.3181/00379727-147-38444] [PMID: 4445171]
[162]
Banks, W.A.; Kastin, A.J. Peptides and the blood-brain barrier: lipophilicity as a predictor of permeability. Brain Res. Bull., 1985, 15(3), 287-292.
[http://dx.doi.org/10.1016/0361-9230(85)90153-4] [PMID: 2413968]
[163]
Chikhale, E.G.; Ng, K.Y.; Burton, P.S.; Borchardt, R.T. Hydrogen bonding potential as a determinant of the in vitro and in situ blood-brain barrier permeability of peptides. Pharm. Res., 1994, 11(3), 412-419.
[http://dx.doi.org/10.1023/A:1018969222130] [PMID: 8008709]
[164]
Begley, D.J. Strategies for delivery of peptide drugs to the central nervous system: exploiting molecular structure. J. Control. Release, 1994, 29(3), 293-306.
[http://dx.doi.org/10.1016/0168-3659(94)90075-2]
[165]
Varghese, N.M.; Senthil, V.; Saxena, S.K. Nanocarriers for brain specific delivery of anti-retro viral drugs: challenges and achievements. J. Drug Target., 2018, 26(3), 195-207.
[http://dx.doi.org/10.1080/1061186X.2017.1374389] [PMID: 28866957]
[166]
Schwarze, S.R.; Ho, A.; Vocero-Akbani, A.; Dowdy, S.F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999, 285(5433), 1569-1572.
[http://dx.doi.org/10.1126/science.285.5433.1569] [PMID: 10477521]
[167]
Santra, S.; Yang, H.; Stanley, J.T.; Holloway, P.H.; Moudgil, B.M.; Walter, G.; Mericle, R.A. Rapid and effective labeling of brain tissue using TAT-conjugated CdS:Mn/ZnS quantum dots. Chem. Commun. (Camb.), 2005, (25), 3144-3146.
[http://dx.doi.org/10.1039/b503234b] [PMID: 15968352]
[168]
Rao, K.S.; Reddy, M.K.; Horning, J.L.; Labhasetwar, V. TAT-conjugated nanoparticles for the CNS delivery of anti-HIV drugs. Biomaterials, 2008, 29(33), 4429-4438.
[http://dx.doi.org/10.1016/j.biomaterials.2008.08.004] [PMID: 18760470]
[169]
Liu, L.; Guo, K.; Lu, J.; Venkatraman, S.S.; Luo, D.; Ng, K.C.; Ling, E-A.; Moochhala, S.; Yang, Y-Y. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood-brain barrier. Biomaterials, 2008, 29(10), 1509-1517.
[http://dx.doi.org/10.1016/j.biomaterials.2007.11.014] [PMID: 18155137]
[170]
Zhao, Y.; Li, D.; Zhao, J.; Song, J.; Zhao, Y. The role of the lowdensity lipoprotein receptor-related protein 1 (LRP-1) in regulating blood-brain barrier integrity. Rev. Neurosci. (Berlin, Ger.), 2016, 27(6), 623-634.
[171]
Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev., 2002, 54(4), 561-587.
[http://dx.doi.org/10.1124/pr.54.4.561] [PMID: 12429868]
[172]
Go, G-W.; Mani, A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med., 2012, 85(1), 19-28.
[PMID: 22461740]
[173]
Sánchez-Navarro, M.; Teixidó, M.; Giralt, E. Jumping hurdles: Peptides able to overcome biological barriers. Acc. Chem. Res., 2017, 50(8), 1847-1854.
[http://dx.doi.org/10.1021/acs.accounts.7b00204] [PMID: 28715199]
[174]
Zhan, C.; Li, B.; Hu, L.; Wei, X.; Feng, L.; Fu, W.; Lu, W. Micelle-based brain-targeted drug delivery enabled by a nicotine acetylcholine receptor ligand. Angew. Chem. Int. Ed. Engl., 2011, 50(24), 5482-5485.
[http://dx.doi.org/10.1002/anie.201100875] [PMID: 21542074]
[175]
Dubois, L.G.; Campanati, L.; Righy, C.; D’Andrea-Meira, I.; Spohr, T.C.L.S.E.; Porto-Carreiro, I.; Pereira, C.M.; Balça-Silva, J.; Kahn, S.A.; DosSantos, M.F.; Oliveira, Mde.A.; Ximenes-da-Silva, A.; Lopes, M.C.; Faveret, E.; Gasparetto, E.L.; Moura-Neto, V. Gliomas and the vascular fragility of the blood brain barrier. Front. Cell. Neurosci., 2014, 8, 418-418.
[http://dx.doi.org/10.3389/fncel.2014.00418] [PMID: 25565956]
[176]
Yu, M-Z.; Pang, W-H.; Yang, T.; Wang, J-C.; Wei, L.; Qiu, C.; Wu, Y-F.; Liu, W-Z.; Wei, W.; Guo, X-Y.; Zhang, Q. Systemic delivery of siRNA by T7 peptide modified core-shell nanoparticles for targeted therapy of breast cancer. Eur. J. Pharm. Sci., 2016, 92, 39-48.
[http://dx.doi.org/10.1016/j.ejps.2016.06.020] [PMID: 27355138]
[177]
Liu, Z.; Gao, X.; Kang, T.; Jiang, M.; Miao, D.; Gu, G.; Hu, Q.; Song, Q.; Yao, L.; Tu, Y.; Chen, H.; Jiang, X.; Chen, J. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug. Chem., 2013, 24(6), 997-1007.
[http://dx.doi.org/10.1021/bc400055h] [PMID: 23718945]
[178]
Kang, T.; Jiang, M.; Jiang, D.; Feng, X.; Yao, J.; Song, Q.; Chen, H.; Gao, X.; Chen, J. Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol. Pharm., 2015, 12(8), 2947-2961.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00222] [PMID: 26149889]
[179]
Prades, R.; Guerrero, S.; Araya, E.; Molina, C.; Salas, E.; Zurita, E.; Selva, J.; Egea, G.; López-Iglesias, C.; Teixidó, M.; Kogan, M.J.; Giralt, E. Delivery of gold nanoparticles to the brain by conjugation with a peptide that recognizes the transferrin receptor. Biomaterials, 2012, 33(29), 7194-7205.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.063] [PMID: 22795856]
[180]
Phoolcharoen, W.; Prehaud, C.; van Dolleweerd, C.J.; Both, L.; da Costa, A.; Lafon, M.; Ma, J.K.C. Enhanced transport of plant-produced rabies single-chain antibody-RVG peptide fusion protein across an in cellulo blood-brain barrier device. Plant Biotechnol. J., 2017, 15(10), 1331-1339.
[http://dx.doi.org/10.1111/pbi.12719] [PMID: 28273388]
[181]
Demeule, M.; Beaudet, N.; Régina, A.; Besserer-Offroy, É.; Murza, A.; Tétreault, P.; Belleville, K.; Ché, C.; Larocque, A.; Thiot, C.; Béliveau, R.; Longpré, J-M.; Marsault, É.; Leduc, R.; Lachowicz, J.E.; Gonias, S.L.; Castaigne, J-P.; Sarret, P. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J. Clin. Invest., 2014, 124(3), 1199-1213.
[http://dx.doi.org/10.1172/JCI70647] [PMID: 24531547]
[182]
Sorrentino, N.C.; D’Orsi, L.; Sambri, I.; Nusco, E.; Monaco, C.; Spampanato, C.; Polishchuk, E.; Saccone, P.; De Leonibus, E.; Ballabio, A.; Fraldi, A. A highly secreted sulphamidase engineered to cross the blood-brain barrier corrects brain lesions of mice with mucopolysaccharidoses type IIIA. EMBO Mol. Med., 2013, 5(5), 675-690.
[http://dx.doi.org/10.1002/emmm.201202083] [PMID: 23568409]
[183]
Wang, D.; El-Amouri, S.S.; Dai, M.; Kuan, C-Y.; Hui, D.Y.; Brady, R.O.; Pan, D. Engineering a lysosomal enzyme with a derivative of receptor-binding domain of apoE enables delivery across the blood-brain barrier. Proc. Natl. Acad. Sci. USA, 2013, 110(8), 2999-3004.
[http://dx.doi.org/10.1073/pnas.1222742110] [PMID: 23382178]
[184]
Díaz-Perlas, C.; Oller-Salvia, B.; Sánchez-Navarro, M.; Teixidó, M.; Giralt, E. Branched BBB-shuttle peptides: chemoselective modification of proteins to enhance blood-brain barrier transport. Chem. Sci. (Camb.), 2018, 9(44), 8409-8415.
[http://dx.doi.org/10.1039/C8SC02415D] [PMID: 30542590]
[185]
Liu, Y.; Li, J.; Shao, K.; Huang, R.; Ye, L.; Lou, J.; Jiang, C. A leptin derived 30-amino-acid peptide modified pegylated poly-L-lysine dendrigraft for brain targeted gene delivery. Biomaterials, 2010, 31(19), 5246-5257.
[http://dx.doi.org/10.1016/j.biomaterials.2010.03.011] [PMID: 20382424]
[186]
Tian, X-H.; Wang, Z-G.; Meng, H.; Wang, Y-H.; Feng, W.; Wei, F.; Huang, Z-C.; Lin, X-N.; Ren, L. Tat peptide-decorated gelatin-siloxane nanoparticles for delivery of CGRP transgene in treatment of cerebral vasospasm. Int. J. Nanomedicine, 2013, 8, 865-876.
[http://dx.doi.org/10.2147/IJN.S39951] [PMID: 23576867]
[187]
Rousselle, C.; Clair, P.; Lefauconnier, J-M.; Kaczorek, M.; Scherrmann, J-M.; Temsamani, J. New advances in the transport of doxorubicin through the blood-brain barrier by a peptide vector-mediated strategy. Mol. Pharmacol., 2000, 57(4), 679-686.
[http://dx.doi.org/10.1124/mol.57.4.679] [PMID: 10727512]
[188]
Neves-Coelho, S.; Eleuterio, R. P.; Enguita, F. J.; Neves, V.; Castanho, M. A. R. B. A new noncanonical anionic peptide that translocates a cellular blood-brain barrier model. Molecules, 2017, 22(10), 1753/1-1753/12.
[http://dx.doi.org/10.3390/molecules22101753]
[189]
Singh, K.; Ejaz, W.; Dutta, K.; Thayumanavan, S. Antibody delivery for intracellular targets: Emergent therapeutic potential. Bioconjug. Chem., 2019, 30(4), 1028-1041.
[190]
Dang, C.V.; Reddy, E.P.; Shokat, K.M.; Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer, 2017, 17(8), 502-508.
[http://dx.doi.org/10.1038/nrc.2017.36] [PMID: 28643779]
[191]
Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705), 1315-1317.
[http://dx.doi.org/10.1126/science.4001944] [PMID: 4001944]
[192]
Nilvebrant, J.; Sidhu, S.S. Construction of synthetic antibody phage-display libraries. Methods Mol. Biol. (N. Y., NY, U. S.),, 2018, 1701, 45-60.
[http://dx.doi.org/10.1007/978-1-4939-7447-4_3]
[193]
Gaughan, C.L. The present state of the art in expression, production and characterization of monoclonal antibodies. Mol. Divers., 2016, 20(1), 255-270.
[http://dx.doi.org/10.1007/s11030-015-9625-z] [PMID: 26299798]
[194]
Abdollahpour-Alitappeh, M.; Lotfinia, M.; Gharibi, T.; Mardaneh, J.; Farhadihosseinabadi, B.; Larki, P.; Faghfourian, B.; Sepehr, K.S.; Abbaszadeh-Goudarzi, K.; Abbaszadeh-Goudarzi, G.; Johari, B.; Zali, M.R.; Bagheri, N. Antibody-drug conjugates (ADCs) for cancer therapy: Strategies, challenges, and successes. J. Cell. Physiol., 2019, 234(5), 5628-5642.
[http://dx.doi.org/10.1002/jcp.27419] [PMID: 30478951]
[195]
Tashima, T. Effective cancer therapy based on selective drug delivery into cells across their membrane using receptor-mediated endocytosis. Bioorg. Med. Chem. Lett., 2018, 28(18), 3015-3024.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.012] [PMID: 30031619]
[196]
Chalouni, C.; Doll, S. Fate of antibody-drug conjugates in cancer cells. J. Exp. Clin. Cancer Res., 2018, 37, 20/1-20/12.
[197]
Antman, K.H.; Livingston, D.M. Intracellular neutralization of SV40 tumor antigens following microinjection of specific antibody. Cell, 1980, 19(3), 627-635.
[http://dx.doi.org/10.1016/S0092-8674(80)80039-0] [PMID: 6244892]
[198]
Blose, S.H.; Meltzer, D.I.; Feramisco, J.R. 10-nm filaments are induced to collapse in living cells microinjected with monoclonal and polyclonal antibodies against tubulin. J. Cell Biol., 1984, 98(3), 847-858.
[http://dx.doi.org/10.1083/jcb.98.3.847] [PMID: 6538204]
[199]
Berglund, D.L.; Starkey, J.R. Introduction of antibody into viable cells using electroporation. Cytometry, 1991, 12(1), 64-67.
[http://dx.doi.org/10.1002/cyto.990120109] [PMID: 1999124]
[200]
Marrero, M.B.; Schieffer, B.; Paxton, W.G.; Schieffer, E.; Bernstein, K.E. Electroporation of pp60c-src antibodies inhibits the angiotensin II activation of phospholipase C-γ 1 in rat aortic smooth muscle cells. J. Biol. Chem., 1995, 270(26), 15734-15738.
[http://dx.doi.org/10.1074/jbc.270.26.15734] [PMID: 7541047]
[201]
Kumar, P.; Tambe, P.; Paknikar, K.M.; Gajbhiye, V. Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. J. Control. Release, 2018, 287, 35-57.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.024] [PMID: 30125637]
[202]
Baeza, A.; Vallet-Regi, M. Targeted Mesoporous Silica Nanocarriers in Oncology. Curr. Drug Targets, 2018, 19(3), 213-224.
[http://dx.doi.org/10.2174/1389450117666160603023037] [PMID: 27262488]
[203]
Maggini, L.; Cabrera, I.; Ruiz-Carretero, A.; Prasetyanto, E.A.; Robinet, E.; De Cola, L. Breakable mesoporous silica nanoparticles for targeted drug delivery. Nanoscale, 2016, 8(13), 7240-7247.
[http://dx.doi.org/10.1039/C5NR09112H] [PMID: 26974603]
[204]
Guo, H-C.; Feng, X-M.; Sun, S-Q.; Wei, Y-Q.; Sun, D-H.; Liu, X-T.; Liu, Z-X.; Luo, J-X.; Yin, H. Immunization of mice by hollow mesoporous silica nanoparticles as carriers of porcine circovirus type 2 ORF2 protein. Virol. J., 2012, 9, 108.
[http://dx.doi.org/10.1186/1743-422X-9-108] [PMID: 22691538]
[205]
Roberts, C.J.; Davies, M.C.; Tendler, S.J.; Williams, P.M.; Davies, J.; Dawkes, A.C.; Yearwood, G.D.; Edwards, J.C. The discrimination of IgM and IgG type antibodies and Fab’ and F(ab)2 antibody fragments on an industrial substrate using scanning force microscopy. Ultramicroscopy, 1996, 62(3), 149-155.
[http://dx.doi.org/10.1016/0304-3991(95)00143-3] [PMID: 8677526]
[206]
Du, X. In Biomacromolecule-gated mesoporous silica drug delivery systems for stimuli-responsive controlled release. Scrivener Publishing, 2015, LLC, 67-92.
[http://dx.doi.org/10.1002/9781118998922.ch3]
[207]
Karimi, M.; Mirshekari, H.; Aliakbari, M.; Sahandi-Zangabad, P.; Hamblin, M.R. Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnol. Rev., 2016, 5(2), 195-207.
[http://dx.doi.org/10.1515/ntrev-2015-0057]
[208]
Wen, J.; Yang, K.; Liu, F.; Li, H.; Xu, Y.; Sun, S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem. Soc. Rev., 2017, 46(19), 6024-6045.
[http://dx.doi.org/10.1039/C7CS00219J] [PMID: 28848978]
[209]
Yi, S.; Zheng, J.; Lv, P.; Zhang, D.; Zheng, X.; Zhang, Y.; Liao, R. Controlled Drug Release from Cyclodextrin-Gated Mesoporous Silica Nanoparticles Based on Switchable Host-Guest Interactions. Bioconjug. Chem., 2018, 29(9), 2884-2891.
[http://dx.doi.org/10.1021/acs.bioconjchem.8b00416] [PMID: 30074757]
[210]
Gu, J.; Huang, K.; Zhu, X.; Li, Y.; Wei, J.; Zhao, W.; Liu, C.; Shi, J. Sub-150 nm mesoporous silica nanoparticles with tunable pore sizes and well-ordered mesostructure for protein encapsulation. J. Colloid Interface Sci., 2013, 407, 236-242.
[http://dx.doi.org/10.1016/j.jcis.2013.06.028] [PMID: 23866201]
[211]
Garcia-Bennett, A.E.; Kozhevnikova, M.; König, N.; Zhou, C.; Leao, R.; Knöpfel, T.; Pankratova, S.; Trolle, C.; Berezin, V.; Bock, E.; Aldskogius, H.; Kozlova, E.N. Delivery of differentiation factors by mesoporous silica particles assists advanced differentiation of transplanted murine embryonic stem cells. Stem Cells Transl. Med., 2013, 2(11), 906-915.
[http://dx.doi.org/10.5966/sctm.2013-0072] [PMID: 24089415]
[212]
Tarn, D.; Ashley, C.E.; Xue, M.; Carnes, E.C.; Zink, J.I.; Brinker, C.J. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res., 2013, 46(3), 792-801.
[http://dx.doi.org/10.1021/ar3000986] [PMID: 23387478]
[213]
Wang, Y.; Gu, H. Core-shell-type magnetic mesoporous silica nanocomposites for bioimaging and therapeutic agent delivery. Adv. Mater., 2015, 27(3), 576-585.
[http://dx.doi.org/10.1002/adma.201401124] [PMID: 25238634]
[214]
Wang, H.; Covarrubias, J.; Prock, H.; Wu, X.; Wang, D.; Bossmann, S.H. Acid-Functionalized Magnetic Nanoparticle as Heterogeneous Catalysts for Biodiesel Synthesis. J. Phys. Chem. C, 2015, 119(46), 26020-26028.
[http://dx.doi.org/10.1021/acs.jpcc.5b08743]
[215]
Lai, C-Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S.Y. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc., 2003, 125(15), 4451-4459.
[http://dx.doi.org/10.1021/ja028650l] [PMID: 12683815]
[216]
Kalubowilage, M.; Covarrubias-Zambrano, O.; Malalasekera, A.P.; Wendel, S.O.; Wang, H.; Yapa, A.S.; Chlebanowski, L.; Toledo, Y.; Ortega, R.; Janik, K.E.; Shrestha, T.B.; Culbertson, C.T.; Kasi, A.; Williamson, S.; Troyer, D.L.; Bossmann, S.H. Early detection of pancreatic cancers in liquid biopsies by ultrasensitive fluorescence nanobiosensors. Nanomedicine (Lond.), 2018, 14(6), 1823-1832.
[http://dx.doi.org/10.1016/j.nano.2018.04.020] [PMID: 29782949]
[217]
Udukala, D.N.; Wang, H.; Wendel, S.O.; Malalasekera, A.P.; Samarakoon, T.N.; Yapa, A.S.; Abayaweera, G.; Basel, M.T.; Maynez, P.; Ortega, R.; Toledo, Y.; Bossmann, L.; Robinson, C.; Janik, K.E.; Koper, O.B.; Li, P.; Motamedi, M.; Higgins, D.A.; Gadbury, G.; Zhu, G.; Troyer, D.L.; Bossmann, S.H. Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection. Beilstein J. Nanotechnol., 2016, 7, 364-373.
[http://dx.doi.org/10.3762/bjnano.7.33] [PMID: 27335730]
[218]
Cheng, Y-J.; Luo, G-F.; Zhu, J-Y.; Xu, X-D.; Zeng, X.; Cheng, D-B.; Li, Y-M.; Wu, Y.; Zhang, X-Z.; Zhuo, R-X.; He, F. Enzyme-induced and tumor-targeted drug delivery system based on multifunctional mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces, 2015, 7(17), 9078-9087.
[http://dx.doi.org/10.1021/acsami.5b00752] [PMID: 25893819]
[219]
Singh, N.; Karambelkar, A.; Gu, L.; Lin, K.; Miller, J.S.; Chen, C.S.; Sailor, M.J.; Bhatia, S.N. Bioresponsive mesoporous silica nanoparticles for triggered drug release. J. Am. Chem. Soc., 2011, 133(49), 19582-19585.
[http://dx.doi.org/10.1021/ja206998x] [PMID: 21981330]
[220]
de la Torre, C.; Casanova, I.; Acosta, G.; Coll, C.; Moreno, M.J.; Albericio, F.; Aznar, E.; Mangues, R.; Royo, M.; Sancenón, F.; Martínez-Máñez, R. Gated mesoporous silica nanoparticles using a double-role circular peptide for the controlled and target-preferential release of doxorubicin in CXCR4-expresing lymphoma cells. Adv. Funct. Mater., 2015, 25(5), 687-695.
[http://dx.doi.org/10.1002/adfm.201403822]
[221]
Fathi, S.; Oyelere, A.K. Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Med. Chem., 2016, 8(17), 2091-2112.
[http://dx.doi.org/10.4155/fmc-2016-0135] [PMID: 27774793]
[222]
Li, Z.; Tan, S.; Li, S.; Shen, Q.; Wang, K. Cancer drug delivery in the nano era: An overview and perspectives (Review). Oncol. Rep., 2017, 38(2), 611-624.
[http://dx.doi.org/10.3892/or.2017.5718] [PMID: 28627697]
[223]
Ansari, R.; Mannan, A. Liposomes as a novel drug delivery system. Int. J. Pharm. Technol., 2017, 9(2), 29735-29758.
[224]
Lasic, D.D. Liposomes: Past, present, and future; CRC, 1996, pp. 299-315.
[225]
Karanth, H.; Murthy, R.S.R. pH-sensitive liposomes--principle and application in cancer therapy. J. Pharm. Pharmacol., 2007, 59(4), 469-483.
[http://dx.doi.org/10.1211/jpp.59.4.0001] [PMID: 17430630]
[226]
Pezzoli, D.; Tallarita, E.; Rosini, E.; Candiani, G. Characterization and investigation of redox-sensitive liposomes for gene delivery. Methods Mol. Biol., 2016, 1445, 217-233.
[http://dx.doi.org/10.1007/978-1-4939-3718-9_14]
[227]
Yavlovich, A.; Smith, B.; Gupta, K.; Blumenthal, R.; Puri, A. Light-sensitive lipid-based nanoparticles for drug delivery: design principles and future considerations for biological applications. Mol. Membr. Biol., 2010, 27(7), 364-381.
[http://dx.doi.org/10.3109/09687688.2010.507788] [PMID: 20939770]
[228]
Kono, K.; Ozawa, T.; Yoshida, T.; Ozaki, F.; Ishizaka, Y.; Maruyama, K.; Kojima, C.; Harada, A.; Aoshima, S. Highly temperature-sensitive liposomes based on a thermosensitive block copolymer for tumor-specific chemotherapy. Biomaterials, 2010, 31(27), 7096-7105.
[http://dx.doi.org/10.1016/j.biomaterials.2010.05.045] [PMID: 20580431]
[229]
Milla, P.; Dosio, F.; Cattel, L. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab., 2012, 13(1), 105-119.
[http://dx.doi.org/10.2174/138920012798356934] [PMID: 21892917]
[230]
Mozar, F.S.; Chowdhury, E.H. Impact of PEGylated Nanoparticles on Tumor Targeted Drug Delivery. Curr. Pharm. Des., 2018, 24(28), 3283-3296.
[http://dx.doi.org/10.2174/1381612824666180730161721] [PMID: 30062957]
[231]
Elkhodiry, M.A.; Momah, C.C.; Suwaidi, S.R.; Gadalla, D.; Martins, A.M.; Vitor, R.F.; Husseini, G.A. Synergistic nanomedicine: passive, active, and ultrasound-triggered drug delivery in cancer treatment. J. Nanosci. Nanotechnol., 2016, 16(1), 1-18.
[http://dx.doi.org/10.1166/jnn.2016.11124] [PMID: 27398430]
[232]
Malalasekera, A.P.; Bossmann, S.H.; Zhu, G. Magnetic Nanoformulations for Enhanced Drug Delivery and Retention.Magnetic Nanomaterials. Applications in Catalysis and Life Sciences; Bossmann, S.H; Wang, H., Ed.; Royal Society of Chemistry: Croydon, UK, 2017, pp. 221-239.
[http://dx.doi.org/10.1039/9781788010375-00221]
[233]
Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev., 2013, 65(1), 36-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.037] [PMID: 23036225]
[234]
Salatin, S.; Yari Khosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med., 2017, 21(9), 1668-1686.
[http://dx.doi.org/10.1111/jcmm.13110] [PMID: 28244656]
[235]
Guo, C.; Chen, Y.; Gao, W.; Chang, A.; Ye, Y.; Shen, W.; Luo, Y.; Yang, S.; Sun, P.; Xiang, R.; Li, N. Liposomal nanoparticles carrying anti-IL6R antibody to the tumour microenvironment inhibit metastasis in two molecular subtypes of breast cancer mouse models. Theranostics, 2017, 7(3), 775-788.
[http://dx.doi.org/10.7150/thno.17237] [PMID: 28255366]
[236]
Subbarao, N.K.; Parente, R.A.; Szoka, F.C., Jr; Nadasdi, L.; Pongracz, K. pH-dependent bilayer destabilization by an amphipathic peptide. Biochemistry, 1987, 26(11), 2964-2972.
[http://dx.doi.org/10.1021/bi00385a002] [PMID: 2886149]
[237]
Liu, K.; Zheng, L.; Ma, C.; Göstl, R.; Herrmann, A. DNA-surfactant complexes: self-assembly properties and applications. Chem. Soc. Rev., 2017, 46(16), 5147-5172.
[http://dx.doi.org/10.1039/C7CS00165G] [PMID: 28686247]
[238]
Wang, S.; Hüttmann, G.; Zhang, Z.; Vogel, A.; Birngruber, R.; Tangutoori, S.; Hasan, T.; Rahmanzadeh, R. Light-Controlled Delivery of Monoclonal Antibodies for Targeted Photoinactivation of Ki-67. Mol. Pharm., 2015, 12(9), 3272-3281.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00260] [PMID: 26226545]
[239]
Deng, H.; Song, K.; Zhao, X.; Li, Y.; Wang, F.; Zhang, J.; Dong, A.; Qin, Z. Tumor microenvironment activated membrane fusogenic liposome with speedy antibody and doxorubicin delivery for synergistic treatment of metastatic tumors. ACS Appl. Mater. Interfaces, 2017, 9(11), 9315-9326.
[http://dx.doi.org/10.1021/acsami.6b14683] [PMID: 28244731]
[240]
Basel, M.T.; Shrestha, T.B.; Troyer, D.L.; Bossmann, S.H. Protease-sensitive, polymer-caged liposomes: a method for making highly targeted liposomes using triggered release. ACS Nano, 2011, 5(3), 2162-2175.
[http://dx.doi.org/10.1021/nn103362n] [PMID: 21314184]
[241]
Buggins, A.G.S.; Levi, A.; Gohil, S.; Fishlock, K.; Patten, P.E.M.; Calle, Y.; Yallop, D.; Devereux, S. Evidence for a macromolecular complex in poor prognosis CLL that contains CD38, CD49d, CD44 and MMP-9. Br. J. Haematol., 2011, 154(2), 216-222.
[http://dx.doi.org/10.1111/j.1365-2141.2011.08725.x] [PMID: 21569005]
[242]
Noda, M.; Oh, J.; Takahashi, R.; Kondo, S.; Kitayama, H.; Takahashi, C. RECK: a novel suppressor of malignancy linking oncogenic signaling to extracellular matrix remodeling. Cancer Metastasis Rev., 2003, 22(2-3), 167-175.
[http://dx.doi.org/10.1023/A:1023043315031] [PMID: 12784995]
[243]
Jabin, K.; Husian, Z.; Ahmad, M.; Kushwaha, P. Liposome: classification, preparation, and applications. World J. Pharm. Pharm. Sci., 2018, 7(9), 1307-1319.
[244]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S. Y.; Sood, A. K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286/1-286/13.
[http://dx.doi.org/10.3389/fphar.2015.00286]
[245]
Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 2015, 6(2), 105-121.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[246]
Rahmati, M.; Pennisi, C.P.; Budd, E.; Mobasheri, A.; Mozafari, M.; Budd, E.; Mobasheri, A.; Budd, E.; Mobasheri, A.; Mobasheri, A.; Mobasheri, A.; Mobasheri, A.; Mozafari, M. Biomaterials for regenerative medicine: historical perspectives and current trends. Adv. Exp. Med. Biol., 2018, 1119, 1-19.
[http://dx.doi.org/10.1007/5584_2018_278] [PMID: 30406362]
[247]
Eskandari, S.; Guerin, T.; Toth, I.; Stephenson, R.J. Recent advances in self-assembled peptides: Implications for targeted drug delivery and vaccine engineering. Adv. Drug Deliv. Rev., 2017, 110-111, 169-187.
[http://dx.doi.org/10.1016/j.addr.2016.06.013] [PMID: 27356149]
[248]
Mazza, M.; Patel, A.; Pons, R.; Bussy, C.; Kostarelos, K. Peptide nanofibres as molecular transporters: from self-assembly to in vivo degradation. Faraday Discuss., 2013, 166, 181-194.
[http://dx.doi.org/10.1039/c3fd00100h] [PMID: 24611276]
[250]
Habibi, N.; Kamaly, N.; Memic, A.; Shafiee, H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today, 2016, 11(1), 41-60.
[http://dx.doi.org/10.1016/j.nantod.2016.02.004] [PMID: 27103939]
[251]
Yishay-Safranchik, E.; Golan, M.; David, A. Controlled release of doxorubicin and Smac-derived pro-apoptotic peptide from self-assembled KLD-based peptide hydrogels. Polym. Adv. Technol., 2014, 25(5), 539-544.
[http://dx.doi.org/10.1002/pat.3300]
[252]
Toft, D.J.; Moyer, T.J.; Standley, S.M.; Ruff, Y.; Ugolkov, A.; Stupp, S.I.; Cryns, V.L. Coassembled cytotoxic and pegylated peptide amphiphiles form filamentous nanostructures with potent antitumor activity in models of breast cancer. ACS Nano, 2012, 6(9), 7956-7965.
[http://dx.doi.org/10.1021/nn302503s] [PMID: 22928955]
[253]
Yapa, A.S.; Wang, H.; Wendel, S.O.; Shrestha, T.B.; Kariyawasam, N.L.; Kalubowilage, M.; Perera, A.S.; Pyle, M.; Basel, M.T.; Malalasekera, A.P.; Manawadu, H.; Yu, J.; Toledo, Y.; Ortega, R.; Thapa, P.S.; Smith, P.E.; Troyer, D.L.; Bossmann, S.H. Peptide nanosponges designed for rapid uptake by leukocytes and neural stem cells. RSC Advances, 2018, 8(29), 16052-16060.
[http://dx.doi.org/10.1039/C8RA00717A]
[254]
Wang, H.; Yapa, A.S.; Kariyawasam, N.L.; Shrestha, T.B.; Kalubowilage, M.; Wendel, S.O.; Yu, J.; Pyle, M.; Basel, M.T.; Malalasekera, A.P.; Toledo, Y.; Ortega, R.; Thapa, P.S.; Huang, H.; Sun, S.X.; Smith, P.E.; Troyer, D.L.; Bossmann, S.H. Rationally designed peptide nanosponges for cell-based cancer therapy. Nanomedicine (Lond.), 2017, 13(8), 2555-2564.
[http://dx.doi.org/10.1016/j.nano.2017.07.004] [PMID: 28754467]
[255]
Liechty, W.B.; Kryscio, D.R.; Slaughter, B.V.; Peppas, N.A. Polymers for drug delivery systems. Annu. Rev. Chem. Biomol. Eng., 2010, 1, 149-173.
[http://dx.doi.org/10.1146/annurev-chembioeng-073009-100847] [PMID: 22432577]
[256]
Ding, Z.; Fong, R.B.; Long, C.J.; Stayton, P.S.; Hoffman, A.S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield. Nature, 2001, 411(6833), 59-62.
[http://dx.doi.org/10.1038/35075028] [PMID: 11333975]
[257]
Lackey, C.A.; Press, O.W.; Hoffman, A.S.; Stayton, P.S. A biomimetic pH-responsive polymer directs endosomal release and intracellular delivery of an endocytosed antibody complex. Bioconjug. Chem., 2002, 13(5), 996-1001.
[http://dx.doi.org/10.1021/bc010053l] [PMID: 12236781]
[258]
Gdowski, A.; Ranjan, A.; Mukerjee, A.; Vishwanatha, J. Development of biodegradable nanocarriers loaded with a monoclonal antibody. Int. J. Mol. Sci., 2015, 16(2), 3990-3995.
[http://dx.doi.org/10.3390/ijms16023990] [PMID: 25690029]
[259]
Nouri, F.S.; Wang, X.; Dorrani, M.; Karjoo, Z.; Hatefi, A. A recombinant biopolymeric platform for reliable evaluation of the activity of pH-responsive amphiphile fusogenic peptides. Biomacromolecules, 2013, 14(6), 2033-2040.
[http://dx.doi.org/10.1021/bm400380s] [PMID: 23682625]
[260]
Neuberg, P.; Kichler, A. Recent developments in nucleic acid delivery with polyethylenimines. Adv. Genet., 2014, 88, 263-288.
[http://dx.doi.org/10.1016/B978-0-12-800148-6.00009-2] [PMID: 25409609]
[261]
Didenko, V.V.; Ngo, H.; Baskin, D.S. Polyethyleneimine as a transmembrane carrier of fluorescently labeled proteins and antibodies. Anal. Biochem., 2005, 344(2), 168-173.
[http://dx.doi.org/10.1016/j.ab.2005.06.011] [PMID: 16095551]
[262]
Jiang, T.; Yu, X.; Carbone, E. J.; Nelson, C.; Kan, H. M.; Lo, K. W. H. Poly aspartic acid peptide-linked PLGA based nanoscale particles: Potential for bone-targeting drug delivery applications. Int. J. Pharm. (Amsterdam, Neth.), 2014, 475(1-25), 547-557.
[263]
Sipai, A.B.M.; Yadav, V.; Mamatha, Y.; Prasanth, V.V. Liposomes: an overview. J. Pharm. Sci. Innovation, 2012, 1(1), 13-21.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 4
Year: 2020
Page: [379 - 400]
Pages: 22
DOI: 10.2174/1389203720666191202112429
Price: $65

Article Metrics

PDF: 11
HTML: 2
EPUB: 2
PRC: 3