The Chemical Methods of Disulfide Bond Formation and Their Applications to Drug Conjugates

Author(s): Rongjun He, Jia Pan, John P. Mayer, Fa Liu*

Journal Name: Current Organic Chemistry

Volume 23 , Issue 25 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

The disulfide bond possesses unique chemical and biophysical properties which distinguish it as one of the key structural elements of bioactive proteins and peptides, important drugs and other materials. The chemo-selective synthesis of these structures and the exploration of their function have been of longstanding interest to the chemistry community. The past decades have witnessed significant progress in both areas. This review will summarize the historically established and recently developed chemical methods in disulfide bond formation. The discussion will also be extended to the use of the disulfide linkers in small molecules, and peptide- and protein-drug conjugates. It is hoped that the combined overview of the fundamental chemistries and applications to drug discovery will inspire creative thinking and stimulate future novel uses of these versatile chemistries.

Keywords: Sulfur-sulfur bond, disulfide, chemical synthesis, targeted drug discovery, small molecule-drug conjugate, peptide-drug conjugate, protein-drug conjugate and antibody-drug conjugate.

[1]
Sevier, C.S.; Kaiser, C.A. Formation and transfer of disulphide bonds in living cells. Nat. Rev. Mol. Cell Biol., 2002, 3(11), 836-847.
[http://dx.doi.org/10.1038/nrm954] [PMID: 12415301]
[2]
Jiang, C.S.; Müller, W.E.; Schröder, H.C.; Guo, Y.W. Disulfide- and multisulfide-containing metabolites from marine organisms. Chem. Rev., 2012, 112(4), 2179-2207.
[http://dx.doi.org/10.1021/cr200173z] [PMID: 22176580]
[3]
Pejin, B.; Jovanović, K.K.; Mojović, M.; Savić, A.G. New and highly potent antitumor natural products from marine-derived fungi: covering the period from 2003 to 2012. Curr. Top. Med. Chem., 2013, 13(21), 2745-2766.
[http://dx.doi.org/10.2174/15680266113136660197] [PMID: 24083789]
[4]
Lee, S.H. Disulfide and multisulfide antitumor agents and their modes of action. Arch. Pharm. Res., 2009, 32(3), 299-315.
[http://dx.doi.org/10.1007/s12272-009-1300-4] [PMID: 19387571]
[5]
Hara, M.; Asano, K.; Kawamoto, I.; Takiguchi, T.; Katsumata, S.; Takahashi, K.; Nakano, H. Leinamycin, a new antitumor antibiotic from Streptomyces: producing organism, fermentation and isolation. J. Antibiot. (Tokyo), 1989, 42(12), 1768-1774.
[http://dx.doi.org/10.7164/antibiotics.42.1768] [PMID: 2621160]
[6]
Towers, G.H.; Abramowski, Z.; Finlayson, A.J.; Zucconi, A. Antibiotic properties of thiarubrine A, a naturally occurring dithiacyclohexadiene polyine. Planta Med., 1985, 51(3), 225-229.
[http://dx.doi.org/10.1055/s-2007-969464] [PMID: 4034747]
[7]
Kohda, K.; Ohta, Y.; Kawazoe, Y.; Kato, T.; Suzumura, Y.; Hamada, Y.; Shioiri, T. Ulicyclamide is cytotoxic against L1210 cells in vitro and inhibits both DNA and RNA syntheses. Biochem. Pharmacol., 1989, 38(24), 4500-4502.
[http://dx.doi.org/10.1016/0006-2952(89)90663-1] [PMID: 2604751]
[8]
Parsons, T.B.; Spencer, N.; Tsang, C.W.; Grainger, R.S. Total synthesis of kottamide E. Chem. Commun. (Camb.), 2013, 49(23), 2296-2298.
[http://dx.doi.org/10.1039/c3cc39062d] [PMID: 23396320]
[9]
Neuss, N.; Boeck, L.D.; Brannon, D.R.; Cline, J.C.; DeLong, D.C.; Gorman, M.; Huckstep, L.L.; Lively, D.H.; Mabe, J.; Marsh, M.M.; Molloy, B.B.; Nagarajan, R.; Nelson, J.D.; Stark, W.M. Aranotin and related metabolites from Arachniotus aureus (Eidam) Schroeter. IV. Fermentation, isolation, structure elucidation, biosynthesis, and antiviral properties. Antimicrob. Agents Chemother., 1968, 8, 213-219.
[PMID: 5735362]
[10]
Minato, H.; Matsumoto, M.; Katayama, T. Studies on the metabolites of Verticillium sp. structures of Verticillins A, B, and C. J. Chem. Soc. Perkin 1, 1973, 17, 1819-1825.
[http://dx.doi.org/ 10.1039/p19730001819] [PMID: 4796650]
[11]
Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F. Multifaceted roles of disulfide bonds. Peptides as therapeutics. Chem. Rev., 2014, 114(2), 901-926.
[http://dx.doi.org/10.1021/cr400031z] [PMID: 24446748]
[12]
Craik, D.J.; Daly, N.L.; Bond, T.; Waine, C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol., 1999, 294(5), 1327-1336.
[http://dx.doi.org/10.1006/jmbi.1999.3383] [PMID: 10600388]
[13]
Robinson, S.D.; Undheim, E.A.B.; Ueberheide, B.; King, G.F. Venom peptides as therapeutics: advances, challenges and the future of venom-peptide discovery. Expert Rev. Proteomics, 2017, 14(10), 931-939.
[http://dx.doi.org/10.1080/14789450.2017.1377613] [PMID: 28879805]
[14]
Scott, K.A.; Njardarson, J.T. Analysis of US FDA-approved drugs containing sulfur atoms. Top. Curr. Chem. (Cham), 2018, 376(1), 5.
[http://dx.doi.org/10.1007/s41061-018-0184-5] [PMID: 29356979]
[15]
Skinner, M.D.; Lahmek, P.; Pham, H.; Aubin, H.J. Disulfiram efficacy in the treatment of alcohol dependence: a meta-analysis. PLoS One, 2014, 9(2) e87366
[http://dx.doi.org/10.1371/journal.pone.0087366] [PMID: 24520330]
[16]
Grant, C.; Rahman, F.; Piekarz, R.; Peer, C.; Frye, R.; Robey, R.W.; Gardner, E.R.; Figg, W.D.; Bates, S.E. Romidepsin: a new therapy for cutaneous T-cell lymphoma and a potential therapy for solid tumors. Expert Rev. Anticancer Ther., 2010, 10(7), 997-1008.
[http://dx.doi.org/10.1586/era.10.88] [PMID: 20645688]
[17]
den Ouden, D.T.; Meinders, A.E. Vasopressin: physiology and clinical use in patients with vasodilatory shock: a review. Neth. J. Med., 2005, 63(1), 4-13.
[PMID: 15719846]
[18]
Stubbs, T.M. Oxytocin for labor induction. Clin. Obstet. Gynecol., 2000, 43(3), 489-494.
[http://dx.doi.org/10.1097/00003081-200009000-00009] [PMID: 10949753]
[19]
van Wely, M.; Yding Andersen, C.; Bayram, N.; van der Veen, F. Urofollitropin and ovulation induction. Treat. Endocrinol., 2005, 4(3), 155-165.
[http://dx.doi.org/10.2165/00024677-200504030-00004] [PMID: 15898821]
[20]
Vande Walle, J.; Stockner, M.; Raes, A.; Nørgaard, J.P. Desmopressin 30 years in clinical use: a safety review. Curr. Drug Saf., 2007, 2(3), 232-238.
[http://dx.doi.org/10.2174/157488607781668891] [PMID: 18690973]
[21]
Wolin, E.M.; Manon, A.; Chassaing, C.; Lewis, A.; Bertocchi, L.; Richard, J.; Phan, A.T. Lanreotide depot: an antineoplastic treatment of carcinoid or neuroendocrine tumors. J. Gastrointest. Cancer, 2016, 47(4), 366-374.
[http://dx.doi.org/10.1007/s12029-016-9866-9] [PMID: 27619395]
[22]
Zaykov, A.N.; Mayer, J.P.; DiMarchi, R.D. Pursuit of a perfect insulin. Nat. Rev. Drug Discov., 2016, 15(6), 425-439.
[http://dx.doi.org/10.1038/nrd.2015.36] [PMID: 26988411]
[23]
Appelbaum, F.R.; Bernstein, I.D. Gemtuzumab ozogamicin for acute myeloid leukemia. Blood, 2017, 130(22), 2373-2376.
[http://dx.doi.org/10.1182/blood-2017-09-797712] [PMID: 29021230]
[24]
Schäfer, O.; Barz, M. Of thiols and disulfides: methods for chemoselective formation of asymmetric disulfides in synthetic peptides and polymers. Chemistry, 2018, 24(47), 12131-12142.
[http://dx.doi.org/10.1002/chem.201800681] [PMID: 29645294]
[25]
Neuhaus, J.D.; Oost, R.; Merad, J.; Maulide, N. Sulfur-based ylides in transition-metal-catalysed processes. Top. Curr. Chem. (Cham), 2018, 376(3), 15.
[http://dx.doi.org/10.1007/s41061-018-0193-4] [PMID: 29654469]
[26]
Basu, B.M.B. Recent advances in S-S bond formation. RSC Advances, 2014, 4(27), 13854-13851.
[http://dx.doi.org/10.1039/c3ra45997g]
[27]
Witt, D. Recent developments in disulfide bond formation. Synthesis, 2008, (16), 2491-2509.
[http://dx.doi.org/10.1055/s-2008-1067188]
[28]
Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L.Y.; Berkman, C.E.; Whorton, A.R.; Xian, M. Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew. Chem. Int. Ed. Engl., 2011, 50(44), 10327-10329.
[http://dx.doi.org/10.1002/anie.201104305] [PMID: 21898737]
[29]
Diaz, C.; Balasubramanian, K.; Schroit, A.J. Synthesis of disulfide-containing phospholipid analogs for the preparation of head group-specific lipid antigens: generation of phosphatidylserine antibodies. Bioconjug. Chem., 1998, 9(2), 250-254.
[http://dx.doi.org/10.1021/bc970156x] [PMID: 9548541]
[30]
El Alaoui, A.; Schmidt, F.; Amessou, M.; Sarr, M.; Decaudin, D.; Florent, J.C.; Johannes, L. Shiga toxin-mediated retrograde delivery of a topoisomerase I inhibitor prodrug. Angew. Chem. Int. Ed. Engl., 2007, 46(34), 6469-6472.
[http://dx.doi.org/10.1002/anie.200701270] [PMID: 17645270]
[31]
Wu, C-W.; Eder, P.S.; Gopalan, V.; Behrman, E.J. Kinetics of coupling reactions that generate monothiophosphate disulfides: implications for modification of RNAs. Bioconjug. Chem., 2001, 12(6), 842-844.
[http://dx.doi.org/10.1021/bc0100612] [PMID: 11716671]
[32]
Maruyama, K.; Nagasawa, H.; Suzuki, A. 2,2′-Bispyridyl disulfide rapidly induces intramolecular disulfide bonds in peptides. Peptides, 1999, 20(7), 881-884.
[http://dx.doi.org/10.1016/S0196-9781(99)00076-5] [PMID: 10477090]
[33]
Carlsson, J.; Axén, R.; Unge, T. Reversible, covalent immobilization of enzymes by thiol-disulphide interchange. Eur. J. Biochem., 1975, 59(2), 567-572.
[http://dx.doi.org/10.1111/j.1432-1033.1975.tb02483.x] [PMID: 1204625]
[34]
Ryu, E.K.; Choe, Y.S.; Byun, S.S.; Lee, K-H.; Chi, D.Y.; Choi, Y.; Kim, B-T. Synthesis of radioiodine labeled dibenzyl disulfide for evaluation of tumor cell uptake. Bioorg. Med. Chem., 2004, 12(5), 859-864.
[http://dx.doi.org/10.1016/j.bmc.2004.01.002] [PMID: 14980597]
[35]
Rabanal, F.; DeGrado, W.F.; Dutton, P.L. Use of 2, 2′-dithiobis (5-nitropyridine) for the heterodimerization of cysteine containing peptides. Introduction of the 5-nitro-2-pyridinesulfenyl group. Tetrahedron Lett., 1996, 37(9), 1347-1350.
[http://dx.doi.org/10.1016/0040-4039(96)00019-6]
[36]
Yiannios, C.; Karabinos, J. Oxidation of thiols by dimethyl sulfoxide. J. Org. Chem., 1963, 28(11), 3246-3248.
[http://dx.doi.org/10.1021/jo01046a528]
[37]
Tam, J.P.; Wu, C.R.; Liu, W.; Zhang, J.W. Disulfide bond formation in peptides by dimethyl sulfoxide. Scope and applications. J. Am. Chem. Soc., 1991, 113(17), 6657-6662.
[http://dx.doi.org/10.1021/ja00017a044]
[38]
Karimi, B.; Hazarkhani, H.; Zareyee, D. Trimethylchlorosilane (TMSCl) and Cyanuric Chloride (CC) catalyzed efficient oxidative coupling of thiols with dimethylsulfoxide. Synthesis, 2002, 2002(17), 2513-2516.
[http://dx.doi.org/10.1055/s-2002-35634]
[39]
Tajbakhsh, M.; Lakouraj, M-M.; Yadollahzadeh, K.; Shakeri, A.R.; Khalilzadeh, M.A. Conversion of sulfides to sulfoxides and thiols to disulfides with o-xylylenebis (triphenylphosphonium tribromide). J. Chem. Res., 2005, 2005(12), 796-799.
[http://dx.doi.org/10.3184/030823405775146988]
[40]
Arterburn, J.B.; Perry, M.C.; Nelson, S.L.; Dible, B.R.; Holguin, M.S. Rhenium-catalyzed oxidation of thiols and disulfides with sulfoxides. J. Am. Chem. Soc., 1997, 119(39), 9309-9310.
[http://dx.doi.org/10.1021/ja972013r]
[41]
Abu-Omar, M.M.; Khan, S.I. Molecular rhenium (V) oxotransferases: oxidation of thiols to disulfides with sulfoxides. The case of substrate-inhibited catalysis. Inorg. Chem., 1998, 37(19), 4979-4985.
[http://dx.doi.org/10.1021/ic980348j] [PMID: 11670665]
[42]
Sanz, R.; Aguado, R.; Pedrosa, M. R.; Arnaiz, F. J. Simple and selective oxidation of thiols to disulfides with dimethylsulfoxide catalyzed by dichlorodioxomolybdenum (VI). Synthesis, 2002, 2002(07), 0856-0858.
[43]
Banfield, S.C.; Omori, A.T.; Leisch, H.; Hudlicky, T. Unexpected reactivity of the burgess reagent with thiols: synthesis of symmetrical disulfides. J. Org. Chem., 2007, 72(13), 4989-4992.
[http://dx.doi.org/10.1021/jo070099t] [PMID: 17539682]
[44]
Bommarius, A.S.; Drauz, K.; Günther, K.; Knaup, G.; Schwarm, M. l-methionine related l-amino acids by acylase cleavage of their corresponding N-acetyl-dl-derivatives. Tetrahedron Asym, 1997, 8(19), 3197-3200.
[http://dx.doi.org/10.1016/S0957-4166(97)00400-X]
[45]
Davis, B.G.; Ward, S.J.; Rendle, P.M. Glycosyldisulfides: a new class of solution and solid phase glycosyl donors. Chem. Commun. (Camb.), 2001, 2001(2), 189-190.
[http://dx.doi.org/10.1039/b008734n]
[46]
Grayson, E.J.; Ward, S.J.; Hall, A.L.; Rendle, P.M.; Gamblin, D.P.; Batsanov, A.S.; Davis, B.G. Glycosyl disulfides: novel glycosylating reagents with flexible aglycon alteration. J. Org. Chem., 2005, 70(24), 9740-9754.
[http://dx.doi.org/10.1021/jo051374j] [PMID: 16292802]
[47]
Goddard-Borger, E.D.; Stick, R.V. The synthesis of various 1, 6-disulfide-bridged D-hexopyranoses. Aust. J. Chem., 2005, 58(3), 188-198.
[http://dx.doi.org/10.1071/CH04277]
[48]
Xiao, X.; Feng, M.; Jiang, X. New design of a disulfurating reagent: facile and straightforward pathway to unsymmetrical disulfanes by copper-catalyzed oxidative cross-coupling. Angew. Chem. Int. Ed. Engl., 2016, 55(45), 14121-14125.
[http://dx.doi.org/10.1002/anie.201608011] [PMID: 27726267]
[49]
Fukumoto, K.; Adachi, K.; Kajiyama, A.; Yamazaki, Y.; Yakushiji, F.; Hayashi, Y. Development of a solid-supported biotinylation reagent for efficient biotin labeling of SH groups on small molecules. Tetrahedron Lett., 2012, 53(5), 535-538.
[http://dx.doi.org/10.1016/j.tetlet.2011.11.089]
[50]
Taguchi, A.; Fukumoto, K.; Asahina, Y.; Kajiyama, A.; Shimura, S.; Hamada, K.; Takayama, K.; Yakushiji, F.; Hojo, H.; Hayashi, Y. 3-Nitro-2-pyridinesulfenyl-mediated solid-phase disulfide ligation in the synthesis of disulfide bond-containing cyclic peptides. Org. Biomol. Chem., 2015, 13(11), 3186-3189.
[http://dx.doi.org/10.1039/C5OB00030K] [PMID: 25657109]
[51]
Muguruma, K.; Yakushiji, F.; Kawamata, R.; Akiyama, D.; Arima, R.; Shirasaka, T.; Kikkawa, Y.; Taguchi, A.; Takayama, K.; Fukuhara, T.; Watabe, T.; Ito, Y.; Hayashi, Y. Novel hybrid compound of a plinabulin prodrug with an IgG binding peptide for generating a tumor selective noncovalent-type antibody-drug conjugate. Bioconjug. Chem., 2016, 27(7), 1606-1613.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00149] [PMID: 27304609]
[52]
Choi, J.; Yoon, N.M. Synthesis of disulfides by copper-catalyzed disproportionation of thiols. J. Org. Chem., 1995, 60(11), 3266-3267.
[http://dx.doi.org/10.1021/jo00116a001]
[53]
Iranpoor, N.; Zeynizadeh, B. Air oxidative coupling of thiols to disulfides catalyzed by Fe (III)/NaI. Synthesis, 1999, 1999(01), 49-50.
[http://dx.doi.org/10.1055/s-1999-3693]
[54]
Chauhan, S.M.; Kumar, A.; Srinivas, K.A. Oxidation of thiols with molecular oxygen catalyzed by cobalt(II) phthalocyanines in ionic liquid. Chem. Commun. (Camb.), 2003, (18), 2348-2349.
[http://dx.doi.org/10.1039/b305888c] [PMID: 14518908]
[55]
Golchoubian, H.; Hosseinpoor, F. Aerobic oxidation of thiols to disulfides catalyzed by a manganese (III) Schiff-base complex. Catal. Commun., 2007, 8(4), 697-700.
[http://dx.doi.org/10.1016/j.catcom.2006.08.036]
[56]
Bagiyan, G.; Koroleva, I.; Soroka, N.; Ufimtsev, A. Oxidation of thiol compounds by molecular oxygen in aqueous solutions. Russ. Chem. Bull., 2003, 52(5), 1135-1141.
[http://dx.doi.org/10.1023/A:1024761324710]
[57]
Shah, S.T.A.; Khan, K.M.; Fecker, M.; Voelter, W. A novel method for the syntheses of symmetrical disulfides using CsF–Celite as a solid base. Tetrahedron Lett., 2003, 44(35), 6789-6791.
[http://dx.doi.org/10.1016/S0040-4039(03)01402-3]
[58]
Joshi, A.V.; Bhusare, S.; Baidossi, M.; Qafisheh, N.; Sasson, Y. Oxidative coupling of thiols to disulfides using a solid anhydrous potassium phosphate catalyst. Tetrahedron Lett., 2005, 46(20), 3583-3585.
[http://dx.doi.org/10.1016/j.tetlet.2005.03.040]
[59]
Sathe, M.; Ghorpade, R.; Kaushik, M.P. Oxidation of thiols to disulfides using silica chloride as a heterogeneous catalyst. Chem. Lett., 2006, 35(9), 1048-1049.
[http://dx.doi.org/10.1246/cl.2006.1048]
[60]
Attri, P.; Gupta, S.; Kumar, R. Green methodology for the preparation of disulfide. Green Chem. Lett. Rev., 2012, 5(1), 33-42.
[http://dx.doi.org/10.1080/17518253.2011.578080]
[61]
Yi, S-L.; Li, M-C.; Hu, X-Q.; Mo, W-M.; Shen, Z-L. An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tert-butyl nitrite. Chin. Chem. Lett., 2016, 27(9), 1505-1508.
[http://dx.doi.org/10.1016/j.cclet.2016.03.016]
[62]
Ruano, J.L.G.; Parra, A.; Alemán, J. Efficient synthesis of disulfides by air oxidation of thiols under sonication. Green Chem., 2008, 10(6), 706-711.
[http://dx.doi.org/10.1039/b800705e]
[63]
Sidorova, M.V.; Molokoedov, A.S.; Az’muko, A.A.; Kudriavtseva, E.V.; Krause, E.; Ovchinnikov, M.V.; Bespalova, ZhD. Use of hydrogen peroxide for closing disulfide bridges in peptides. Bioorg. Khim., 2004, 30(2), 115-125.
[http://dx.doi.org/10.1023/b:rubi.0000023093.05123.31] [PMID: 15143665]
[64]
Paoli, P.; Giannoni, E.; Pescitelli, R.; Camici, G.; Manao, G.; Ramponi, G. Hydrogen peroxide triggers the formation of a disulfide dimer of muscle acylphosphatase and modifies some functional properties of the enzyme. J. Biol. Chem., 2001, 276(45), 41862-41869.
[http://dx.doi.org/10.1074/jbc.M106886200] [PMID: 11551950]
[65]
van der Wijk, T.; Overvoorde, J.; den Hertog, J.H. 2O2-induced intermolecular disulfide bond formation between receptor protein-tyrosine phosphatases. J. Biol. Chem., 2004, 279(43), 44355-44361.
[http://dx.doi.org/10.1074/jbc.M407483200] [PMID: 15294898]
[66]
Luo, D.; Smith, S.W.; Anderson, B.D. Kinetics and mechanism of the reaction of cysteine and hydrogen peroxide in aqueous solution. J. Pharm. Sci., 2005, 94(2), 304-316.
[http://dx.doi.org/10.1002/jps.20253] [PMID: 15570599]
[67]
Varma, R.S.; Meshram, H.M.; Dahiya, R. Solid state oxidation of thiols to disulfides using ammonium persulfate. Synth. Commun., 2000, 30(7), 1249-1255.
[http://dx.doi.org/10.1080/00397910008087146]
[68]
Chen, F-E.; Lu, Y-W.; He, Y-P.; Luo, Y-F.; Yan, M-G. Tetrabutylammonium peroxydisulfate in organic synthesis. XII. A convenient and practical procedure for the selective oxidation of thiols to disulfides with tetrabutylammonium peroxydisulfate under solvent-free conditions. Synth. Commun., 2002, 32(22), 3487-3492.
[http://dx.doi.org/10.1081/SCC-120014782]
[69]
Hajipour, A.R.; Mostafavi, M.; Ruoho, A.E. Oxidation of thiols using K2S2O8 in ionic liquid. Phos Sulfur Silicon Relat. Elem., 2009, 184(7), 1920-1923.
[http://dx.doi.org/10.1080/10426500802417000] [PMID: 20976042]
[70]
Zolfigol, M.A.; Niknam, K.; Bagherzadeh, M.; Ghorbani‐Choghamarani, A.; Koukabi, N.; Hajjami, M.; Kolvari, E. Tribromoisocyanuric Acid (TBCA) and Oxone®‐MX systems as oxidizing agents: oxidative coupling of thiols to their corresponding disulfides under mild and heterogeneous conditions. J. Chin. Chem. Soc. (Taipei), 2007, 54(5), 1115-1118.
[http://dx.doi.org/10.1002/jccs.200700159]
[71]
Danehy, J.P.; Doherty, B.T.; Egan, C.P. Oxidation of organic divalent sulfur by iodine. II. Equilibrating thiol-iodine-disulfide-hydrogen iodide system in acetic acid and evidence for sulfenyl iodide intermediates. J. Org. Chem., 1971, 36(17), 2525-2530.
[http://dx.doi.org/10.1021/jo00816a030]
[72]
Zeynizadeh, B. Oxidative coupling of thiols to disulfides with iodine in wet acetonitrile. J. Chem. Res., 2002, 2002(11), 564-566.
[http://dx.doi.org/10.3184/030823402103170781]
[73]
Kirihara, M.; Asai, Y.; Ogawa, S.; Noguchi, T.; Hatano, A.; Hirai, Y. A mild and environmentally benign oxidation of thiols to disulfides. Synthesis, 2007, 2007(21), 3286-3289.
[http://dx.doi.org/10.1055/s-2007-990800]
[74]
He, Y.; Hang, D.; Lu, M. A simple and practical method for the oxidation of thiols to disulfides at mild conditions without solvents. Phosphorus Sulfur Silicon Relat. Elem., 2012, 187(9), 1118-1124.
[http://dx.doi.org/10.1080/10426507.2012.674585]
[75]
Drabowicz, J.; Mikołajczyk, M. A simple procedure for the oxidation of thiols to disulphides by means of bromine/aqueous potassium hydrogen carbonate in a two-phase system. Synthesis, 1980, 1980(01), 32-34.
[http://dx.doi.org/10.1055/s-1980-28912]
[76]
Ali, M.H.; McDermott, M. Oxidation of thiols to disulfides with molecular bromine on hydrated silica gel support. Tetrahedron Lett., 2002, 43(35), 6271-6273.
[http://dx.doi.org/10.1016/S0040-4039(02)01220-0]
[77]
Postma, T.M.; Albericio, F. N-chlorosuccinimide, an efficient peptide disulfide bond-forming reagent in aqueous solution. RSC Advances, 2013, 3(34), 14277-14280.
[http://dx.doi.org/10.1039/c3ra43149e]
[78]
Ghafuri, H.; Hashemi, M.M. A simple, economical, and catalyst-free oxidation of thiols to disulfides. J. Sulfur Chem., 2009, 30(6), 578-580.
[http://dx.doi.org/10.1080/17415990903148075]
[79]
Shih, H. New approaches to the synthesis of cystine peptides using N-iodosuccinimide in the construction of disulfide bridges. J. Org. Chem., 1993, 58(11), 3003-3008.
[http://dx.doi.org/10.1021/jo00063a017]
[80]
Leino, R.; Lönnqvist, J-E. A very simple method for the preparation of symmetrical disulfides. Tetrahedron Lett., 2004, 45(46), 8489-8491.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.100]
[81]
Montazerozohori, M.; Joohari, S.; Karami, B.; Haghighat, N. Fast and highly efficient solid state oxidation of thiols. Molecules, 2007, 12(3), 694-702.
[http://dx.doi.org/10.3390/12030694] [PMID: 17851422]
[82]
Stellenboom, N.; Hunter, R.; Caira, M.R. One-pot synthesis of unsymmetrical disulfides using 1-chlorobenzotriazole as oxidant: Interception of the sulfenyl chloride intermediate. Tetrahedron, 2010, 66(17), 3228-3241.
[http://dx.doi.org/10.1016/j.tet.2010.02.077]
[83]
Misra, A.K.; Agnihotri, G. Nitric acid mediated oxidative transformation of thiols to disulfides. Synth. Commun., 2004, 34(6), 1079-1085.
[http://dx.doi.org/10.1081/SCC-120028640]
[84]
Zolfigol, M.A. Silica sulfuric acid/NaNO2 as a novel heterogeneous system for production of thionitrites and disulfides under mild conditions. Tetrahedron, 2001, 57(46), 9509-9511.
[http://dx.doi.org/10.1016/S0040-4020(01)00960-7]
[85]
Zolfigol, M.A.; Shirini, F.; Zamani, K.; Ghofrani, E.; Ebrahimi, S. Silica phosphoric acid/NaNO2 as a novel heterogeneous system for the coupling of thiols to their corresponding disulfides. Phos Sulfur Silicon Relat. Elem., 2004, 179(11), 2177-2182.
[http://dx.doi.org/10.1080/10426500490474842]
[86]
Demir, A.S.; Igdir, A.C.; Mahasneh, A.S. Novel conversion of thiols into disulfides, via S-nitrosothiol intermediates using trichloronitromethane. Tetrahedron, 1999, 55(42), 12399-12404.
[http://dx.doi.org/10.1016/S0040-4020(99)00722-X]
[87]
Grossi, L.; Montevecchi, P.C.; Strazzari, S. S-Nitrosothiol and disulfide formation through peroxynitrite‐promoted oxidation of thiols. Eur. J. Org. Chem., 2001, 2001(1), 131-135.
[http://dx.doi.org/10.1002/1099-0690(200101)2001:1<131:AID-EJOC131>3.0.CO;2-N]
[88]
Vandavasi, J.K.; Hu, W-P.; Chen, C-Y.; Wang, J-J. Efficient synthesis of unsymmetrical disulfides. Tetrahedron, 2011, 67(46), 8895-8901.
[http://dx.doi.org/10.1016/j.tet.2011.09.071]
[89]
Smith, R.; Zeng, X.; Müller-Bunz, H.; Zhu, X. Synthesis of glycosyl disulfides containing an α-glycosidic linkage. Tetrahedron Lett., 2013, 54(39), 5348-5350.
[http://dx.doi.org/10.1016/j.tetlet.2013.07.093]
[90]
Tajbakhsh, M.; Hosseinzadeh, R.; Shakoori, A. 2, 6-Dicarboxypyridinium chlorochromate: an efficient and selective reagent for the oxidation of thiols to disulfides and sulfides to sulfoxides. Tetrahedron Lett., 2004, 45(9), 1889-1893.
[http://dx.doi.org/10.1016/j.tetlet.2004.01.006]
[91]
Heravi, M.M.; Derikvand, F.; Oskooie, H.A.; Shoar, R.H.; Tajbakhsh, M. Silica-supported bis (trimethylsilyl) chromate: oxidation of thiols to their corresponding disulfides. Synth. Commun., 2007, 37(3), 513-517.
[http://dx.doi.org/10.1080/00397910601039267]
[92]
Hajipour, A.R.; Safai, S.; Ruoho, A.E. Oxidation of thiols with methyltriphenylphosphonium dichromate (MTPPD) in dichloromethane at room temperature. J. Sulfur Chem., 2006, 27(5), 441-444.
[http://dx.doi.org/10.1080/17415990600863778]
[93]
Delaude, L.; Laszlo, P. A novel oxidizing reagent based on potassium ferrate (VI). J. Org. Chem., 1996, 61(18), 6360-6370.
[http://dx.doi.org/10.1021/jo960633p] [PMID: 11667478]
[94]
Kim, H.J.; Yoon, J.H.; Yoon, S. Photooxidative coupling of thiophenol derivatives to disulfides. J. Phys. Chem. A, 2010, 114(45), 12010-12015.
[http://dx.doi.org/10.1021/jp1077483] [PMID: 20964425]
[95]
Oba, M.; Tanaka, K.; Nishiyama, K.; Ando, W. Aerobic oxidation of thiols to disulfides catalyzed by diaryl tellurides under photosensitized conditions. J. Org. Chem., 2011, 76(10), 4173-4177.
[http://dx.doi.org/10.1021/jo200496r] [PMID: 21480642]
[96]
Li, X.B.; Li, Z.J.; Gao, Y.J.; Meng, Q.Y.; Yu, S.; Weiss, R.G.; Tung, C.H.; Wu, L.Z. Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots. Angew. Chem. Int. Ed. Engl., 2014, 53(8), 2085-2089.
[http://dx.doi.org/10.1002/anie.201310249] [PMID: 24470069]
[97]
Tan, K.Y.D.; Teng, G.F.; Fan, W.Y. Photocatalytic transformation of organic and water-soluble thiols into disulfides and hydrogen under aerobic conditions using Mn(CO)5Br. Organometallics, 2011, 30(15), 4136-4143.
[http://dx.doi.org/10.1021/om200461j]
[98]
Talla, A.; Driessen, B.; Straathof, N.J.; Milroy, L.G.; Brunsveld, L.; Hessel, V.; Noel, T. Metal-free photocatalytic aerobic oxidation of thiols to disulfides in batch and continuous‐flow. Adv. Synth. Catal., 2015, 357(10), 2180-2186.
[http://dx.doi.org/10.1002/adsc.201401010]
[99]
Bottecchia, C.; Erdmann, N.; Tijssen, P.M.; Milroy, L.G.; Brunsveld, L.; Hessel, V.; Noël, T. Batch and flow synthesis of disulfides by visible-light-induced TiO2 photocatalysis. ChemSusChem, 2016, 9(14), 1781-1785.
[http://dx.doi.org/10.1002/cssc.201600602] [PMID: 27329945]
[100]
Lenardao, E.J.; Lara, R.G.; Silva, M.S.; Jacob, R.G.; Perin, G. Clean and fast oxidative transformation of thiols to disulfides under solvent-free conditions. Tetrahedron Lett., 2007, 48(43), 7668-7670.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.094]
[101]
Li, Y.; Liang, X.; Su, W. A facile synthesis of disulfides by oxidation of thiols with bis (trichloromethyl) carbonate and triphenylphosphine oxide. Org. Prep. Proced. Int., 2003, 35(6), 613-616.
[http://dx.doi.org/10.1080/00304940309355362]
[102]
Shi, M.; Kato, S. The first synthesis and isolation of ‘bis (aryloxy) phosphorothioylsulfenyl iodides’(= bis (aryloxy) phosphinesulfenyl iodide p‐sulfides) from the reaction of s, s′‐(diphenylstannylene) o, o, o′, o′‐tetraaryl bis [phosphorodithioates](=[(diphenylstannylene) bis (thio)] bis [bis (aryloxy) phosphine P‐Sulfides]) with N‐iodosuccinimide. Helv. Chim. Acta, 2002, 85(8), 2559-2563.
[http://dx.doi.org/10.1002/1522-2675(200208)85:8<2559:AID-HLCA2559>3.0.CO;2-9]
[103]
Antoniow, S.; Witt, D. A novel and efficient synthesis of unsymmetrical disulfides. Synthesis, 2007, 2007(03), 363-366.
[http://dx.doi.org/10.1055/s-2007-965873]
[104]
Kowalczyk, J.; Barski, P.; Witt, D.; Grzybowski, B.A. Versatile and efficient synthesis of ω-functionalized asymmetric disulfides via sulfenyl bromide adducts. Langmuir, 2007, 23(5), 2318-2321.
[http://dx.doi.org/10.1021/la063013k] [PMID: 17249705]
[105]
Szymelfejnik, M.; Demkowicz, S.; Rachon, J.; Witt, D. Functionalization of cysteine derivatives by unsymmetrical disulfide bond formation. Synthesis, 2007, 2007(22), 3528-3534.
[http://dx.doi.org/10.1055/s-2007-990853]
[106]
Demkowicz, S.; Rachon, J.; Witt, D. A versatile and convenient preparation of unsymmetrical diaryl disulfides. Synthesis, 2008, 2008(13), 2033-2038.
[http://dx.doi.org/10.1055/s-2008-1067118]
[107]
Choi, J.; Yoon, N.M. A convenient one-pot synthesis of disulfides from thioacetates via nickel boride catalyzed methanolysis and disproportionation. Synlett, 1995, 1995(10), 1073-1074.
[http://dx.doi.org/10.1055/s-1995-5180]
[108]
Cha, M-J.; Song, Y-S.; Lee, K-J. Synthesis of symmetric diallyl disulfides from Baylis-Hillman acetates. Bull. Korean Chem. Soc., 2006, 27(11), 1900-1902.
[http://dx.doi.org/10.5012/bkcs.2006.27.11.1900]
[109]
Kakehi, A.; Suga, H.; Okuno, H.; Okuhara, M.; Ohta, A. Preparation of new nitrogen-bridged heterocycles. 60. Syntheses and conformational analyses of bis(indolizin-1-yl) disulfides. Chem. Pharm. Bull. (Tokyo), 2007, 55(10), 1458-1465.
[http://dx.doi.org/10.1248/cpb.55.1458] [PMID: 17917289]
[110]
Lee, S.; Rosazza, J.P. First total synthesis of mycothiol and mycothiol disulfide. Org. Lett., 2004, 6(3), 365-368.
[http://dx.doi.org/10.1021/ol0362008] [PMID: 14748594]
[111]
Higson, A.P.; Scott, G.K.; Earnshaw, D.J.; Baxter, A.D.; Taylor, R.A.; Cosstick, R. Synthesis and structure of S-nucleosidyl S-aryl disulfides and their reaction with phosphites. Tetrahedron, 1996, 52(3), 1027-1034.
[http://dx.doi.org/10.1016/0040-4020(95)00936-1]
[112]
Itoh, T.; Tsutsumi, N.; Ohsawa, A. Disproportionation reaction of disulfides promoted by nitric oxide (NO) in the presence of oxygen. Bioorg. Med. Chem. Lett., 1999, 9(15), 2161-2166.
[http://dx.doi.org/10.1016/S0960-894X(99)00350-9] [PMID: 10465537]
[113]
Tsutsumi, N.; Itoh, T.; Ohsawa, A. Cleavage of S-S bond by nitric oxide (NO) in the presence of oxygen: a disproportionation reaction of two disulfides. Chem. Pharm. Bull. (Tokyo), 2000, 48(10), 1524-1528.
[http://dx.doi.org/10.1248/cpb.48.1524] [PMID: 11045462]
[114]
Arisawa, M.; Yamaguchi, M. Rhodium-catalyzed disulfide exchange reaction. J. Am. Chem. Soc., 2003, 125(22), 6624-6625.
[http://dx.doi.org/10.1021/ja035221u] [PMID: 12769559]
[115]
Arisawa, M.; Suzuki, T.; Ishikawa, T.; Yamaguchi, M. Rhodium-catalyzed substitution reaction of aryl fluorides with disulfides: p-orientation in the polyarylthiolation of polyfluorobenzenes. J. Am. Chem. Soc., 2008, 130(37), 12214-12215.
[http://dx.doi.org/10.1021/ja8049996] [PMID: 18722437]
[116]
Tanaka, K.; Ajiki, K. Cationic rhodium (I)/PPh3 complex-catalyzed dehydrogenation of alkanethiols to disulfides under inert atmosphere. Tetrahedron Lett., 2004, 45(1), 25-27.
[http://dx.doi.org/10.1016/j.tetlet.2003.10.120]
[117]
Tanaka, K.; Ajiki, K. Phosphine-free cationic rhodium (I) complex-catalyzed disulfide exchange reaction: convenient synthesis of unsymmetrical disulfides. Tetrahedron Lett., 2004, 45(29), 5677-5679.
[http://dx.doi.org/10.1016/j.tetlet.2004.05.092]
[118]
Jia, X.; Zhang, Y.; Zhou, Z. Reductive cleavage of C-S bond by samarium diiodide: a novel method for the synthesis of disulfides and thiolesters. Tetrahedron Lett., 1994, 35(47), 8833-8834.
[http://dx.doi.org/10.1016/S0040-4039(00)78510-8]
[119]
Burns, C.J.; Field, L.D.; Morgan, J.; Ridley, D.D.; Vignevich, V. Preparation of cyclic disulfides from bisthiocyanates. Tetrahedron Lett., 1999, 40(35), 6489-6492.
[http://dx.doi.org/10.1016/S0040-4039(99)01333-7]
[120]
Prabhu, K.R.; Ramesha, A.; Chandrasekaran, S. Reductive dimerization of organic thiocyanates to disulfides mediated by tetrathiomolybdate. J. Org. Chem., 1995, 60(22), 7142-7143.
[http://dx.doi.org/10.1021/jo00127a017]
[121]
Lu, X.; Wang, H.; Gao, R.; Sun, D.; Bi, X. Microwave-assisted synthesis of asymmetric disulfides. RSC Advances, 2014, 4(54), 28794-28797.
[http://dx.doi.org/10.1039/C4RA03592E]
[122]
Wang, L.; Li, P.; Zhou, L. A novel reduction of sodium alkyl thiosulfates using samarium metal without an activating agent in water. Tetrahedron Lett., 2002, 43(45), 8141-8143.
[http://dx.doi.org/10.1016/S0040-4039(02)01915-9]
[123]
Wang, L.; Zhang, Y. Metallic samarium promoted reductive dimerization cyclization of gem-diactivated alkenes, reductive debromination of vic-dibromides, and reduction of sodium alkyl thiosulfates in aqueous media. Tetrahedron, 1999, 55(35), 10695-10712.
[http://dx.doi.org/10.1016/S0040-4020(99)00602-X]
[124]
Chiarugi, P.; Taddei, M.L.; Schiavone, N.; Papucci, L.; Giannoni, E.; Fiaschi, T.; Capaccioli, S.; Raugei, G.; Ramponi, G. LMW-PTP is a positive regulator of tumor onset and growth. Oncogene, 2004, 23(22), 3905-3914.
[http://dx.doi.org/10.1038/sj.onc.1207508] [PMID: 15021900]
[125]
Liu, Y.; Zheng, H.; Xu, D.; Xu, Z.; Zhang, Y. Sm/I 2-mediated selective cleavage of the SS or CS bonds of Sodium (Z)-allyl thiosulfates in aqueous media: selective formation of Di (Z-allyl) disulfides or (2E)-methyl cinnamic esters. Synlett, 2006, 2006(15), 2492-2494.
[http://dx.doi.org/10.1055/s-2006-950406]
[126]
Xiao, X.; Feng, M.; Jiang, X. Transition-metal-free persulfuration to construct unsymmetrical disulfides and mechanistic study of the sulfur redox process. Chem. Commun. (Camb.), 2015, 51(20), 4208-4211.
[http://dx.doi.org/10.1039/C4CC09633A] [PMID: 25604049]
[127]
Chambert, S.; Gautier-Luneau, I.; Fontecave, M.; Décout, J-L. 2-(trimethylsilyl)ethanethiol in nucleoside chemistry. A short route for preparing thionucleosides and their methyl disulfides. J. Org. Chem., 2000, 65(1), 249-253.
[http://dx.doi.org/10.1021/jo9908492] [PMID: 10813923]
[128]
Gerland, B.; Désiré, J.; Lepoivre, M.; Décout, J-L. Direct preparation of nucleoside vinyl disulfides from 2-(trimethylsilyl)ethyl sulfides, an access to vinylthiols. Org. Lett., 2007, 9(16), 3021-3023.
[http://dx.doi.org/10.1021/ol071088p] [PMID: 17608486]
[129]
Zhang, J.; Wang, H.; Xian, M. An unexpected Bis-ligation of S-nitrosothiols. J. Am. Chem. Soc., 2009, 131(11), 3854-3855.
[http://dx.doi.org/10.1021/ja900370y] [PMID: 19256495]
[130]
Zhang, J.; Li, S.; Zhang, D.; Wang, H.; Whorton, A.R.; Xian, M. Reductive ligation mediated one-step disulfide formation of S-nitrosothiols. Org. Lett., 2010, 12(18), 4208-4211.
[http://dx.doi.org/10.1021/ol101863s] [PMID: 20731371]
[131]
Pan, J.; Xian, M. Disulfide formation via sulfenamides. Chem. Commun. (Camb.), 2011, 47(1), 352-354.
[http://dx.doi.org/10.1039/C0CC02076A] [PMID: 20730241]
[132]
Alper, H. A Convenient synthesis of disulfides. Angew. Chem. Int. Ed. Engl., 1969, 8(9), 677-677.
[http://dx.doi.org/10.1002/anie.196906771]
[133]
Chan, T-H.; Montillier, J.; Van Horn, W.F.; Harpp, D.N. Reductive formation of disulfides from sulfenyl, sulfinyl, and sulfonyl derivatives using tri-n-propylamine and trichlorosilane. J. Am. Chem. Soc., 1970, 92(24), 7224-7225.
[http://dx.doi.org/10.1021/ja00727a048]
[134]
Olah, G.A.; Narang, S.C.; Field, L.D.; Salem, G.F. Synthetic methods and reactions. 93. Preparation of disulfides via iodotrimethylsilane-mediated reductive dimerization of sulfonyl halides. J. Org. Chem., 1980, 45(23), 4792-4793.
[http://dx.doi.org/10.1021/jo01311a055]
[135]
Dhar, P.; Ranjan, R.; Chandrasekaran, S. Chemistry of tetrathiotungstates. A novel synthesis of disulfides from sulfonyl derivatives. J. Org. Chem., 1990, 55(12), 3728-3729.
[http://dx.doi.org/10.1021/jo00299a010]
[136]
Narayana, C.; Padmanabhan, S.; Kabalka, G.W. Reductive dimerization of sulfonyl derivatives to disulfides and deoxygenation of sulfoxides to sulfides using the boron triiodide-n, n-diethylaniline complex. Synlett, 1991, 1991(02), 125-126.
[http://dx.doi.org/10.1055/s-1991-20653]
[137]
Guo, H.; Wang, J.; Zhang, Y. Novel reduction of sulfonyl halides to disulfides with SmI2/Thf/Hmpa system. Synth. Commun., 1997, 27(1), 85-88.
[http://dx.doi.org/10.1080/00397919708004808]
[138]
Firouzabadi, H.; Karimi, B. Efficient deoxygenation of sulfoxides to thioethers and reductive coupling of sulfonyl chlorides to disulfides with tungsten hexachloride. Synthesis, 1999, 1999(03), 500-502.
[http://dx.doi.org/10.1055/s-1999-3414]
[139]
Firouzabadi, H.; Jamalian, A. Deoxygenation of sulfoxides to thioethers by molybdenum pentachloride (MoCl5) and reductive coupling of sulfonyl chlorides to disulfides. Phosphorus Sulfur Silicon Relat. Elem., 2001, 170(1), 211-220.
[http://dx.doi.org/10.1080/10426500108040599]
[140]
Iranpoor, N.; Firouzabadi, H.; Jamalian, A. Deoxygenation of sulfoxides and reductive coupling of sulfonyl chlorides, sulfinates and thiosulfonates using silphos [PCl3-n (SiO2) n] as a heterogeneous phosphine reagent. Synlett, 2005, 2005(9), 1447-1449.
[http://dx.doi.org/10.1055/s-2005-868488]
[141]
Kabalka, G.W.; Reddy, M.S.; Yao, M-L. Synthesis of diaryl disulfides via the reductive coupling of arylsulfonyl chlorides. Tetrahedron Lett., 2009, 50(52), 7340-7342.
[http://dx.doi.org/10.1016/j.tetlet.2009.10.061]
[142]
Shubha, J.P. Puttaswamy, Oxidative conversion of thiourea and N-substituted thioureas into formamidine disulfides with acidified chloramine-T: a kinetic and mechanistic approach. J. Sulfur Chem., 2009, 30(5), 490-499.
[http://dx.doi.org/10.1080/17415990902725725]
[143]
Singh, S.; Chaturvedi, J.; Bhattacharya, S.; Nöth, H. Silver (I) catalyzed oxidation of thiocarboxylic acids into the corresponding disulfides and synthesis of some new Ag (I) complexes of thiophene-2-thiocarboxylate. Polyhedron, 2011, 30(1), 93-97.
[http://dx.doi.org/10.1016/j.poly.2010.09.033]
[144]
Ayodele, E.; Olajire, A.; Amuda, O.; Oladoye, S. Synthesis and fungicidal activity of acetyl substituted benzyl disulfides. Bull. Chem. Soc. Ethiop., 2003, 17(1), 53-60.
[http://dx.doi.org/10.4314/bcse.v17i1.61731]
[145]
Silvestri, M.G.; Wong, C-H. Opening of thiiranes: preparation of orthogonal protected 2-thioglyceraldehyde. J. Org. Chem., 2001, 66(3), 910-914.
[http://dx.doi.org/10.1021/jo001392v] [PMID: 11430112]
[146]
Krein, E.B.; Aizenshtat, Z. Phase-transfer-catalyzed reactions between polysulfide. alpha.,beta.-unsaturated carbonyl compounds. J. Org. Chem., 1993, 58(22), 6103-6108.
[http://dx.doi.org/10.1021/jo00074a043]
[147]
Hase, T.; Peräkylä, H. A convenient synthesis of symmetrical disulfides. Synth. Commun., 1982, 12(12), 947-950.
[http://dx.doi.org/10.1080/00397918208061931]
[148]
Yu, B.; Zheng, Y.; Yuan, Z.; Li, S.; Zhu, H.; De La Cruz, L.K.; Zhang, J.; Ji, K.; Wang, S.; Wang, B. Toward direct Protein S-Persulfidation: a prodrug approach that directly delivers Hydrogen persulfide. J. Am. Chem. Soc., 2018, 140(1), 30-33.
[http://dx.doi.org/10.1021/jacs.7b09795] [PMID: 29211467]
[149]
Sonavane, S.U.; Chidambaram, M.; Almog, J.; Sasson, Y. Rapid and efficient synthesis of symmetrical alkyl disulfides under phase transfer conditions. Tetrahedron Lett., 2007, 48(34), 6048-6050.
[http://dx.doi.org/10.1016/j.tetlet.2007.06.074]
[150]
Ramesha, A.; Chandrasekaran, S. Benzyltriethylammon tetrathiomolybdate: an improved sulfur transfer reagent for the synthesis of disulfides. Synth. Commun., 1992, 22(22), 3277-3284.
[http://dx.doi.org/10.1080/00397919208021143]
[151]
Ramesha, A.; Chandrasekaran, S. A facile entry to macrocyclic disulfides: an efficient synthesis of redox-switched crown ethers. J. Org. Chem., 1994, 59(6), 1354-1357.
[http://dx.doi.org/10.1021/jo00085a025]
[152]
Ghosh, S.; Easwaran, K.R.; Bhattacharya, S. Synthesis of novel disulfide containing macrocyclic diacylglycerols. Tetrahedron Lett., 1996, 37(32), 5769-5772.
[http://dx.doi.org/10.1016/0040-4039(96)01181-1]
[153]
Ilankumaran, P.; Prabhu, K.R.; Chandrasekaran, S. Sulfur transfer reactions of tetrathiomolybdate in water: synthesis of alkyl disulfides from alkyl halides. Synth. Commun., 1997, 27(23), 4031-4034.
[http://dx.doi.org/10.1080/00397919708005447]
[154]
Sridhar, P.R.; Prabhu, K.R.; Chandrasekaran, S. Synthesis of thioglycosides by tetrathiomolybdate‐mediated Michael additions of masked thiolates. Eur. J. Org. Chem., 2004, 2004(23), 4809-4815.
[http://dx.doi.org/10.1002/ejoc.200400360]
[155]
Sinha, S.; Ilankumaran, P.; Chandrasekaran, S. One pot conversion of alcohols to disulfides mediated by benzyltriethylammonium tetrathiomolybdate. Tetrahedron, 1999, 55(51), 14769-14776.
[http://dx.doi.org/10.1016/S0040-4020(99)00939-4]
[156]
Devan, N.; Sridhar, P.R.; Prabhu, K.R.; Chandrasekaran, S. Tetrathiomolybdate assisted epoxide ring opening with masked thiolates and selenoates: multistep reactions in one pot. J. Org. Chem., 2002, 67(26), 9417-9420.
[http://dx.doi.org/10.1021/jo0263418] [PMID: 12492347]
[157]
Sureshkumar, D.; Gunasundari, T.; Ganesh, V.; Chandrasekaran, S. Regio- and stereospecific synthesis of β-sulfonamidodisulfides and β-sulfonamidosulfides from aziridines using tetrathiomolybdate as a sulfur transfer reagent. J. Org. Chem., 2007, 72(6), 2106-2117.
[http://dx.doi.org/10.1021/jo0624389] [PMID: 17316050]
[158]
Polshettiwar, V.; Nivsarkar, M.; Acharya, J.; Kaushik, M. A new reagent for the efficient synthesis of disulfides from alkyl halides. Tetrahedron Lett., 2003, 44(5), 887-889.
[http://dx.doi.org/10.1016/S0040-4039(02)02776-4]
[159]
Wang, J-X.; Wang, C-H.; Cui, W.; Hu, Y. A facile method for the syntheses of dialkyl disulfides from sulfur under phase transfer conditions. Synth. Commun., 1995, 25(22), 3573-3581.
[http://dx.doi.org/10.1080/00397919508015492]
[160]
Takata, T.; Saeki, D.; Makita, Y.; Yamada, N.; Kihara, N. Aromatic hydrocarbon-catalyzed direct reaction of sulfur and sodium in a heterogeneous system: selective and facile synthesis of sodium monosulfide and disulfide. Inorg. Chem., 2003, 42(12), 3712-3714.
[http://dx.doi.org/10.1021/ic034084z] [PMID: 12793804]
[161]
Bandgar, B.; Uppalla, L.; Sadavarte, V. Reduction of sulfur with borohydride exchange resin in methanol: application to rapid and selective synthesis of disulfides. Tetrahedron Lett., 2001, 42(38), 6741-6743.
[http://dx.doi.org/10.1016/S0040-4039(01)00789-4]
[162]
Jia, X-S.; Liu, X-T.; Li, Q.; Huang, Q.; Kong, L-L. A facile method for the synthesis of diacyl disulfides. J. Chem. Res., 2006, 2006(8), 547-548.
[http://dx.doi.org/10.3184/030823406778256388]
[163]
Andreu, D.; Albericio, F.; Solé, N.A.; Munson, M.C.; Ferrer, M.; Barany, G. Formation of disulfide bonds in synthetic peptides and proteins. Methods Mol. Biol., 1994, 35, 91-169.
[http://dx.doi.org/10.1385/0-89603-273-6:91] [PMID: 7894611]
[164]
Chen, L.; Annis, I.; Barany, G. Disulfide bond formation in peptides. Curr. Protoc. Protein Sci., 2001, 23(1), 18.6.1-18.6.19.
[http://dx.doi.org/10.1002/0471140864.ps1806s23]
[165]
Annis, I.; Hargittai, B.; Barany, G. Disulfide bond formation in peptides. Methods Enzymol., 1997, 289, 198-221.
[http://dx.doi.org/10.1016/S0076-6879(97)89049-0] [PMID: 9353723]
[166]
Albericio, T.M.P.F. Disulfide formation strategies in peptide synthesis. Eur. J. Org. Chem., 2014, 2014(17), 3519-3530.
[http://dx.doi.org/10.1002/ejoc.201402149]
[167]
Lindskog, S. Structure and mechanism of carbonic anhydrase. Pharmacol. Ther., 1997, 74(1), 1-20.
[http://dx.doi.org/10.1016/S0163-7258(96)00198-2] [PMID: 9336012]
[168]
Supuran, C.T.; Scozzafava, A.; Casini, A. Carbonic anhydrase inhibitors. Med. Res. Rev., 2003, 23(2), 146-189.
[http://dx.doi.org/10.1002/med.10025] [PMID: 12500287]
[169]
Takacova, M.; Bartosova, M.; Skvarkova, L.; Zatovicova, M.; Vidlickova, I.; Csaderova, L.; Barathova, M.; Breza, J., Jr; Bujdak, P.; Pastorek, J.; Breza, J., Sr; Pastorekova, S. Carbonic anhydrase IX is a clinically significant tissue and serum biomarker associated with renal cell carcinoma. Oncol. Lett., 2013, 5(1), 191-197.
[http://dx.doi.org/10.3892/ol.2012.1001] [PMID: 23255918]
[170]
Krall, N.; Pretto, F.; Decurtins, W.; Bernardes, G.J.; Supuran, C.T.; Neri, D. A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumors. Angew. Chem. Int. Ed. Engl., 2014, 53(16), 4231-4235.
[http://dx.doi.org/10.1002/anie.201310709] [PMID: 24623670]
[171]
Gonen, N.; Assaraf, Y.G. Antifolates in cancer therapy: structure, activity and mechanisms of drug resistance. Drug Resist. Updat., 2012, 15(4), 183-210.
[http://dx.doi.org/10.1016/j.drup.2012.07.002] [PMID: 22921318]
[172]
Paulos, C.M.; Reddy, J.A.; Leamon, C.P.; Turk, M.J.; Low, P.S. Ligand binding and kinetics of folate receptor recycling in vivo: impact on receptor-mediated drug delivery. Mol. Pharmacol., 2004, 66(6), 1406-1414.
[http://dx.doi.org/10.1124/mol.104.003723] [PMID: 15371560]
[173]
Srinivasarao, M.; Galliford, C.V.; Low, P.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov., 2015, 14(3), 203-219.
[http://dx.doi.org/10.1038/nrd4519] [PMID: 25698644]
[174]
Vergote, I.; Leamon, C.P. Vintafolide: a novel targeted therapy for the treatment of folate receptor expressing tumors. Ther. Adv. Med. Oncol., 2015, 7(4), 206-218.
[http://dx.doi.org/10.1177/1758834015584763] [PMID: 26136852]
[175]
Dosio, F.; Milla, P.; Cattel, L. EC-145, a folate-targeted Vinca alkaloid conjugate for the potential treatment of folate receptor-expressing cancers. Curr. Opin. Investig. Drugs, 2010, 11(12), 1424-1433.
[PMID: 21154124]
[176]
Leamon, C.P.; Reddy, J.A.; Vlahov, I.R.; Westrick, E.; Parker, N.; Nicoson, J.S.; Vetzel, M. Comparative preclinical activity of the folate-targeted vinca alkaloid conjugates EC140 and EC145. Int. J. Cancer, 2007, 121(7), 1585-1592.
[http://dx.doi.org/10.1002/ijc.22853] [PMID: 17551919]
[177]
FierceBiotech. Available at:. https://www.fiercebiotech.com/r-d/merck-halts-study-of-billion-dollar-cancer-drug-vintafolide (Accessed on: November 15, 2019)
[178]
Gokhale, M.; Thakur, A.; Rinaldi, F. Degradation of BMS-753493, a novel epothilone folate conjugate anticancer agent. Drug Dev. Ind. Pharm., 2013, 39(9), 1315-1327.
[http://dx.doi.org/10.3109/03639045.2012.728226] [PMID: 23039020]
[179]
Reddy, J.A.; Dorton, R.; Bloomfield, A.; Nelson, M.; Dircksen, C.; Vetzel, M.; Kleindl, P.; Santhapuram, H.; Vlahov, I.R.; Leamon, C.P. Pre-clinical evaluation of EC1456, a folate-tubulysin anti-cancer therapeutic. Sci. Rep., 2018, 8(1), 8943.
[http://dx.doi.org/10.1038/s41598-018-27320-5] [PMID: 29895863]
[180]
Silver, D.A.; Pellicer, I.; Fair, W.R.; Heston, W.D.; Cordon-Cardo, C. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin. Cancer Res., 1997, 3(1), 81-85.
[PMID: 9815541]
[181]
Kinoshita, Y.; Kuratsukuri, K.; Landas, S.; Imaida, K.; Rovito, P.M., Jr; Wang, C.Y.; Haas, G.P. Expression of prostate-specific membrane antigen in normal and malignant human tissues. World J. Surg., 2006, 30(4), 628-636.
[http://dx.doi.org/10.1007/s00268-005-0544-5] [PMID: 16555021]
[182]
Kularatne, S.A.; Wang, K.; Santhapuram, H.K.; Low, P.S. Prostate-specific membrane antigen targeted imaging and therapy of prostate cancer using a PSMA inhibitor as a homing ligand. Mol. Pharm., 2009, 6(3), 780-789.
[http://dx.doi.org/10.1021/mp900069d] [PMID: 19361233]
[183]
Haberkorn, U.; Eder, M.; Kopka, K.; Babich, J.W.; Eisenhut, M. new strategies in prostate cancer: Prostate-Specific Membrane Antigen (PSMA) ligands for diagnosis and therapy. Clin. Cancer Res., 2016, 22(1), 9-15.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0820] [PMID: 26728408]
[184]
Kumar, A.; Mastren, T.; Wang, B.; Hsieh, J.T.; Hao, G.; Sun, X. Design of a small-molecule drug conjugate for prostate cancer targeted theranostics. Bioconjug. Chem., 2016, 27(7), 1681-1689.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00222] [PMID: 27248781]
[185]
Lv, Q.; Yang, J.; Zhang, R.; Yang, Z.; Yang, Z.; Wang, Y.; Xu, Y.; He, Z. Prostate-specific membrane antigen targeted therapy of prostate cancer using a DUPA-paclitaxel conjugate. Mol. Pharm., 2018, 15(5), 1842-1852.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00026] [PMID: 29608845]
[186]
Hennenfent, K.L.; Govindan, R. Novel formulations of taxanes: a review. Old wine in a new bottle? Ann. Oncol., 2006, 17(5), 735-749.
[http://dx.doi.org/10.1093/annonc/mdj100] [PMID: 16364960]
[187]
Noble, S.; Goa, K.L. Gemcitabine. A review of its pharmacology and clinical potential in non-small cell lung cancer and pancreatic cancer. Drugs, 1997, 54(3), 447-472.
[http://dx.doi.org/10.2165/00003495-199754030-00009] [PMID: 9279506]
[188]
Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of gemcitabine in cancer therapy. Future Oncol., 2005, 1(1), 7-17.
[http://dx.doi.org/10.1517/14796694.1.1.7] [PMID: 16555971]
[189]
Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat. Rev. Cancer, 2006, 6(10), 789-802.
[http://dx.doi.org/10.1038/nrc1977] [PMID: 16990856]
[190]
Pommier, Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem. Rev., 2009, 109(7), 2894-2902.
[http://dx.doi.org/10.1021/cr900097c] [PMID: 19476377]
[191]
Hou, M.; Xue, P.; Gao, Y.E.; Ma, X.; Bai, S.; Kang, Y.; Xu, Z. Gemcitabine-camptothecin conjugates: a hybrid prodrug for controlled drug release and synergistic therapeutics. Biomater. Sci., 2017, 5(9), 1889-1897.
[http://dx.doi.org/10.1039/C7BM00382J] [PMID: 28681888]
[192]
Zarrabi, K.; Dufour, A.; Li, J.; Kuscu, C.; Pulkoski-Gross, A.; Zhi, J.; Hu, Y.; Sampson, N.S.; Zucker, S.; Cao, J. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. J. Biol. Chem., 2011, 286(38), 33167-33177.
[http://dx.doi.org/10.1074/jbc.M111.256644] [PMID: 21795678]
[193]
Seiki, M. Membrane-type 1 matrix metalloproteinase: a key enzyme for tumor invasion. Cancer Lett., 2003, 194(1), 1-11.
[http://dx.doi.org/10.1016/S0304-3835(02)00699-7] [PMID: 12706853]
[194]
Rossé, C.; Lodillinsky, C.; Fuhrmann, L.; Nourieh, M.; Monteiro, P.; Irondelle, M.; Lagoutte, E.; Vacher, S.; Waharte, F.; Paul-Gilloteaux, P.; Romao, M.; Sengmanivong, L.; Linch, M.; van Lint, J.; Raposo, G.; Vincent-Salomon, A.; Bièche, I.; Parker, P.J.; Chavrier, P. Control of MT1-MMP transport by atypical PKC during breast-cancer progression. Proc. Natl. Acad. Sci. USA, 2014, 111(18), E1872-E1879.
[http://dx.doi.org/10.1073/pnas.1400749111] [PMID: 24753582]
[195]
Zhou, H.; Wu, A.; Fu, W.; Lv, Z.; Zhang, Z. Significance of semaphorin-3A and MMP-14 protein expression in non-small cell lung cancer. Oncol. Lett., 2014, 7(5), 1395-1400.
[http://dx.doi.org/10.3892/ol.2014.1920] [PMID: 24765144]
[196]
Teufel, G.B.D.P. Methods for treating cancer. U.S. Patent 169, 254, June 21, 2018.
[197]
BicycleTherapeutics. Available at:. https://www.bicycletherapeutics.com/publications/ (Accessed on November 10, 2019).
[198]
Chen, H.; Lin, Z.; Arnst, K.E.; Miller, D.D.; Li, W. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy. Molecules, 2017, 22(8) E1281
[http://dx.doi.org/10.3390/molecules22081281] [PMID: 28763044]
[199]
Weckbecker, G.; Lewis, I.; Albert, R.; Schmid, H.A.; Hoyer, D.; Bruns, C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat. Rev. Drug Discov., 2003, 2(12), 999-1017.
[http://dx.doi.org/10.1038/nrd1255] [PMID: 14654798]
[200]
Keskin, O.; Yalcin, S. A review of the use of somatostatin analogs in oncology. OncoTargets Ther., 2013, 6, 471-483.
[PMID: 23667314]
[201]
White, B.H.; Whalen, K.; Kriksciukaite, K.; Alargova, R.; Au Yeung, T.; Bazinet, P.; Brockman, A.; DuPont, M.; Oller, H.; Lemelin, C.A.; Lim Soo, P.; Moreau, B.; Perino, S.; Quinn, J.M.; Sharma, G.; Shinde, R.; Sweryda-Krawiec, B.; Wooster, R.; Bilodeau, M.T. Discovery of an SSTR2-targeting maytansinoid conjugate (PEN-221) with potent activity in vitro and in vivo. J. Med. Chem., 2019, 62(5), 2708-2719.
[http://dx.doi.org/10.1021/acs.jmedchem.8b02036] [PMID: 30735385]
[202]
Minotti, G.; Menna, P.; Salvatorelli, E.; Cairo, G.; Gianni, L. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol. Rev., 2004, 56(2), 185-229.
[http://dx.doi.org/10.1124/pr.56.2.6] [PMID: 15169927]
[203]
Nadas, J.; Sun, D. Anthracyclines as effective anticancer drugs. Expert Opin. Drug Discov., 2006, 1(6), 549-568.
[http://dx.doi.org/10.1517/17460441.1.6.549] [PMID: 23506066]
[204]
Lelle, M.; Kaloyanova, S.; Freidel, C.; Theodoropoulou, M.; Musheev, M.; Niehrs, C.; Stalla, G.; Peneva, K. Octreotide-mediated tumor-targeted drug delivery via a cleavable doxorubicin-peptide conjugate. Mol. Pharm., 2015, 12(12), 4290-4300.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00487] [PMID: 26524088]
[205]
Cox, D.; Brennan, M.; Moran, N. Integrins as therapeutic targets: lessons and opportunities. Nat. Rev. Drug Discov., 2010, 9(10), 804-820.
[http://dx.doi.org/10.1038/nrd3266] [PMID: 20885411]
[206]
Rathinam, R.; Alahari, S.K. Important role of integrins in the cancer biology. Cancer Metastasis Rev., 2010, 29(1), 223-237.
[http://dx.doi.org/10.1007/s10555-010-9211-x] [PMID: 20112053]
[207]
Desgrosellier, J.S.; Cheresh, D.A. Integrins in cancer: biological implications and therapeutic opportunities. Nat. Rev. Cancer, 2010, 10(1), 9-22.
[http://dx.doi.org/10.1038/nrc2748] [PMID: 20029421]
[208]
Katsamakas, S.; Chatzisideri, T.; Thysiadis, S.; Sarli, V. RGD-mediated delivery of small-molecule drugs. Future Med. Chem., 2017, 9(6), 579-604.
[http://dx.doi.org/10.4155/fmc-2017-0008] [PMID: 28394627]
[209]
Dal Pozzo, A.; Ni, M.H.; Esposito, E.; Dallavalle, S.; Musso, L.; Bargiotti, A.; Pisano, C.; Vesci, L.; Bucci, F.; Castorina, M.; Foderà, R.; Giannini, G.; Aulicino, C.; Penco, S. Novel tumor-targeted RGD peptide-camptothecin conjugates: synthesis and biological evaluation. Bioorg. Med. Chem., 2010, 18(1), 64-72.
[http://dx.doi.org/10.1016/j.bmc.2009.11.019] [PMID: 19942441]
[210]
Dal Pozzo, A.; Esposito, E.; Ni, M.; Muzi, L.; Pisano, C.; Bucci, F.; Vesci, L.; Castorina, M.; Penco, S. Conjugates of a novel 7-substituted camptothecin with RGD-peptides as α(v)β3 integrin ligands: an approach to tumor-targeted therapy. Bioconjug. Chem., 2010, 21(11), 1956-1967.
[http://dx.doi.org/10.1021/bc100097r] [PMID: 20949910]
[211]
Huang, B.; Desai, A.; Tang, S.; Thomas, T.P.; Baker, J.R., Jr The synthesis of a c(RGDyK) targeted SN38 prodrug with an indolequinone structure for bioreductive drug release. Org. Lett., 2010, 12(7), 1384-1387.
[http://dx.doi.org/10.1021/ol1002626] [PMID: 20192275]
[212]
Lee, M.H.; Kim, J.Y.; Han, J.H.; Bhuniya, S.; Sessler, J.L.; Kang, C.; Kim, J.S. Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted RGD peptide-appended naphthalimide theragnostic prodrug. J. Am. Chem. Soc., 2012, 134(30), 12668-12674.
[http://dx.doi.org/10.1021/ja303998y] [PMID: 22642558]
[213]
Sun, W.W.; Zhu, P.; Shi, Y.C.; Zhang, C.L.; Huang, X.F.; Liang, S.Y.; Song, Z.Y.; Lin, S. Current views on neuropeptide Y and diabetes-related atherosclerosis. Diab. Vasc. Dis. Res., 2017, 14(4), 277-284.
[http://dx.doi.org/10.1177/1479164117704380] [PMID: 28423914]
[214]
Michel, M.C.; Beck-Sickinger, A.; Cox, H.; Doods, H.N.; Herzog, H.; Larhammar, D.; Quirion, R.; Schwartz, T.; Westfall, T. XVI. International union of pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol. Rev., 1998, 50(1), 143-150.
[PMID: 9549761]
[215]
Manning, S.; Batterham, R.L. The role of gut hormone peptide YY in energy and glucose homeostasis: twelve years on. Annu. Rev. Physiol., 2014, 76, 585-608.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170404] [PMID: 24188711]
[216]
Kufka, R.; Rennert, R.; Kaluđerović, G.N.; Weber, L.; Richter, W.; Wessjohann, L.A. Synthesis of a tubugi-1-toxin conjugate by a modulizable disulfide linker system with a neuropeptide Y analogue showing selectivity for hY1R-overexpressing tumor cells. Beilstein J. Org. Chem., 2019, 15, 96-105.
[http://dx.doi.org/10.3762/bjoc.15.11] [PMID: 30680044]
[217]
Cabrele, C.; Beck-Sickinger, A.G. Molecular characterization of the ligand-receptor interaction of the neuropeptide Y family. J. Pept. Sci., 2000, 6(3), 97-122.
[http://dx.doi.org/10.1002/(SICI)1099-1387(200003)6:3<97:AID-PSC236>3.0.CO;2-E] [PMID: 10759209]
[218]
Golfier, S.; Kopitz, C.; Kahnert, A.; Heisler, I.; Schatz, C.A.; Stelte-Ludwig, B.; Mayer-Bartschmid, A.; Unterschemmann, K.; Bruder, S.; Linden, L.; Harrenga, A.; Hauff, P.; Scholle, F.D.; Müller-Tiemann, B.; Kreft, B.; Ziegelbauer, K. Anetumab ravtansine: a novel mesothelin-targeting antibody-drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol. Cancer Ther., 2014, 13(6), 1537-1548.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0926] [PMID: 24714131]
[219]
Hassan, R.; Kindler, H.L.; Jahan, T.; Bazhenova, L.; Reck, M.; Thomas, A.; Pastan, I.; Parno, J.; O’Shannessy, D.J.; Fatato, P.; Maltzman, J.D.; Wallin, B.A. Phase II clinical trial of amatuximab, a chimeric antimesothelin antibody with pemetrexed and cisplatin in advanced unresectable pleural mesothelioma. Clin. Cancer Res., 2014, 20(23), 5927-5936.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-0804] [PMID: 25231400]
[220]
Le, D.T.; Wang-Gillam, A.; Picozzi, V.; Greten, T.F.; Crocenzi, T.; Springett, G.; Morse, M.; Zeh, H.; Cohen, D.; Fine, R.L.; Onners, B.; Uram, J.N.; Laheru, D.A.; Lutz, E.R.; Solt, S.; Murphy, A.L.; Skoble, J.; Lemmens, E.; Grous, J.; Dubensky, T., Jr; Brockstedt, D.G.; Jaffee, E.M. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J. Clin. Oncol., 2015, 33(12), 1325-1333.
[http://dx.doi.org/10.1200/JCO.2014.57.4244] [PMID: 25584002]
[221]
Quanz, M.; Hagemann, U.B.; Zitzmann-Kolbe, S.; Stelte-Ludwig, B.; Golfier, S.; Elbi, C.; Mumberg, D.; Ziegelbauer, K.; Schatz, C.A. Anetumab ravtansine inhibits tumor growth and shows additive effect in combination with targeted agents and chemotherapy in mesothelin-expressing human ovarian cancer models. Oncotarget, 2018, 9(75), 34103-34121.
[http://dx.doi.org/10.18632/oncotarget.26135] [PMID: 30344925]
[222]
Zhang, X.; Zhang, C.; Yang, X.; Hou, X.; Zhao, W.; Benson, D.; Yu, J.; Dong, Y. Design, synthesis and evaluation of anti-CD38 antibody drug conjugate based on daratumumab and maytansinoid. Bioorg. Med. Chem., 2019, 27(3), 479-482.
[http://dx.doi.org/10.1016/j.bmc.2018.12.024] [PMID: 30594452]
[223]
Trnĕný, M.; Verhoef, G.; Dyer, M.J.; Ben Yehuda, D.; Patti, C.; Canales, M.; Lopez, A.; Awan, F.T.; Montgomery, P.G.; Janikova, A.; Barbui, A.M.; Sulek, K.; Terol, M.J.; Radford, J.; Guidetti, A.; Di Nicola, M.; Siraudin, L.; Hatteville, L.; Schwab, S.; Oprea, C.; Gianni, A.M. A phase II multicenter study of the anti-CD19 antibody drug conjugate coltuximab ravtansine (SAR3419) in patients with relapsed or refractory diffuse large B-cell lymphoma previously treated with rituximab-based immunotherapy. Haematologica, 2018, 103(8), 1351-1358.
[http://dx.doi.org/10.3324/haematol.2017.168401] [PMID: 29748443]
[224]
Schönfeld, K.; Zuber, C.; Pinkas, J.; Häder, T.; Bernöster, K.; Uherek, C. Indatuximab ravtansine (BT062) combination treatment in multiple myeloma: pre-clinical studies. J. Hematol. Oncol., 2017, 10(1), 13.
[http://dx.doi.org/10.1186/s13045-016-0380-0] [PMID: 28077160]
[225]
Pascual, M.H.; Verdier, P.; Malette, P.; Mnich, J.; Ozoux, M.L. Validation of an immunoassay to selectively quantify the naked antibody of a new antibody drug conjugate--SAR566658--for pharmacokinetic interpretation improvement. J. Immunol. Methods, 2013, 396(1-2), 140-146.
[http://dx.doi.org/10.1016/j.jim.2013.06.012] [PMID: 23892158]
[226]
Kelly, R.K.; Olson, D.L.; Sun, Y.; Wen, D.; Wortham, K.A.; Antognetti, G.; Cheung, A.E.; Orozco, O.E.; Yang, L.; Bailly, V.; Sanicola, M. An antibody-cytotoxic conjugate, BIIB015, is a new targeted therapy for Cripto positive tumours. Eur. J. Cancer, 2011, 47(11), 1736-1746.
[http://dx.doi.org/10.1016/j.ejca.2011.02.023] [PMID: 21458984]
[227]
Tolcher, A.W.; Ochoa, L.; Hammond, L.A.; Patnaik, A.; Edwards, T.; Takimoto, C.; Smith, L.; de Bono, J.; Schwartz, G.; Mays, T.; Jonak, Z.L.; Johnson, R.; DeWitte, M.; Martino, H.; Audette, C.; Maes, K.; Chari, R.V.; Lambert, J.M.; Rowinsky, E.K. Cantuzumab mertansine, a maytansinoid immunoconjugate directed to the CanAg antigen: a phase I, pharmacokinetic, and biologic correlative study. J. Clin. Oncol., 2003, 21(2), 211-222.
[http://dx.doi.org/10.1200/JCO.2003.05.137] [PMID: 12525512]
[228]
Helft, P.R.; Schilsky, R.L.; Hoke, F.J.; Williams, D.; Kindler, H.L.; Sprague, E.; DeWitte, M.; Martino, H.K.; Erickson, J.; Pandite, L.; Russo, M.; Lambert, J.M.; Howard, M.; Ratain, M.J. A phase I study of cantuzumab mertansine administered as a single intravenous infusion once weekly in patients with advanced solid tumors. Clin. Cancer Res., 2004, 10(13), 4363-4368.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0088] [PMID: 15240523]
[229]
Sadowsky, J.D.; Pillow, T.H.; Chen, J.; Fan, F.; He, C.; Wang, Y.; Yan, G.; Yao, H.; Xu, Z.; Martin, S.; Zhang, D.; Chu, P.; Dela Cruz-Chuh, J.; O’Donohue, A.; Li, G.; Del Rosario, G.; He, J.; Liu, L.; Ng, C.; Su, D.; Lewis Phillips, G.D.; Kozak, K.R.; Yu, S.F.; Xu, K.; Leipold, D.; Wai, J. Development of efficient chemistry to generate site-specific disulfide-linked protein- and peptide-payload conjugates: application to THIOMAB antibody-drug conjugates. Bioconjug. Chem., 2017, 28(8), 2086-2098.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00258] [PMID: 28636382]
[230]
Qian, Z.M.; Li, H.; Sun, H.; Ho, K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol. Rev., 2002, 54(4), 561-587.
[http://dx.doi.org/10.1124/pr.54.4.561] [PMID: 12429868]
[231]
Inoue, T.; Cavanaugh, P.G.; Steck, P.A.; Brünner, N.; Nicolson, G.L. Differences in transferrin response and numbers of transferrin receptors in rat and human mammary carcinoma lines of different metastatic potentials. J. Cell. Physiol., 1993, 156(1), 212-217.
[http://dx.doi.org/10.1002/jcp.1041560128] [PMID: 8314858]
[232]
Wagner, E.; Zenke, M.; Cotten, M.; Beug, H.; Birnstiel, M.L. Transferrin-polycation conjugates as carriers for DNA uptake into cells. Proc. Natl. Acad. Sci. USA, 1990, 87(9), 3410-3414.
[http://dx.doi.org/10.1073/pnas.87.9.3410] [PMID: 2333290]
[233]
Lai, H.; Nakase, I.; Lacoste, E.; Singh, N.P.; Sasaki, T. Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res., 2009, 29(10), 3807-3810.
[PMID: 19846912]
[234]
Saxena, M.; Delgado, Y.; Sharma, R.K.; Sharma, S.; Guzmán, S.L.P.L.; Tinoco, A.D.; Griebenow, K. Inducing cell death in vitro in cancer cells by targeted delivery of cytochrome c via a transferrin conjugate. PLoS One, 2018, 13(4)e0195542
[http://dx.doi.org/10.1371/journal.pone.0195542] [PMID: 29649293]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 25
Year: 2019
Published on: 14 January, 2020
Page: [2802 - 2821]
Pages: 20
DOI: 10.2174/1385272823666191202111723
Price: $65

Article Metrics

PDF: 38
HTML: 8
EPUB: 1
PRC: 1