Prediction of Liquid Molar Volume and Heat of Vaporization of Fatty Acids Using an Equation of State

Author(s): Michelle G. Gomes, Nattácia R. A.F. Rocha, Alex A. Moura, Nadine P. Merlo, Moilton R. Franco Júnior*, Patrisia O. Rodrigues

Journal Name: Current Physical Chemistry

Volume 10 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: The liquid molar volume (V) and the heat of vaporization (ΔHVAP) of four fatty acids (n-Heptanoic acid, Hexadecanoic acid, n-Hexanoic acid and n- Dodecanoic acid) have been estimated.

Objective: This paper aims to calculate the liquid molar volume and the heat of vaporization of four fatty acids under the critical point using two traditional equations of state: Peng-Robinson (PR) [21] and Soave-Redlich-Kwong.

Methods: The area rules method applicable to obtaining the saturation pressure of the compounds has been used. The properties of the acids investigated in this work have been compared with those provided by literature. For molar volumes, the equations of state have given improved predictions when compared to traditional equations such as Rackett equation and so on. According to the vapor enthalpy calculations, no reference value was required.

Results: In general, the Clausius-Clapeyron equation provides a better estimation of the vaporization enthalpy of fatty acids when Soave-Redlich-Kwong (SRK) equation was used. The heat of vaporization for fatty acids can be calculated with good reliability in comparison with the Watson equation if suitable equation of state is used.

Conclusion: Accurate results for heat of vaporization can be reached in comparison with the Watson equation if the reliable equation of state is used.

Keywords: Biodiesel, equation of state, fatty acids, large chain, maxwell rule, vaporization enthalpy.

Knothe, G. Biodiesel and renewable diesel: A comparison. Pror. Energy Combust. Sci., 2010, 36(3), 364-373.
Gui, M.M.; Lee, K.T.; Bhatia, S. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 2008, 33(11), 1646-1653.
Severino, L.S.; Auld, D.L.; Baldanzi, M.; Candio, M.J.D.; Chen, G.; Crosby, W. A review on the challenges for increased production of castor. Agron. J., 2012, 104(4), 853-880.
Perdomo, F.A.; Acosta-Osorio, A.A.; Herrera, G.; Vasco-Leal, J.F.; Mosquera-Artamonov, J.D.; Millan-Malo, B. Physicochemical characterization of seven mexican Ricinus communis L. seeds & oil contents. Biomass Bioenergy, 2013, 48, 17-24.
Moser, B.R.; Vaughn, S.F. Efficacy of fatty acid profile as a tool for screening feedstocks for biodiesel production. Biomass Bioenergy, 2012, 37, 31-41.
Cabaleiro, D.; Pastoriza-Gallego, M.J.; Piñeiro, M.M.; Legido, J.L.; Lugo, L. Thermophysical properties of (diphenyl ether + biphenyl) mixtures for their use as heat transfer fluids. J. Chem. Thermodyn., 2012, 50, 80-88.
Ibrahim, D.; Marc, A.R. Thermal Energy Storage Systems and Applications, 2nd ed; John Wiley & Sons Ltd: New York, 2011.
Cabaleiro, D.; Pastoriza-Gallego, M.J.; Gracia-Fernández, C.; Piñeiro, M.M.; Lugo, L. Rheological and volumetric properties of TiO2-ethylene glycol nanofluids. Nanoscale Res. Lett., 2013, 8(1), 286.
[ PMID: 23763850]
Lugo, L.; Segovia, J.J.; Martín, M.C.; Fernández, J.; Villamañán, M.A. An experimental setup for isobaric heat capacities for viscous fluids at high pressure: Squalane, bis(2-ethylhexyl) sebacate and bis(2-ethylhexyl) phthalate. J. Chem. Thermodyn., 2012, 49, 75-80.
Cabaleiro, D.; Pastoriza-Gallego, M.J.; Piñeiro, M.M.; Lugo, L. Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1,2-diol+water) mixture. J. Chem. Thermodyn., 2013, 58, 405-415.
Ceriani, R.; Meirelles, A.J.A. Predicting vapor-liquid equilibria of fatty systems. Fluid Phase Equilib., 2004, 215, 227-236.
Ceriani, R.; Gonçalves, C.B.; Coutinho, J.A.P. Prediction of viscosities of fatty compounds and biodiesel by group contribution. Energy Fuels, 2011, 25, 3712-3717.
Ceriani, R.; Gani, R.; Meirelles, A.J.A. Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods. Fluid Phase Equilib., 2009, 283, 49-55.
Marrero, J.; Gani, R. Group-contribution based estimation of pure componente properties. Fluid Phase Equilib., 2001, 183-184, 183-208.
Díaz-Tovar, C.A.; Gani, R.; Sarup, B. Lipid technology: Property prediction and process design/analysis in the edible oil and biodiesel industries. Fluid Phase Equilib., 2011, 302, 284-293.
Su, Y.C.; Liu, Y.A.; Díaz-Tovar, C.A.; Gani, R. Selection of prediction methods for thermophysical properties for process modeling and product design of biodiesel manufacturing. Ind. Eng. Chem. Res., 2011, 50, 6809-6836.
Haggenmacher, J.E. The heat of vaporization as a function of pressure and temperature. J. Am. Chem. Soc., 1946, 68, 1633-1634.
[] [PMID: 20995002]
Korsten, H. Internally consistent prediction of vapor pressure and related properties. Ind. Eng. Chem. Res., 2000, 39, 813-820.
Basaˇrová. P.; Svoboda, V. Prediction of the enthalpy of vaporization by the group contribution method. Fluid Phase Equilib., 1995, 105, 27-47.
Benziane, M.; Khimeche, K.; Mokbel, I.; Sawaya, T.; Dahmani, A.; Jose, J. Experimental vapor pressures of five saturated Fatty Acid Ethyl Ester (FAEE) componentes of biodiesel. J. Chem. Eng. Data, 2011, 56, 4736-4740.
Soave, G. Equilibrium constants from a modified Redlich-Kwong equation of state. Chem. Eng. Sci., 1972, 27, 1197-1203.
Peng, D.Y.; Robinson, D.B. A new two-constant equation of state, Ind. Eng. Chem. Fund., 1976.15, p. 59-64.
Soujanya, J.; Satyavathi, B. Prasad, T.E.V. Experimental (vapour + liquid) equilibrium data of (methanol + water), (water + glycerol) and (methanol + glycerol) systems at atmospheric and sub-atmospheric pressures. J. Chem. Thermodyn., 2010, 42, 621-624.
Wang, J.F.; Li, X.M.; Meng, H.; Li, C.X.; Wang, Z.H. Boiling temperature measurement for water, metanol, etanol and their binary mixtures in the pressure of a hydrochloric or acetic salt of mono-, di or tri-ethanolamine at 101.3kPa. J. Chem. Thermodyn., 2009, 41, 167-170.
Yamamoto, H.; Terano, T.; Nishi, Y.; Tokunaga, J. Vapor-liquid equilibria for methanol+ethanol+calcium chloride,+ammonium iodide, and +sodium iodide at 298.15 K. J. Chem. Eng. Data, 1995, 40, 472-477.
Chen, D.H.T.; Thompson, A.R. Systems glycerol water and glycerol-water saturated with sodium chloride. J. Chem. Eng. Data, 1970, 15, 471-474.
Coelho, R.; Santos, P.G.; Mafra, M.R.; Cardozo-Filho, L.; Corazza, M.L. (Vapor + liquid) equilibrium for the binary systems water + glycerol and ethanol + glycerol, ethyl stearate, and ethyl palmitate at low pressures. J. Chem. Thermodyn., 2011, 43, 1870-1876.
Malanowski, S. Experimental methods for vapour-liquid equilibria. Part I. Circulation methods. Fluid Phase Equilib., 1982, 8, 197-219.
Poling, B.E.; Prausnitz, J.M.; O’Connell, P.J. The Properties of Gases and Liquids, 5th ed; McGraw-Hill: New York, USA, 2000.
Liessmann, G.; Schimidt, W.; Reiffarth, S. Recommended thermophysical data: Data compilation of the Saechsishe Olefinwerke; Boehlen: Germany, 1995, p. 56.
Verevkin, S.P. Measurement and prediction of the mono carboxilic acids thermochemical properties. J. Chem. Eng. Data, 2000, 45(5), 953-960.
Pool, W.O.; Ralston, A.W. Boiling point of n-alkyl acids. Ind. Eng. Chem., 1942, 34(9), 1104-1105.
Costello, J.M.; Bowden, S.T. The temperature variation of orthobaric density difference in liquid-vapor systems. IV. Fatty acids. Recl. Trav. Chim. Pays Bas, 1958, 77(9), 803-810.
Falleiro, R.M.M.; Silva, L.Y.A.; Meirelles, A.J.A.; Krahenbuhl, M.A. Vapor pressure data for fatty acids obtained using an adaptation of DSC technique. Thermochim. Acta, 2012, 547, 6-12.
Thermophysical Properties of Fluid Systems - the NIST WebBook. Available from: https://webbook. [(Accessed in June 2018).];
Liessmann, G.; Schmidt, W.; Reiffarth, S. Recommended thermophysical data; Data Comp. Saechsische Olefinwerke Boehlen, 1995, p. 33.
Krasnykh, E.L.; Druzhinina, Y.A.; Portnova, S.V.; Smirnova, Y.A. Vapor pressure and enthalpy of vaporization of trimethylolpropane and carboxylic acids esters. Fluid Phase Equilib., 2018, 462, 111-117.
Jia, Q.; Yan, X.; Lan, T.; Yan, F.; Wang, Q. Norm indexes for predicting enthalpy of vaporization of organic compounds at the boiling point. J. Mol. Liq., 2019, 282, 484-488.
Zaitsau, D.H.; Pimerzin, A.A.; Verevkin, S.P. Fatty acids methyl esters: Complementary measurements and comprehensive analysis of vaporization thermodynamics. J. Chem. Thermodyn., 2019, 132, 322-340.
Yagofarov, M.I.; Nagrimanov, R.N.; Solomonov, B.N. Relationships between fusion, solution, vaporization and sublimation enthalpies of substituted phenols. J. Chem. Thermodyn., 2017, 105, 50-57.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 28 November, 2019
Page: [189 - 198]
Pages: 10
DOI: 10.2174/1877946809666191129110018

Article Metrics

PDF: 18