Sustainable Conversion of Biomass-derived Carbohydrates into Lactic Acid Using Heterogeneous Catalysts

Author(s): Xiaofang Liu*, Qiuyun Zhang, Rui Wang, Hu Li*

Journal Name: Current Green Chemistry

Volume 7 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Over the past decade, increasing attention has been paid to the exploration of environmentalfriendly and alternative resources to prepare basic chemicals for relieving the stress of fossil resources and environmental issues. Lactic acid (LA, 2-hydroxypropanoic acid), the biomass-derived platform molecule, has been used intensively in food, pharmaceuticals, and cosmetics. Considering the fermentation method for lactic acid production possesses environmental impact and high-cost issues, chemocatalytic approaches to manufacturing LA from biomass have attracted much attention due to higher selectivities and lower costs. This paper emphasizes a review on the state-of-the-art production of LA from triose, hexose, cellulose and other biomass over heterogeneous acidic and alkaline catalysts.

Keywords: Lactic acid, biomass, acidic catalysis, alkaline catalysis, hexose sugars, cellulose.

Li, H.; Fang, Z.; Smith, R.L., Jr; Yang, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Pror. Energy Combust. Sci., 2016, 55, 98-194.
Li, H.; Bhadury, P.S.; Riisager, A.; Yang, S. One-pot transformation of polysaccharides via multi-catalytic processes. Catal. Sci. Technol., 2014, 4, 4138-4168.
Zhang, H.; Li, H.; Pan, H.; Wang, A.; Souzanchi, S.; Xu, C.S. Yang, Magnetically recyclable acidic polymeric ionic liquids decorated with hydrophobic regulators as highly efficient and stable catalysts for biodiesel production. Appl. Energy, 2018, 223, 416-429.
Zhang, H.; Li, H.; Pan, H.; Wang, A.; Xu, C.; Yang, S. Magnetically recyclable basic polymeric ionic liquids for efficient transesterification of Firmiana platanifolia L.f. oil into biodiesel. Energy Convers. Manage., 2017, 153, 462-472.
Dusselier, M.; Mascal, M.; Sels, B.F. Top chemical opportunities from carbohydrate biomass: A chemist’s view of the Biorefinery. Top. Curr. Chem., 2014, 353, 1-40.
[] [PMID: 24842622]
Alonso, D.; Bond, J.; Dumesic, J. Catalytic conversion of biomass to biofuels. Green Chem., 2010, 12, 1493-1513.
Reddy, P.; Sudarsanam, P.; Mallesham, B.; Raju, G.; Reddy, B. Acetalisation of glycerol with acetone over zirconia and promoted zirconia catalysts under mild reaction conditions. J. Ind. Eng. Chem., 2011, 17, 377-381.
Santoro, S.; Ferlin, F.; Luciani, L.; Ackermann, L.; Vaccaro, L. Biomass-derived solvents as effective media for cross-coupling reactions and C–H functionalization processes. Green Chem., 2017, 19, 1601-1612.
Dusselier, M.; Van Wouwe, P.; Dewaele, A.; Makshina, E.; Sels, B. Lactic acid as a platform chemical in the biobased economy: The role of chemocatalysis. Energy Environ. Sci., 2013, 6, 1415-1442.
Mäki-Arvela, P.; Simakova, I.L.; Salmi, T.; Murzin, D.Y. Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem. Rev., 2014, 114(3), 1909-1971.
[] [PMID: 24344682]
Schlosser, P.M.; Bale, A.S.; Gibbons, C.F.; Wilkins, A.; Cooper, G.S. Human health effects of dichloromethane: key findings and scientific issues. Environ. Health Perspect., 2015, 123(2), 114-119.
[] [PMID: 25325283]
Akiya, N.; Savage, P.E. Roles of water for chemical reactions in high-temperature water. Chem. Rev., 2002, 102(8), 2725-2750.
[] [PMID: 12175266]
Duan, P.; Savage, P.E. Upgrading of crude algal bio-oil in supercritical water. Bioresour. Technol., 2011, 102(2), 1899-1906.
[] [PMID: 20801646]
Fang, Z.; Sato, T.; Smith, R.L., Jr; Inomata, H.; Arai, K.; Kozinski, J.A. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour. Technol., 2008, 99(9), 3424-3430.
[] [PMID: 17881227]
Ramírez-López, C.; Ochoa-Gómez, J.; Fernández-Santos, M.; Gómez-Jiménez-Aberasturi, O.; Alonso-Vicario, A.; Torrecilla-Soria, J. Synthesis of lactic acid by alkaline hydrothermal conversion of glycerol at high glycerol concentration. Ind. Eng. Chem. Res., 2010, 49, 6270-6278.
Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem., 2008, 10, 13-30.
Pagliaro, M.; Ciriminna, R.; Kimura, H.; Rossi, M.; Della Pina, C. From glycerol to value-added products. Angew. Chem. Int. Ed., 2007, 46, 4434-4440.
Zhou, C.H.; Beltramini, J.N.; Fan, Y.X.; Lu, G.Q. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev., 2008, 37(3), 527-549.
[] [PMID: 18224262]
Johnson, D.; Taconi, K. The glycerin glut: Options for the value‐added conversion of crude glycerol resulting from biodiesel production. Environ. Prog., 2007, 26, 338-348.
Anand, P.; Saxena, R.K. A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. N. Biotechnol., 2012, 29(2), 199-205.
[] [PMID: 21689798]
Razali, N.; Abdullah, A. Production of lactic acid from glycerol via chemical conversion using solid catalyst: A review. Appl. Catal. A Gen., 2017, 543, 234-246.
Kishida, H.; Jin, F.; Yan, X.; Moriya, T.; Enomoto, H. Formation of lactic acid from glycolaldehyde by alkaline hydrothermal reaction. Carbohydr. Res., 2006, 341(15), 2619-2623.
[] [PMID: 16952343]
Lux, S.; Siebenhofer, M. Catalytic conversion of dihydroxyacetone to lactic acid with Brønsted acids and multivalent metal ions. Chem. Biochem. Eng. Q., 2016, 29, 575-585.
Rasrendra, C.B.; Fachri, B.A.; Makertihartha, I.G.; Adisasmito, S.; Heeres, H.J. Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water. ChemSusChem, 2011, 4(6), 768-777.
[] [PMID: 21598406]
Taarning, E.; Saravanamurugan, S.; Holm, M.S.; Xiong, J.; West, R.M.; Christensen, C.H. Zeolite-catalyzed isomerization of triose sugars. ChemSusChem, 2009, 2(7), 625-627.
[] [PMID: 19562790]
Koito, Y.; Nakajima, K.; Kitano, M.; Hara, M. Efficient conversion of pyruvic aldehyde into lactic acid by Lewis acid catalyst in water. Chem. Lett., 2013, 42, 873-875.
West, R.; Holm, M.; Saravanamurugan, S.; Xiong, J.; Beversdorf, Z.; Taarning, E.; Christensen, C. Zeolite H-USY for the production of lactic acid and methyl lactate from C3-sugars. J. Catal., 2010, 269, 122-130.
Dapsens, P.Y.; Mondelli, C.; Pérez-Ramírez, J. Highly selective Lewis acid sites in desilicated MFI zeolites for dihydroxyacetone isomerization to lactic acid. ChemSusChem, 2013, 6(5), 831-839.
[] [PMID: 23554234]
Feliczak-Guzik, A.; Sprynskyy, M.; Nowak, I.; Buszewski, B. Catalytic isomerization of dihydroxyacetone to lactic acid and alkyl lactates over hierarchical zeolites containing tin. Catalysts, 2018, 8, 31.
Wang, X.; Liang, F.; Huang, C.; Li, Y.; Chen, B. Highly active tin (IV) phosphate phase transfer catalysts for the production of lactic acid from triose sugars. Catal. Sci. Technol., 2015, 5, 4410-4421.
Nakajima, K.; Hirata, J.; Kim, M.; Gupta, N.; Murayama, T.; Yoshida, A.; Hiyoshi, N.; Fukuoka, A.; Ueda, W. Facile formation of lactic acid from a triose sugar in water over niobium oxide with a deformed orthorhombic phase. ACS Catal., 2017, 8, 283-290.
Takagaki, A.; Goto, H.; Kikuchi, R.; Ted Oyama, S. Silica-supported chromia-titania catalysts for selective formation of lactic acid from a triose in water. Appl. Catal. A Gen., 2019, 570, 200-208.
Palacio, R.; Torres, S.; Royer, S.; Mamede, A.S.; López, D.; Hernández, D. CuO/CeO2 catalysts for glycerol selective conversion to lactic acid. Dalton Trans., 2018, 47(13), 4572-4582.
[] [PMID: 29513330]
Cao, D.; Cai, W.; Tao, W.; Zhang, S.; Wang, D.; Huang, D. Lactic acid production from glucose over a novel Nb2O5 nanorod catalyst. Catal. Lett., 2017, 147, 926-933.
dos Santos, J.M.; de Albuquerque, N.J.A.; Silva, C.L.; Meneghetti, M.; Meneghetti, S. Fructose conversion in the presence of Sn (IV) catalysts exhibiting high selectivity to lactic acid. RSC Advances, 2015, 5, 90952-90959.
Xia, M.; Dong, W.; Gu, M.; Chang, C.; Shen, Z.; Zhang, Y. Synergetic effects of bimetals in modified beta zeolite for lactic acid synthesis from biomass-derived carbohydrates. RSC Advances, 2018, 8, 8965-8975.
Huang, S.; Yang, K.; Liu, X.; Pan, H.; Zhang, H.; Yang, S. MIL-100 (Fe)-catalyzed efficient conversion of hexoses to lactic acid. RSC Advances, 2017, 7, 5621-5627.
Onda, A.; Ochi, T.; Kajiyoshi, K.; Yanagisawa, K. A new chemical process for catalytic conversion of D-glucose into lactic acid and gluconic acid. Appl. Catal. A Gen., 2008, 343, 49-54.
Zeng, W.; Cheng, D.; Chen, F.; Zhan, X. Catalytic conversion of glucose on Al–Zr mixed oxides in hot compressed water. Catal. Lett., 2009, 133, 221-226.
Sun, Y.; Shi, L.; Wang, H.; Miao, G.; Kong, L.; Li, S.; Sun, Y. Efficient production of lactic acid from sugars over Sn-Beta zeolite in water: Catalytic performance and mechanistic insights. Sustainable Energy Fuels, 2019, 3, 1163-1171.
Yan, X.; Jin, F.; Tohji, K.; Moriya, T.; Enomoto, H. Production of lactic acid from glucose by alkaline hydrothermal reaction. J. Mater. Sci., 2007, 42, 9995-9999.
Epane, G.; Laguerre, J.; Wadouachi, A.; Marek, D. Microwave-assisted conversion of D-glucose into lactic acid under solvent-free conditions. Green Chem., 2010, 12, 502-506.
Esposito, D.; Antonietti, M. Chemical conversion of sugars to lactic acid by alkaline hydrothermal processes. ChemSusChem, 2013, 6(6), 989-992.
[] [PMID: 23592615]
Li, L.; Yan, L.; Shen, F.; Qiu, M.; Qi, X. Mechanocatalytic production of lactic acid from glucose by ball milling. Catalysts, 2017, 7, 170.
Li, L.; Shen, F.; Smith, R.; Qi, X. Quantitative chemocatalytic production of lactic acid from glucose under anaerobic conditions at room temperature. Green Chem., 2017, 19, 76-81.
Onda, A.; Ochi, T.; Kajiyoshi, K.; Yanagisawa, K. Lactic acid production from glucose over activated hydrotalcites as solid base catalysts in water. Catal. Commun., 2008, 9, 1050-1053.
Wang, X.; Song, Y.; Huang, C.; Liang, F.; Chen, B. Lactic acid production from glucose over polymer catalysts in aqueous alkaline solution under mild conditions. Green Chem., 2014, 16, 4234-4240.
Deng, W.; Wang, P.; Wang, B.; Wang, Y.; Yan, L.; Li, Y.; Zhang, Q.; Cao, Z.; Wang, Y. Transformation of cellulose and related carbohydrates into lactic acid with bifunctional Al(III)-Sn(II) catalysts. Green Chem., 2018, 20, 735-744.
Duo, J.; Zhang, Z.; Yao, G.; Huo, Z.; Jin, F. Hydrothermal conversion of glucose into lactic acid with sodiumsilicate as a base catalyst. Catal. Today, 2016, 263, 112-116.
Van de Vyver, S.; Geboers, J.; Jacobs, P.; Sels, B. Recent advances in the catalytic conversion of cellulose. ChemCatChem, 2011, 3, 82-94.
Geboers, J.; Van de Vyver, S.; Ooms, R.; Op de Beeck, B.; Jacobs, P.; Sels, B. Chemocatalytic conversion of cellulose: Opportunities, advances and pitfalls. Catal. Sci. Technol., 2011, 1, 714-726.
Geboers, J.; Van de Vyver, S.; Carpentier, K.; de Blochouse, K.; Jacobs, P.; Sels, B. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Chem. Commun. (Camb.), 2010, 46(20), 3577-3579.
[] [PMID: 20376382]
Palkovits, R.; Tajvidi, K.; Ruppert, A.M.; Procelewska, J. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols. Chem. Commun. (Camb.), 2011, 47(1), 576-578.
[] [PMID: 21103493]
Op de Beeck, B.; Geboers, J.; Van de Vyver, S.; Van Lishout, J.; Snelders, J.; Huijgen, W.J.; Courtin, C.M.; Jacobs, P.A.; Sels, B.F. Conversion of (ligno)cellulose feeds to isosorbide with heteropoly acids and Ru on carbon. ChemSusChem, 2013, 6(1), 199-208.
[] [PMID: 23307750]
Meine, N.; Rinaldi, R.; Schüth, F. Solvent-free catalytic depolymerization of cellulose to water-soluble oligosaccharides. ChemSusChem, 2012, 5(8), 1449-1454.
[] [PMID: 22488972]
Hilgert, J.; Meine, N.; Rinaldi, R.; Schuth, F. Mechanocatalytic depolymerization of cellulose combined with hydrogenolysis as a highly efficient pathway to sugar alcohols. Energy Environ. Sci., 2013, 6, 92-96.
Geboers, J.; Van de Vyver, S.; Carpentier, K.; Jacobs, P.; Sels, B. Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem. Commun. (Camb.), 2011, 47(19), 5590-5592.
[] [PMID: 21461442]
Van de Vyver, S.; Geboers, J.; Dusselier, M.; Schepers, H.; Vosch, T.; Zhang, L.; Van Tendeloo, G.; Jacobs, P.A.; Sels, B.F. Selective bifunctional catalytic conversion of cellulose over reshaped Ni particles at the tip of carbon nanofibers. ChemSusChem, 2010, 3(6), 698-701.
[] [PMID: 20446340]
Van de Vyver, S.; Geboers, J.; Schutyser, W.; Dusselier, M.; Eloy, P.; Dornez, E.; Seo, J.W.; Courtin, C.M.; Gaigneaux, E.M.; Jacobs, P.A.; Sels, B.F. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. ChemSusChem, 2012, 5(8), 1549-1558.
[] [PMID: 22730195]
Benoit, M.; Rodrigues, A.; De Oliveira Vigier, K.; Fourre, E.; Barrault, J.; Tatibouet, J.; Jerome, F. Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose. Green Chem., 2012, 14, 2212-2215.
Benoit, M.; Rodrigues, A.; Zhang, Q.; Fourré, E. Vigier, Kde.O.; Tatibouët, J.M.; Jérôme, F. Depolymerization of cellulose assisted by a nonthermal atmospheric plasma. Angew. Chem. Int. Ed. Engl., 2011, 50(38), 8964-8967.
[] [PMID: 21858903]
Bundhoo, Z. Microwave-assisted conversion of biomass and waste materials to biofuels. Renew. Sustain. Energy Rev., 2018, 82, 1149-1177.
Chambon, F.; Rataboul, F.; Pinel, C.; Cabiac, A.; Guillon, E.; Essayem, N. Cellulose hydrothermal conversion promoted by heterogeneous Brønsted and Lewis acids: remarkable efficiency of solid Lewis acids to produce lactic acid. Appl. Catal. B, 2011, 105, 171-181.
Wattanapaphawong, P.; Reubroycharoen, P.; Yamaguchi, A. Conversion of cellulose into lactic acid using zirconium oxide catalysts. RSC Advances, 2017, 7, 18561-18568.
Wattanapaphawong, P.; Sato, O.; Sato, K.; Mimura, N.; Reubroycharoen, P.; Yamaguchi, A. Conversion of cellulose to lactic acid by using ZrO2-Al2O3 catalysts. Catalysts, 2017, 7, 221.
Wang, F.; Liu, C.; Dong, W. Highly efficient production of lactic acid from cellulose using lanthanide triflate catalysts. Green Chem., 2013, 15, 2091-2095.
Lei, X.; Wang, F.; Liu, C.; Yang, R.; Dong, W. One-pot catalytic conversion of carbohydrate biomass to lactic acid using an ErCl3 catalyst. Appl. Catal. A Gen., 2014, 482, 78-83.
Wang, F.; Liu, J.; Li, H.; Liu, C.; Yang, R.; Dong, W. Conversion of cellulose to lactic acid catalyzed by erbium-exchanged montmorillonite K10. Green Chem., 2015, 17, 2455-2463.
Wang, F.; Wu, H.; Ren, H.; Liu, C.; Xu, C.; Dong, W. Er/β-zeolite-catalyzed one-pot conversion of cellulose to lactic acid. J. Porous Mater., 2017, 24, 697-706.
Coman, S.; Verziu, M.; Tirsoaga, A.; Jurca, B.; Teodorescu, C.; Kuncser, V.; Parvulescu, V.; Scholz, G.; Kemnitz, E. NbF5-AlF3 catalysts: design, synthesis, and application in lactic acid synthesis from cellulose. ACS Catal., 2015, 5, 3013-3026.
Verziu, M.; Serano, M.; Jurca, B.; Parvulescu, V.; Coman, S.; Scholz, G.; Kemnitz, E. Catalytic features of Nb-based nanoscopic inorganic fluorides for an efficient one-pot conversion of cellulose to lactic acid. Catal. Today, 2018, 306, 102-110.
Yang, X.; Yang, L.; Fan, W.; Lin, H. Effect of redox properties of LaCoO3 perovskite catalyst on production of lactic acid from cellulosic biomass. Catal. Today, 2016, 269, 56-64.
Chambon, F.; Rataboul, F.; Pinel, C.; Cabiac, A.; Guillon, E.; Essayem, N. Conversion of cellulose to 2,5-hexanedione using tungstated zirconia in hydrogen atmosphere. Appl. Catal. A Gen., 2015, 504, 664-671.
Holm, M.S.; Saravanamurugan, S.; Taarning, E. Conversion of sugars to lactic acid derivatives using heterogeneous zeotype catalysts. Science, 2010, 328(5978), 602-605.
[] [PMID: 20431010]
Candu, N.; Anita, F.; Podolean, I.; Cojocaru, B.; Parvulescu, V.; Coman, S. Direct conversion of cellulose to α-hydroxy acids (AHAs) over Nb2O5-SiO2-coated magnetic nanoparticles. Green Processing and Synthesis, 2017, 6, 255-264.
Dong, W.; Shen, Z.; Peng, B.; Gu, M.; Zhou, X.; Xiang, B.; Zhang, Y. Selective chemical conversion of sugars in aqueous solutions without alkali to lactic acid over a Zn-Sn-Beta Lewis acid-base catalyst. Sci. Rep., 2016, 6, 26713.
[] [PMID: 27222322]
Bicker, M.; Endres, S.; Ott, L.; Vogel, H. Catalytical conversion of carbohydrates in subcritical water: A new chemical process for lactic acid production. J. Mol. Catal. Chem., 2005, 239, 151-157.
Sánchez, C.; Egüés, I.; García, A.; Llano-Ponte, R.; Labidi, J. Lactic acid production by alkaline hydrothermal treatment of corn cobs. Chem. Eng. J., 2012, 181, 655-660.
Sánchez, C.; Serrano, L.; Llano-Ponte, R.; Labidi, J. Bread residues conversion into lactic acid by alkaline hydrothermal treatments. Chem. Eng. J., 2014, 250, 326-330.
Younas, R.; Zhang, S.; Zhang, L. Lactic acid production from rice straw in alkaline hydrothermal conditions in presence of NiO nanoplates. Catal. Today, 2016, 274, 40-48.
Kerton, F.; Liu, Y.; Omari, K.; Hawboldt, K. Green chemistry and the ocean-based biorefinery. Green Chem., 2013, 15, 860-871.
John, R.P.; Anisha, G.S.; Nampoothiri, K.M.; Pandey, A. Micro and macroalgal biomass: A renewable source for bioethanol. Bioresour. Technol., 2011, 102(1), 186-193.
[] [PMID: 20663661]
Jeon, W.; Ban, C.; Park, G.; Woo, H.; Kim, D. Hydrothermal conversion of macroalgae-derived alginate to lactic acid catalyzed by metal oxides. Catal. Sci. Technol., 2016, 6, 1146-1156.
Swesi, Y.; Nguyen, C.; Ha Vu, T. Direct solid lewis acid catalyzed wood liquefaction into lactic acid: kinetic evidences that wood pretreatment might not be a prerequisite. ChemCatChem, 2017, 9, 2377-2382.
Yang, L.; Su, J.; Ca, S. rl, J. Lynam, X. Yang, and H. Lin, “Catalytic conversion of hemicellulosic biomass to lactic acid in pH neutral aqueous phase media. Appl. Catal. B, 2015, 162, 149-157.
Liu, D.; Kim, K.H.; Sun, J.; Simmons, B.A.; Singh, S. Cascade production of lactic acid from universal types of sugars catalyzed by lanthanum triflate. ChemSusChem, 2018, 11(3), 598-604.
[] [PMID: 29178399]

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [282 - 289]
Pages: 8
DOI: 10.2174/2213346106666191127123730

Article Metrics

PDF: 38