Rice Straw: A Major Renewable Lignocellulosic Biomass for Value-Added Carbonaceous Materials

Author(s): Mayanglambam Manolata Devi, Nidhi Aggarwal, Shunmugavel Saravanamurugan*

Journal Name: Current Green Chemistry

Volume 7 , Issue 3 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Carbonaceous materials are proven to be vital in day-to-day life as well as in advanced science and technology applications. Rice straw, a secondary agricultural lignocellulosic biomass, has drawn great attention for the production of value-added carbonaceous material. Because, it can provide an alternative economic, greener and sustainable resource of carbon to non-renewable fossil fuelbased precursors while controlling the worsening situation of environmental pollution due to improper disposal and stubble burning. In this review, recent developments in the production of carbonaceous materials from rice straw are presented. Biochar and activated carbon were reported to be the prime carbonaceous materials prepared from the rice straw. Thus, pyrogenic preparation of biochar and the influence of its pyrolysis temperature to the yield, composition, surface area, porosity and morphology are preliminarily discussed. This is followed by a detailed discussion on the preparation of activated carbon with an emphasis on the influencing reaction factors for improving the characteristic properties of the activated carbons. Additionally, the major characterization techniques dealing with determining the surface area and porosity (BET analyzer) and microstructure (secondary electron microscope (SEM) and transmission electron microscope (TEM)) for both the carbonaceous materials are also discussed. Finally, major applications of both the carbonaceous materials are briefly reviewed. Thus, the present review clearly highlights the usefulness of agricultural lignocellulosic waste rice straw for the conversion of waste to value-added carbonaceous materials.

Keywords: Carbonaceous materials, rice straw, biochar, activated carbon, adsorption, supercapacitor, physical activation, chemical activation.

Nasir, S.; Hussein, M.Z.; Zainal, Z.; Yusof, N.A. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials (Basel), 2018, 11(2), 295.
[http://dx.doi.org/10.3390/ma11020295] [PMID: 29438327]
Mochida, I.; Korai, Y.; Shirahama, M.; Kawano, S.; Hada, T.; Seo, Y.; Yasutake, A. Removal of SOx and NOx over activated carbon fibers. Carbon, 2000, 38, 227-239.
Wang, Q.; Han, X.H.; Sommers, A.; Park, Y. T’Joen, C.; Jacobi, A. A review on application of carbonaceous materials and carbon matrix composites for heat exchangers and heat sinks. Int. J. Refrig., 2012, 35, 7-26.
Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpaa, M. An overview of the modification methods of activated carbon for its water treatment applications. Chem. Eng. J., 2013, 219, 499-511.
Shao, Y.; El-Kady, M.F.; Wang, L.J.; Zhang, Q.; Li, Y.; Wang, H.; Mousavi, M.F.; Kaner, R.B. Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev., 2015, 44(11), 3639-3665.
[http://dx.doi.org/10.1039/C4CS00316K] [PMID: 25898904]
Georgakilas, V.; Tiwari, J.N.; Kemp, K.C.; Perman, J.A.; Bourlinos, A.B.; Kim, K.S.; Zboril, R. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev., 2016, 116(9), 5464-5519.
[http://dx.doi.org/10.1021/acs.chemrev.5b00620] [PMID: 27033639]
Daguerre, E.; Guillot, A.; Stoeckli, F. Activated carbons prepared from thermally and chemically treated petroleum and coal tar pitches. Carbon, 2001, 39, 1279-1285.
González, D.; Montes-Morán, M.A.; Garcia, A.B. Graphite materials prepared from an anthracite: A structural characterization. Energy Fuels, 2003, 17, 1324-1329.
Lorenc-Grabowska, E.; Gryglewicz, G. Adsorption of lignite-derived humic acids on coal-based mesoporous activated carbons. J. Colloid Interface Sci., 2005, 284(2), 416-423.
[http://dx.doi.org/10.1016/j.jcis.2004.10.031] [PMID: 15780277]
Dias, J.M.; Alvim-Ferraz, M.C.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manage., 2007, 85(4), 833-846.
[http://dx.doi.org/10.1016/j.jenvman.2007.07.031] [PMID: 17884280]
Gao, Z.; Zhang, Y.; Song, N.; Li, X. Biomass-derived renewable carbon materials for electrochemical energy storage. Mater. Res. Lett., 2017, 5, 69-88.
Jiang, L.; Sheng, L.; Fan, Z. Biomass-derived carbon materials with structural diversities and their applications in energy storage. Sci. China. Mater., 2018, 61, 133-158.
Danish, M.; Ahmad, T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev., 2018, 87, 1-21.
Liu, Y.; Chen, J.; Cui, B.; Yin, P.; Zhang, C. Design and preparation of biomass-derived carbon materials for super capacitors: A review. C., 2018, 4, 53.
Yang, D.P.; Li, Z.; Liu, M.; Zhang, X.; Chen, Y.; Xue, H.; Luque, R. Biomass-derived carbonaceous materials: Recent progress in synthetic approaches, advantages, and applications. ACS Sustain. Chem.& Eng., 2019, 7, 4564-4585.
Yahya, M.A.; Mansor, M.H.; Zolkarnaini, W.A.A.W.; Rusli, N.S.; Aminuddin, A.; Mohamad, K.; Ozair, L.N. A brief review on activated carbon derived from agriculture by-product.AIP Conf. Proc; , 2018. 1972030023
Ioannidou, O.; Zabaniotou, A. Agricultural residues as precursors for activated carbon production-a review. Renew. Sustain. Energy Rev., 2007, 11, 1966-2005.
Food and Agriculture Organization of the United Nations, Rice Market Monitor; FAO: Washington, DC, 2017.
Satlewal, A.; Agrawal, R.; Bhagia, S.; Das, P.; Ragauskas, A.J. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties. Biofuels Bioprod. Biorefin., 2018, 12, 83-107.
Jeguirim, M.; Limousy, L. Biomass chars: Elaboration, characterization and applications. Energies, 2017, 10, 2040.
Kadam, K.L.; Forrest, L.H.; Jacobson, W.A. Rice straw as a lignocellulosic resource: collection, processing, transportation, and environmental aspects. Biomass Bioenergy, 2000, 18, 369-389.
Schikowski, T.; Mills, I.C.; Anderson, H.R.; Cohen, A.; Hansell, A.; Kauffmann, F.; Krämer, U.; Marcon, A.; Perez, L.; Sunyer, J.; Probst-Hensch, N.; Künzli, N. Ambient air pollution: A cause of COPD? Eur. Respir. J., 2014, 43(1), 250-263.
[http://dx.doi.org/10.1183/09031936.00100112] [PMID: 23471349]
Nover, G.; Stoll, J.B.; von Der Gönna, J. Promotion of graphite formation by tectonic stress–a laboratory experiment. Geophys. J. Int., 2005, 160, 1059-1067.
Stachel, T.; Harris, J.W. Formation of diamond in the Earth’s mantle. J. Phys. Condens. Matter, 2009, 21(36)364206
[http://dx.doi.org/10.1088/0953-8984/21/36/364206] [PMID: 21832312]
Isikgor, F.H.; Becer, C.R. Lignocellulosic biomass: A sustainable platform for the production of bio-based chemicals and polymers. Polym. Chem., 2015, 6, 4497-4559.
Yan, K.; Liu, Y.; Lu, Y.; Chai, J.; Sun, L. Catalytic application of layered double hydroxide-derived catalysts for the conversion of biomass-derived molecules. Catal. Sci. Technol., 2017, 7, 1622-1645.
Putro, J.N.; Soetaredjo, F.E.; Lin, S.Y.; Ju, Y.H.; Ismadji, S. Pretreatment and conversion of lignocellulose biomass into valuable chemicals. RSC Advances, 2016, 6, 46834-46852.
Mood, S.H.; Golfeshan, A.H.; Tabatabaei, M.; Jouzani, G.S.; Najafi, G.H.; Gholami, M.; Ardjmand, M. Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew. Sustain. Energy Rev., 2013, 27, 77-93.
Liu, Y.; Nie, Y.; Lu, X.; Zhang, X.; He, H.; Pan, F.; Zhang, S. Cascade utilization of lignocellulosic biomass to high-value products. Green Chem., 2019, 21, 3499-3535.
Hagemann, N.; Spokas, K.; Schmidt, H.P.; Kägi, R.; Böhler, M.; Bucheli, T. Activated carbon, biochar and charcoal: linkages and synergies across pyrogenic carbon’s ABCs. Water, 2018, 10, 182.
Talmadge, M.S.; Baldwin, R.M.; Biddy, M.J.; McCormick, R.L.; Beckham, G.T.; Ferguson, G.A.; Hetrick, C. A perspective on oxygenated species in the refinery integration of pyrolysis oil. Green Chem., 2014, 16, 407-453.
Fu, P.; Hu, S.; Xiang, J.; Sun, L.; Su, S.; Wang, J. Evaluation of the porous structure development of chars from pyrolysis of rice straw: Effects of pyrolysis temperature and heating rate. J. Anal. Appl. Pyrolysis, 2012, 98, 177-183.
Wu, W.; Yang, M.; Feng, Q.; McGrouther, K.; Wang, H.; Lu, H.; Chen, Y. Chemical characterization of rice straw-derived biochar for soil amendment. Biomass Bioenergy, 2012, 47, 268-276.
Shen, Z.; Fan, X.; Hou, D.; Jin, F.; O’Connor, D.; Tsang, D.C.W.; Ok, Y.S.; Alessi, D.S. Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. Chemosphere, 2019, 233, 149-156.
[http://dx.doi.org/10.1016/j.chemosphere.2019.05.238] [PMID: 31173952]
Wei, S.; Zhu, M.; Fan, X.; Song, J.; Peng, P.; Li, K.; Jia, W.; Song, H. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere, 2019, 218, 624-631.
[http://dx.doi.org/10.1016/j.chemosphere.2018.11.177] [PMID: 30502701]
Kim, K.; Lee, D.S. A study on adsorptive properties of activated carbons produced from rice-straw. Arch. Pharm. Res., 1991, 14, 249-254.
Rashwan, W.E.; Girgis, B.S. Adsorption capacities of activated carbons derived from rice straw and water hyacinth in the removal of organic pollutants from water. Adsorpt. Sci. Technol., 2004, 22, 181-194.
Fierro, V.; Muñiz, G.; Basta, A.H.; El-Saied, H.; Celzard, A. Rice straw as precursor of activated carbons: activation with ortho-phosphoric acid. J. Hazard. Mater., 2010, 181(1-3), 27-34.
[http://dx.doi.org/10.1016/j.jhazmat.2010.04.062] [PMID: 20605677]
Basta, A.H.; Fierro, V.; Saied, H.; Celzard, A. Effect of deashing rice straws on their derived activated carbons produced by phosphoric acid activation. Biomass Bioenergy, 2011, 35, 1954-1959.
Sangon, S.; Hunt, A.J.; Attard, T.M.; Mengchang, P.; Ngernyen, Y.; Supanchaiyamat, N. Valorisation of waste rice straw for the production of highly effective carbon based adsorbents for dyes removal. J. Clean. Prod., 2018, 172, 1128-1139.
Oh, G.H.; Park, C.R. Preparation and characteristics of rice-straw-based porous carbons with high adsorption capacity. Fuel, 2002, 81, 327-336.
Sudhan, N.; Subramani, K.; Karnan, M.; Ilayaraja, N.; Sathish, M. Biomass-derived activated porous carbon from rice straw for a high-energy symmetric supercapacitor in aqueous and non-aqueous electrolytes. Energy Fuels, 2016, 31, 977-985.
Pattananandecha, T.; Ramangkoon, S.; Sirithunyalug, B.; Tinoi, J.; Saenjum, C. Preparation of high performance activated charcoal from rice straw for cosmetic and pharmaceutical applications. Int. J. Appl. Pharm, 2019, 11, 255-260.
Adinaveen, T.; Kennedy, L.J.; Vijaya, J.J.; Sekaran, G. Surface and porous characterization of activated carbon prepared from pyrolysis of biomass (rice straw) by two-stage procedure and its applications in supercapacitor electrodes. J. Mater. Cycle. Waste, 2015, 17, 736-747.
Basta, A.H.; Fierro, V.; El-Saied, H.; Celzard, A. 2-Steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons. Bioresour. Technol., 2009, 100(17), 3941-3947.
[http://dx.doi.org/10.1016/j.biortech.2009.02.028] [PMID: 19359164]
Gao, P.; Liu, Z.H.; Xue, G.; Han, B.; Zhou, M.H. Preparation and characterization of activated carbon produced from rice straw by (NH4)2HPO4 activation. Bioresour. Technol., 2011, 102(3), 3645-3648.
[http://dx.doi.org/10.1016/j.biortech.2010.11.080] [PMID: 21145231]
Horax, K.M.; Bao, S.; Wang, M.; Li, Y. Analysis of graphene-like activated carbon derived from rice straw for application in supercapacitor. Chin. Chem. Lett., 2017, 28, 2290-2294.
Jin, H.; Hu, J.; Wu, S.; Wang, X.; Zhang, H.; Xu, H.; Lian, K. Three-dimensional interconnected porous graphitic carbon derived from rice straw for high performance supercapacitors. J. Power Sources, 2018, 384, 270-277.
Ossman, M.E.; Abdel Fatah, M.; Taha, N.A. Fe (III) removal by activated carbon produced from Egyptian rice straw by chemical activation. Desalination Water Treat., 2014, 52, 3159-3168.
Mashhadi, S.; Javadian, H.; Ghasemi, M.; Saleh, T.A.; Gupta, V.K. Microwave-induced H2SO4 activation of activated carbon derived from rice agricultural wastes for sorption of methylene blue from aqueous solution. Desalination Water Treat., 2016, 57, 21091-21104.
Liu, Y.; Zhu, X.; Qian, F.; Zhang, S.; Chen, J. Magnetic activated carbon prepared from rice straw-derived hydrochar for triclosan removal. RSC Advances, 2014, 4, 63620-63626.
Schaefer, S.; Muñiz, G.; Izquierdo, M.T.; Mathieu, S.; Ballinas-Casarrubias, M.L.; González-Sánchez, G.; Fierro, V. Rice straw-based activated carbons doped with SiC for enhanced hydrogen adsorption. Int. J. Hydrogen Energy, 2017, 42, 11534-11540.
Gregg, S.J.; Sing, K.S.W. Adsorption, Surface Area and Porosity; Academic press: New York, 1982.
Brunauer, S.; Deming, L.S.; Deming, W.E.; Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc., 1940, 62, 1723-1732.
Long, W.; Fang, B.; Ignaszak, A.; Wu, Z.; Wang, Y.J.; Wilkinson, D. Biomass-derived nanostructured carbons and their composites as anode materials for lithium ion batteries. Chem. Soc. Rev., 2017, 46(23), 7176-7190.
[http://dx.doi.org/10.1039/C6CS00639F] [PMID: 29075713]
Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; Hu, R. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manage., 2018, 228, 429-440.
[http://dx.doi.org/10.1016/j.jenvman.2018.09.006] [PMID: 30243078]
Liu, W.J.; Jiang, H.; Yu, H.Q. Emerging applications of biochar-based materials for energy storage and conversion. Energy Environ. Sci., 2019, 12, 1751-1779.
Hu, Di.; Xu, H.; Yi, Z.; Chen, Z.; Ye, C.; Wu, Z.; Garces, H.F.; Yan, K. Green CO2-assisted synthesis of mono- and bimetallic Pd/Pt nanoparticles on porous carbon fabricated from sorghum for highly selective hydrogenation of furfural. ACS Sustain. Chem.& Eng., 2019, 7(18), 15339-15345.
Wang, A.; Zheng, Z.; Li, R.; Hu, D.; Lu, Y.; Luo, H.; Yan, K. Biomass-derived porous carbon highly efficient for removal of Pb(II) and Cd(II); Green Energy & Environment, 2019.
Wu, X.L.; Wen, T.; Guo, H.L.; Yang, S.; Wang, X.; Xu, A.W. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano, 2013, 7(4), 3589-3597.
[http://dx.doi.org/10.1021/nn400566d] [PMID: 23548083]
Xiaofeng, B.; Xiaoqin, Z.; Zifu, L.; Jiewen, N.; Xue, B. Properties and applications of biochars derived from different biomass feedstock sources. Int. J. Agric. Biol. Eng., 2017, 10, 242-250.

open access plus

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 November, 2019
Page: [290 - 303]
Pages: 14
DOI: 10.2174/2213346106666191127120259

Article Metrics

PDF: 31