Presynaptic Release-regulating Metabotropic Glutamate Receptors: An Update

Author(s): Guendalina Olivero, Matteo Vergassola, Francesca Cisani, Alessandra Roggeri, Anna Pittaluga*

Journal Name: Current Neuropharmacology

Volume 18 , Issue 7 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Metabotropic glutamate (mGlu) receptors represent the largest family of glutamate receptors in mammals and act as fine tuners of the chemical transmission in central nervous system (CNS).

In the last decade, results concerning the expression and the subcellular localization of mGlu receptors further clarified their role in physio-pathological conditions. Concomitantly, their pharmacological characterization largely improved thanks to the identification of new compounds (chemical ligands and antibodies recognizing epitopic sequences of the receptor proteins) that allowed to decipher the protein compositions of the naive receptors.

mGlu receptors are expressed at the presynaptic site of chemical synapses. Here, they modulate intraterminal enzymatic pathways controlling the migration and the fusion of vesicles to synaptic membranes as well as the phosphorylation of colocalized receptors. Both the control of transmitter exocytosis and the phosphorylation of colocalized receptors elicited by mGlu receptors are relevant events that dictate the plasticity of nerve terminals, and account for the main role of presynaptic mGlu receptors as modulators of neuronal signalling.

The role of the presynaptic mGlu receptors in the CNS has been the matter of several studies and this review aims at briefly summarizing the recent observations obtained with isolated nerve endings (we refer to as synaptosomes). We focus on the pharmacological characterization of these receptors and on their receptor-receptor interaction / oligo-dimerization in nerve endings that could be relevant to the development of new therapeutic approaches for the cure of central pathologies.

Keywords: Synaptosomes, transmitter release, presynaptic receptors, oligomerization, receptor-receptor interaction, mGlu1/5, mGlu2/3, mGlu7.

[1]
Cartmell, J.; Schoepp, D.D. Regulation of neurotransmitter release by metabotropic glutamate receptors. J. Neurochem., 2000, 75(3), 889-907.
[http://dx.doi.org/10.1046/j.1471-4159.2000.0750889.x] [PMID: 10936169]
[2]
Schoepp, D.D. Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J. Pharmacol. Exp. Ther., 2001, 299(1), 12-20.
[PMID: 11561058]
[3]
Nicoletti, F.; Battaglia, G.; Storto, M.; Ngomba, R.T.; Iacovelli, L.; Arcella, A.; Gradini, R.; Sale, P.; Rampello, L.; De Vita, T.; Di Marco, R.; Melchiorri, D.; Bruno, V. Metabotropic glutamate receptors: beyond the regulation of synaptic transmission. Psychoneuroendocrinology, 2007, 32(Suppl. 1), S40-S45.
[http://dx.doi.org/10.1016/j.psyneuen.2007.04.015] [PMID: 17651904]
[4]
Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology, 2011, 60(7-8), 1017-1041.
[http://dx.doi.org/10.1016/j.neuropharm.2010.10.022] [PMID: 21036182]
[5]
Nicoletti, F.; Bruno, V.; Ngomba, R.T.; Gradini, R.; Battaglia, G. Metabotropic glutamate receptors as drug targets: what’s new? Curr. Opin. Pharmacol., 2015, 20, 89-94.
[http://dx.doi.org/10.1016/j.coph.2014.12.002] [PMID: 25506748]
[6]
Mercier, M.S.; Lodge, D. Group III metabotropic glutamate receptors: pharmacology, physiology and therapeutic potential. Neurochem. Res., 2014, 39(10), 1876-1894.
[http://dx.doi.org/10.1007/s11064-014-1415-y] [PMID: 25146900]
[7]
De Blasi, A.; Conn, P.J.; Pin, J.; Nicoletti, F. Molecular determinants of metabotropic glutamate receptor signaling. Trends Pharmacol. Sci., 2001, 22(3), 114-120.
[http://dx.doi.org/10.1016/s0165-6147(00)01635-7] [PMID: 11239574]
[8]
Pin, J.P.; Acher, F. The metabotropic glutamate receptors: structure, activation mechanism and pharmacology. Curr. Drug Targets CNS Neurol. Disord., 2002, 1(3), 297-317.
[http://dx.doi.org/10.2174/1568007023339328] [PMID: 12769621]
[9]
Iacovelli, L.; Nicoletti, F.; De Blasi, A. Molecular mechanisms that desensitize metabotropic glutamate receptor signaling: an overview. Neuropharmacology, 2013, 66, 24-30.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.005] [PMID: 22659473]
[10]
Bruno, V.; Battaglia, G.; Copani, A.; D’Onofrio, M.; Di Iorio, P.; De Blasi, A.; Melchiorri, D.; Flor, P.J.; Nicoletti, F. Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J. Cereb. Blood Flow Metab., 2001, 21(9), 1013-1033.
[http://dx.doi.org/10.1097/00004647-200109000-00001] [PMID: 11524608]
[11]
Moldrich, R.X.; Chapman, A.G.; De Sarro, G.; Meldrum, B.S. Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur. J. Pharmacol., 2003, 476(1-2), 3-16.
[http://dx.doi.org/10.1016/s0014-2999(03)02149-6] [PMID: 12969743]
[12]
Chiechio, S.; Copani, A.; Melchiorri, D.; Canudas, A.M.; Storto, M.; Calvani, M.; Nicolai, R.; Nicoletti, F. Metabotropic receptors as targets for drugs of potential use in the treatment of neuropathic pain. J. Endocrinol. Invest., 2004, 27(6)(Suppl.), 171-176.
[PMID: 15481819]
[13]
Imre, G. The preclinical properties of a novel group II metabotropic glutamate receptor agonist LY379268. CNS Drug Rev., 2007, 13(4), 444-464.
[http://dx.doi.org/10.1111/j.1527-3458.2007.00024.x] [PMID: 18078428]
[14]
Marek, G.J. Metabotropic glutamate2/3 (mGlu2/3) receptors, schizophrenia and cognition. Eur. J. Pharmacol., 2010, 639(1-3), 81-90.
[http://dx.doi.org/10.1016/j.ejphar.2010.02.058] [PMID: 20371229]
[15]
Fell, M.J.; McKinzie, D.L.; Monn, J.A.; Svensson, K.A. Group II metabotropic glutamate receptor agonists and positive allosteric modulators as novel treatments for schizophrenia. Neuropharmacology, 2012, 62(3), 1473-1483.
[http://dx.doi.org/10.1016/j.neuropharm.2011.06.007] [PMID: 21704048]
[16]
Chaki, S.; Fukumoto, K. mGlu receptors as potential targets for novel antidepressants. Curr. Opin. Pharmacol., 2018, 38, 24-30.
[http://dx.doi.org/10.1016/j.coph.2018.02.00] [PMID: 29486373]
[17]
Scholler, P.; Nevoltris, D.; de Bundel, D.; Bossi, S.; Moreno-Delgado, D.; Rovira, X.; Møller, T.C.; El Moustaine, D.; Mathieu, M.; Blanc, E.; McLean, H.; Dupuis, E.; Mathis, G.; Trinquet, E.; Daniel, H.; Valjent, E.; Baty, D.; Chames, P.; Rondard, P.; Pin, J.P. Allosteric nanobodies uncover a role of hippocampal mGlu2 receptor homodimers in contextual fear consolidation. Nat. Commun., 2017, 8(1), 1967.
[http://dx.doi.org/10.1038/s41467-017-01489-1] [PMID: 29213077]
[18]
Olivero, G.; Bonfiglio, T.; Vergassola, M.; Usai, C.; Riozzi, B.; Battaglia, G.; Nicoletti, F.; Pittaluga, A. Immuno-pharmacological characterization of group II metabotropic glutamate receptors controlling glutamate exocytosis in mouse cortex and spinal cord. Br. J. Pharmacol., 2017, 174(24), 4785-4796.
[http://dx.doi.org/10.1111/bph.14061] [PMID: 28967122]
[19]
Laurie, D.J.; Schoeffter, P.; Wiederhold, K.H.; Sommer, B. Cloning, distribution and functional expression of the human mGlu6 metabotropic glutamate receptor. Neuropharmacology, 1997, 36(2), 145-152.
[http://dx.doi.org/10.1016/s0028-3908(96)00172-4] [PMID: 9144651]
[20]
Valerio, A.; Zoppi, N.; Ferraboli, S.; Paterlini, M.; Ferrario, M.; Barlati, S.; Spano, P. Alternative splicing of mGlu6 gene generates a truncated glutamate receptor in rat retina. Neuroreport, 2001, 12(12), 2711-2715.
[http://dx.doi.org/10.1097/00001756-200108280-00024] [PMID: 11522953]
[21]
Pin, J.P.; Duvoisin, R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology, 1995, 34(1), 1-26.
[http://dx.doi.org/10.1016/0028-3908(94)00129-G] [PMID: 7623957]
[22]
Lavreysen, H.; Dautzenberg, F.M. Therapeutic potential of group III metabotropic glutamate receptors. Curr. Med. Chem., 2008, 15(7), 671-684.
[http://dx.doi.org/10.2174/092986708783885246] [PMID: 18336281]
[23]
Amalric, M.; Lopez, S.; Goudet, C.; Fisone, G.; Battaglia, G.; Nicoletti, F.; Pin, J.P.; Acher, F.C. Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson’s disease. Neuropharmacology, 2013, 66, 53-64.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.026] [PMID: 22664304]
[24]
Williams, C.J.; Dexter, D.T. Neuroprotective and symptomatic effects of targeting group III mGlu receptors in neurodegenerative disease. J. Neurochem., 2014, 129(1), 4-20.
[http://dx.doi.org/10.2174/092986708783885246] [PMID: 18336281]
[25]
D’Antoni, S.; Berretta, A.; Bonaccorso, C.M.; Bruno, V.; Aronica, E.; Nicoletti, F.; Catania, M.V. Metabotropic glutamate receptors in glial cells. Neurochem. Res., 2008, 33(12), 2436-2443.
[http://dx.doi.org/10.1007/s11064-008-9694-9] [PMID: 18438710]
[26]
Wierońska, J.M.; Pilc, A. Metabotropic glutamate receptors in the tripartite synapse as a target for new psychotropic drugs. Neurochem. Int., 2009, 55(1-3), 85-97.
[http://dx.doi.org/10.1016/j.neuint.2009.02.019] [PMID: 19428811]
[27]
Bradley, S.J.; Challiss, R.A. G protein-coupled receptor signalling in astrocytes in health and disease: a focus on metabotropic glutamate receptors. Biochem. Pharmacol., 2012, 84(3), 249-259.
[http://dx.doi.org/10.1016/j.bcp.2012.04.009] [PMID: 22531220]
[28]
Spampinato, S.F.; Copani, A.; Nicoletti, F.; Sortino, M.A.; Caraci, F. Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection? Front. Mol. Neurosci., 2018, 11, 414.
[http://dx.doi.org/10.3389/fnmol.2018.00414] [PMID: 30483053]
[29]
Schafer, D.P.; Lehrman, E.K.; Stevens, B. The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia, 2013, 61(1), 24-36.
[http://dx.doi.org/10.1002/glia.22389] [PMID: 22829357]
[30]
Fazio, F.; Zappulla, C.; Notartomaso, S.; Busceti, C.; Bessede, A.; Scarselli, P.; Vacca, C.; Gargaro, M.; Volpi, C.; Allegrucci, M.; Lionetto, L.; Simmaco, M.; Belladonna, M.L.; Nicoletti, F.; Fallarino, F. Cinnabarinic acid, an endogenous agonist of type-4 metabotropic glutamate receptor, suppresses experimental autoimmune encephalomyelitis in mice. Neuropharmacology, 2014, 81, 237-243.
[http://dx.doi.org/10.1016/j.neuropharm.2014.02.011] [PMID: 24565643]
[31]
Palucha, A.; Pilc, A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol. Ther., 2007, 115(1), 116-147.
[http://dx.doi.org/10.1016/j.pharmthera.2007.04.007] [PMID: 17582504]
[32]
Nickols, H.H.; Conn, P.J. Development of allosteric modulators of GPCRs for treatment of CNS disorders. Neurobiol. Dis., 2014, 61, 55-71.
[http://dx.doi.org/10.1016/j.nbd.2013.09.013] [PMID: 24076101]
[33]
Bruno, V.; Caraci, F.; Copani, A.; Matrisciano, F.; Nicoletti, F.; Battaglia, G. The impact of metabotropic glutamate receptors into active neurodegenerative processes: A “dark side” in the development of new symptomatic treatments for neurologic and psychiatric disorders. Neuropharmacology, 2017, 115, 180-192.
[http://dx.doi.org/10.1016/j.neuropharm.2016.04.044] [PMID: 27140693]
[34]
Raiteri, M. Presynaptic metabotropic glutamate and GABAB receptors. Handb. Exp. Pharmacol., 2008, (184), 373-407.
[http://dx.doi.org/10.1007/978-3-540-74805-2_12] [PMID: 18064420]
[35]
Pittaluga, A. Presynaptic release-regulating mglu1 receptors in central nervous system. Front. Pharmacol, 2016, 7, 295.
[http://dx.doi.org/10.3389/fphar.2016.00295] [PMID: 27630571]
[36]
Benquet, P.; Gee, C.E.; Gerber, U. Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J. Neurosci., 2002, 22(22), 9679-9686.
[http://dx.doi.org/10.1523/JNEUROSCI.22-22-09679.2002] [PMID: 12427823]
[37]
Longordo, F.; Feligioni, M.; Chiaramonte, G.; Sbaffi, P.F.; Raiteri, M.; Pittaluga, A. The human immunodeficiency virus-1 protein transactivator of transcription up-regulates N-methyl-D-aspartate receptor function by acting at metabotropic glutamate receptor 1 receptors coexisting on human and rat brain noradrenergic neurones. J. Pharmacol. Exp. Ther., 2006, 317(3), 1097-1105.
[http://dx.doi.org/10.1124/jpet.105.099630] [PMID: 16489129]
[38]
Luccini, E.; Musante, V.; Neri, E.; Brambilla Bas, M.; Severi, P.; Raiteri, M.; Pittaluga, A. Functional interactions between presynaptic NMDA receptors and metabotropic glutamate receptors co-expressed on rat and human noradrenergic terminals. Br. J. Pharmacol., 2007, 151(7), 1087-1094.
[http://dx.doi.org/10.1038/sj.bjp.0707280] [PMID: 17592518]
[39]
Baki, L.; Fribourg, M.; Younkin, J.; Eltit, J.M.; Moreno, J.L.; Park, G.; Vysotskaya, Z.; Narahari, A.; Sealfon, S.C.; Gonzalez-Maeso, J.; Logothetis, D.E. Cross-signaling in metabotropic glutamate 2 and serotonin 2A receptor heteromers in mammalian cells. Pflugers Arch., 2016, 468(5), 775-793.
[http://dx.doi.org/10.1007/s00424-015-1780-7] [PMID: 26780666]
[40]
Delille, H.K.; Becker, J.M.; Burkhardt, S.; Bleher, B.; Terstappen, G.C.; Schmidt, M.; Meyer, A.H.; Unger, L.; Marek, G.J.; Mezler, M. Heterocomplex formation of 5-HT2A-mGlu2 and its relevance for cellular signaling cascades. Neuropharmacology, 2012, 62(7), 2184-2191.
[http://dx.doi.org/10.1016/j.neuropharm.2012.01.010] [PMID: 22300836]
[41]
Olivero, G.; Grilli, M.; Vergassola, M.; Bonfiglio, T.; Padolecchia, C.; Garrone, B.; Di Giorgio, F.P.; Tongiani, S.; Usai, C.; Marchi, M.; Pittaluga, A. 5-HT2A-mGlu2/3 receptor complex in rat spinal cord glutamatergic nerve endings: A 5-HT2A to mGlu2/3 signalling to amplify presynaptic mechanism of auto-control of glutamate exocytosis. Neuropharmacology, 2018, 133, 429-439.
[http://dx.doi.org/10.1016/j.neuropharm.2018.02.030] [PMID: 29499271]
[42]
Vergassola, M.; Olivero, G.; Cisani, F.; Usai, C.; Bossi, S.; Puliti, A.; Pittaluga, A. Presynaptic mGlu1 receptors control gabab receptors in an antagonist-like manner in mouse cortical gabaergic and glutamatergic nerve endings. Front. Mol. Neurosci., 2018, 11, 324.
[http://dx.doi.org/10.3389/fnmol.2018.00324] [PMID: 30279647]
[43]
G-protein-coupled receptors. Trends Pharmacol. Sci., 2007, 28(12), 615-620.
[http://dx.doi.org/10.1016/j.tips.2007.11.001] [PMID: 18022255]
[44]
Prezeau, L.; Rives, M.L.; Comps-Agrar, L.; Maurel, D.; Kniazeff, J.; Pin, J.P. Functional crosstalk between GPCRs: with or without oligomerization. Curr. Opin. Pharmacol., 2010, 10(1), 6-13.
[http://dx.doi.org/10.1016/j.coph.2009.10.009] [PMID: 19962942]
[45]
Pin, J.P.; Bettler, B. Organization and functions of mGlu and GABAB receptor complexes. Nature, 2016, 540(7631), 60-68.
[http://dx.doi.org/10.1038/nature20566] [PMID: 27905440]
[46]
Musante, V.; Neri, E.; Feligioni, M.; Puliti, A.; Pedrazzi, M.; Conti, V.; Usai, C.; Diaspro, A.; Ravazzolo, R.; Henley, J.M.; Battaglia, G.; Pittaluga, A. Presynaptic mGlu1 and mGlu5 autoreceptors facilitate glutamate exocytosis from mouse cortical nerve endings. Neuropharmacology, 2008, 55(4), 474-482.
[http://dx.doi.org/10.1016/j.neuropharm.2008.06.056] [PMID: 18625255]
[47]
Musante, V.; Summa, M.; Neri, E.; Puliti, A.; Godowicz, T.T.; Severi, P.; Battaglia, G.; Raiteri, M.; Pittaluga, A. The HIV-1 viral protein Tat increases glutamate and decreases GABA exocytosis from human and mouse neocortical nerve endings. Cereb. Cortex, 2010, 20(8), 1974-1984.
[http://dx.doi.org/10.1093/cercor/bhp274] [PMID: 20034999]
[48]
Doumazane, E.; Scholler, P.; Zwier, J.M.; Trinquet, E.; Rondard, P.; Pin, J.P. A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J., 2011, 25(1), 66-77.
[http://dx.doi.org/10.1096/fj.10-163147] [PMID: 20826542]
[49]
Liu, J.; Zhang, Z.; Moreno-Delgado, D.; Dalton, J.A.; Rovira, X.; Trapero, A.; Goudet, C.; Llebaria, A.; Giraldo, J.; Yuan, Q.; Rondard, P.; Huang, S.; Liu, J.; Pin, J.P. Allosteric control of an asymmetric transduction in a G protein-coupled receptor heterodimer. eLife, 2017. 6e26985
[http://dx.doi.org/10.7554/eLife.26985] [PMID: 28829739]
[50]
Di Menna, L.; Joffe, M.E.; Iacovelli, L.; Orlando, R.; Lindsley, C.W.; Mairesse, J.; Gressèns, P.; Cannella, M.; Caraci, F.; Copani, A.; Bruno, V.; Battaglia, G.; Conn, P.J.; Nicoletti, F. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology, 2018, 128, 301-313.
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.026] [PMID: 29079293]
[51]
Mela, F.; Marti, M.; Fiorentini, C.; Missale, C.; Morari, M. Group-II metabotropic glutamate receptors negatively modulate NMDA transmission at striatal cholinergic terminals: role of P/Q-type high voltage activated Ca++ channels and endogenous dopamine. Mol. Cell. Neurosci., 2006, 31(2), 284-292.
[http://dx.doi.org/10.1016/j.mcn.2005.09.016] [PMID: 16249096]
[52]
Martín, R.; Ladera, C.; Bartolomé-Martín, D.; Torres, M.; Sánchez-Prieto, J. The inhibition of release by mGlu7 receptors is independent of the Ca2+ channel type but associated to GABAB and adenosine A1 receptors. Neuropharmacology, 2008, 55(4), 464-473.
[http://dx.doi.org/10.1016/j.neuropharm.2008.04.011] [PMID: 18514236]
[53]
Ferrero, J.J.; Ramírez-Franco, J.; Martín, R.; Bartolomé-Martín, D.; Torres, M.; Sánchez-Prieto, J. Cross-talk between metabotropic glutamate receptor 7 and beta adrenergic receptor signaling at cerebrocortical nerve terminals. Neuropharmacology, 2016, 101, 412-425.
[http://dx.doi.org/10.1016/j.neuropharm.2015.07.025] [PMID: 26211974]
[54]
Katz, P.S.; Edwards, D.H. Metamodulation: the control and modulation of neuromodulation. Beyond neurotransmission. Neuromodulation and its importance for information processing., 1999, 349-382.
[http://dx.doi.org/10.1093/acprof:oso/9780198524243.003.0010]
[55]
Ribeiro, J.A.; Sebastião, A.M. Modulation and metamodulation of synapses by adenosine. Acta Physiol. (Oxf.), 2010, 199(2), 161-169.
[http://dx.doi.org/10.1111/j.1748-1716.2010.02115.x] [PMID: 20345418]
[56]
Pinheiro, P.S.; Mulle, C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat. Rev. Neurosci., 2008, 9(6), 423-436.
[http://dx.doi.org/10.1038/nrn2379] [PMID: 18464791]
[57]
Raiteri, L.; Raiteri, M. Synaptosomes still viable after 25 years of superfusion. Neurochem. Res., 2000, 25(9-10), 1265-1274.
[http://dx.doi.org/10.1023/A:1007648229795] [PMID: 11059801]
[58]
Pittaluga, A. Acute functional adaptations in isolated presynaptic terminals unveil synaptosomal learning and memory. Int. J. Mol. Sci., 2019, 20(15), 3641.
[http://dx.doi.org/10.3390/ijms20153641] [PMID: 31349638]
[59]
Raiteri, M.; Angelini, F.; Levi, G. A simple apparatus for studying the release of neurotransmitters from synaptosomes. Eur. J. Pharmacol., 1974, 25(3), 411-414.
[http://dx.doi.org/10.1016/0014-2999(74)90272-6] [PMID: 4151269]
[60]
Pittaluga, A.; Bonfanti, A.; Raiteri, M. Somatostatin potentiates NMDA receptor function via activation of InsP(3) receptors and PKC leading to removal of the Mg(2+) block without depolarization. Br. J. Pharmacol., 2000, 130(3), 557-566.
[http://dx.doi.org/10.1038/sj.bjp.0703346] [PMID: 10821783]
[61]
Summa, M.; Di Prisco, S.; Grilli, M.; Marchi, M.; Pittaluga, A. Hippocampal AMPA autoreceptors positively coupled to NMDA autoreceptors traffic in a constitutive manner and undergo adaptative changes following enriched environment training. Neuropharmacology, 2011, 61(8), 1282-1290.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.032] [PMID: 21820454]
[62]
Hervás, C.; Pérez-Sen, R.; Miras-Portugal, M.T. Presence of diverse functional P2X receptors in rat cerebellar synaptic terminals. Biochem. Pharmacol., 2005, 70(5), 770-785.
[http://dx.doi.org/10.1016/j.bcp.2005.05.033] [PMID: 16018975]
[63]
Rodrigues, R.J.; Almeida, T.; Díaz-Hernández, M.; Marques, J.M.; Franco, R.; Solsona, C.; Miras-Portugal, M.T.; Ciruela, F.; Cunha, R.A. Presynaptic P2X1-3 and α3-containing nicotinic receptors assemble into functionally interacting ion channels in the rat hippocampus. Neuropharmacology, 2016, 105, 241-257.
[http://dx.doi.org/10.1016/j.neuropharm.2016.01.022] [PMID: 26801076]
[64]
Schoepp, D.D.; Goldsworthy, J.; Johnson, B.G.; Salhoff, C.R.; Baker, S.R. 3,5-dihydroxyphenylglycine is a highly selective agonist for phosphoinositide-linked metabotropic glutamate receptors in the rat hippocampus. J. Neurochem., 1994, 63(2), 769-772.
[http://dx.doi.org/10.1046/j.1471-4159.1994.63020769.x] [PMID: 8035201]
[65]
Salt, T.E.; Binns, K.E.; Turner, J.P.; Gasparini, F.; Kuhn, R. Antagonism of the mGlu5 agonist 2-chloro-5-hydroxyphenylglycine by the novel selective mGlu5 antagonist 6-methyl-2-(phenylethynyl)-pyridine (MPEP) in the thalamus. Br. J. Pharmacol., 1999, 127(5), 1057-1059.
[http://dx.doi.org/10.1038/sj.bjp.0702677] [PMID: 10455248]
[66]
Hermans, E.; Nahorski, S.R.; Challiss, R.A. Reversible and non-competitive antagonist profile of CPCCOEt at the human type 1alpha metabotropic glutamate receptor. Neuropharmacology, 1998, 37(12), 1645-1647.
[http://dx.doi.org/10.1016/S0028-3908(98)00132-4] [PMID: 9886688]
[67]
Litschig, S.; Gasparini, F.; Rueegg, D.; Stoehr, N.; Flor, P.J.; Vranesic, I.; Prézeau, L.; Pin, J.P.; Thomsen, C.; Kuhn, R. CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol. Pharmacol., 1999, 55(3), 453-461.
[PMID: 10051528]
[68]
Herrero, I.; Miras-Portugal, M.T.; Sánchez-Prieto, J. Positive feedback of glutamate exocytosis by metabotropic presynaptic receptor stimulation. nature, 1992, 360(6400), 163-166.
[http://dx.doi.org/10.1038/360163a0] [PMID: 1359425]
[69]
Herrero, I.; Miras-Portugal, M.T.; Sánchez-Prieto, J. Rapid desensitization of the metabotropic glutamate receptor that facilitates glutamate release in rat cerebrocortical nerve terminals. eur. j. neurosci.,, 1994, 6(1), 115-120.
[http://dx.doi.org/10.1111/j.1460-9568.1994.tb00253.x] [PMID: 7907519]
[70]
Shigemoto, R.; Nomura, S.; Ohishi, H.; Sugihara, H.; Nakanishi, S.; Mizuno, N. Immunohistochemical localization of a metabotropic glutamate receptor, mGluR5, in the rat brain. neurosci. lett, 1993, 163(1), 53-57.
[http://dx.doi.org/10.1016/0304-3940(93)90227-c] [PMID: 8295733]
[71]
Vázquez, E.; Herrero, I.; Miras-Portugal, M.T.; Sánchez-Prieto, J. Developmental change from inhibition to facilitation in the presynaptic control of glutamate exocytosis by metabotropic glutamate receptors. Neuroscience, 1995, 68(1), 117-124.
[http://dx.doi.org/10.1016/0306-4522(95)00121-X] [PMID: 7477917]
[72]
Rodríguez-Moreno, A.; Sistiaga, A.; Lerma, J.; Sánchez-Prieto, J. Switch from facilitation to inhibition of excitatory synaptic transmission by group I mGluR desensitization. Neuron, 1998, 21(6), 1477-1486.
[http://dx.doi.org/10.1016/S0896-6273(00)80665-0] [PMID: 9883739]
[73]
Sistiaga, A.; Herrero, I.; Conquet, F.; Sánchez-Prieto, J. The metabotropic glutamate receptor 1 is not involved in the facilitation of glutamate release in cerebrocortical nerve terminals. neuropharmacology, 1998, 37(12), 1485-1492.
[http://dx.doi.org/10.1016/s0028-3908(98)00129-4] [PMID: 9886671]
[74]
Fotuhi, M.; Sharp, A.H.; Glatt, C.E.; Hwang, P.M.; von Krosigk, M.; Snyder, S.H.; Dawson, T.M. Differential localization of phosphoinositide-linked metabotropic glutamate receptor (mGluR1) and the inositol 1,4,5-trisphosphate receptor in rat brain. J. Neurosci., 1993, 13(5), 2001-2012.
[http://dx.doi.org/10.1523/JNEUROSCI.13-05-02001.1993] [PMID: 8386753]
[75]
Lujan, R.; Nusser, Z.; Roberts, J.D.; Shigemoto, R.; Somogyi, P. Perisynaptic location of metabotropic glutamate receptors mGluR1 and mGluR5 on dendrites and dendritic spines in the rat hippocampus. eur. j. neurosci.,, 1996, 8(7), 1488-1500.
[http://dx.doi.org/10.1111/j.1460-9568.1996.tb01611.x] [PMID: 8758956]
[76]
Moroni, F.; Cozzi, A.; Lombardi, G.; Sourtcheva, S.; Leonardi, P.; Carfì, M.; Pellicciari, R. Presynaptic mGlu1 type receptors potentiate transmitter output in the rat cortex. Eur. J. Pharmacol., 1998, 347(2-3), 189-195.
[http://dx.doi.org/10.1016/S0014-2999(98)00124-1] [PMID: 9653880]
[77]
Reid, M.E.; Toms, N.J.; Bedingfield, J.S.; Roberts, P.J. Group I mGlu receptors potentiate synaptosomal [3H]glutamate release independently of exogenously applied arachidonic acid. Neuropharmacology, 1999, 38(4), 477-485.
[http://dx.doi.org/10.1016/S0028-3908(98)00217-2] [PMID: 10221751]
[78]
Fazal, A.; Parker, F.; Palmer, A.M.; Croucher, M.J. Characterisation of the actions of group I metabotropic glutamate receptor subtype selective ligands on excitatory amino acid release and sodium-dependent re-uptake in rat cerebrocortical minislices. j. neurochem.,, 2003, 86(6), 1346-1358.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01932.x] [PMID: 12950444]
[79]
Rossi, P.I.; Musante, I.; Summa, M.; Pittaluga, A.; Emionite, L.; Ikehata, M.; Rastaldi, M.P.; Ravazzolo, R.; Puliti, A. Compensatory molecular and functional mechanisms in nervous system of the Grm1(crv4) mouse lacking the mGlu1 receptor: a model for motor coordination deficits. Cereb. Cortex, 2013, 23(9), 2179-2189.
[PMID: 22791805]
[80]
Bossi, S.; Musante, I.; Bonfiglio, T.; Bonifacino, T.; Emionite, L.; Cerminara, M.; Cervetto, C.; Marcoli, M.; Bonanno, G.; Ravazzolo, R.; Pittaluga, A.; Puliti, A. Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1crv4 mouse model of SCAR13 ataxia. neurobiol dis,, 2018, 10944, .53
[http://dx.doi.org//10.1016/j.nbd.2017.10.001] [PMID: 8982591]
[81]
Giribaldi, F.; Milanese, M.; Bonifacino, T.; Anna Rossi, P.I.; Di Prisco, S.; Pittaluga, A.; Tacchetti, C.; Puliti, A.; Usai, C.; Bonanno, G. Group I metabotropic glutamate autoreceptors induce abnormal glutamate exocytosis in a mouse model of amyotrophic lateral sclerosis. Neuropharmacology, 2013, 66, 253-263.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.018] [PMID: 22634363]
[82]
Feligioni, M.; Raiteri, L.; Pattarini, R.; Grilli, M.; Bruzzone, S.; Cavazzani, P.; Raiteri, M.; Pittaluga, A. The human immunodeficiency virus-1 protein Tat and its discrete fragments evoke selective release of acetylcholine from human and rat cerebrocortical terminals through species-specific mechanisms. J. Neurosci., 2003, 23(17), 6810-6818.
[http://dx.doi.org/10.1523/JNEUROSCI.23-17-06810.2003] [PMID: 12890775]
[83]
Parodi, M.; Patti, L.; Grilli, M.; Raiteri, M.; Marchi, M. Nicotine has a permissive role on the activation of metabotropic glutamate 5 receptors coexisting with nicotinic receptors on rat hippocampal noradrenergic nerve terminals. Neurochem. Int., 2006, 48(2), 138-143.
[http://dx.doi.org/10.1016/j.neuint.2005.08.010] [PMID: 16214264]
[84]
Pellegrini-Giampietro, D.E. The distinct role of mGlu1 receptors in post-ischemic neuronal death. Trends Pharmacol. Sci., 2003, 24(9), 461-470.
[http://dx.doi.org/10.1016/S0165-6147(03)00231-1] [PMID: 12967771]
[85]
Battaglia, G.; Bruno, V.; Pisani, A.; Centonze, D.; Catania, M.V.; Calabresi, P.; Nicoletti, F. Selective blockade of type-1 metabotropic glutamate receptors induces neuroprotection by enhancing gabaergic transmission. mol. cell. neurosci, 2001, 17(6), 1071-1083.
[http://dx.doi.org/10.1006/mcne.2001.0992] [PMID: 11414795]
[86]
Ferraguti, F.; Crepaldi, L.; Nicoletti, F. Metabotropic glutamate 1 receptor: current concepts and perspectives. pharmacol. rev.,, 2008, 60(4), 536-581.
[http://dx.doi.org/doi.org/10.1124/pr.108.000166] [PMID: 19112153]
[87]
Landucci, E.; Boscia, F.; Gerace, E.; Scartabelli, T.; Cozzi, A.; Moroni, F.; Mannaioni, G.; Pellegrini-Giampietro, D.E. Involvement of endocannabinoid signaling in the neuroprotective effects of subtype 1 metabotropic glutamate receptor antagonists in models of cerebral ischemia. Int. Rev. Neurobiol., 2009, 85, 337-350.
[http://dx.doi.org/10.1016/S0074-7742(09)85023-X] [PMID: 19607979]
[88]
Zucchini, S.; Pittaluga, A.; Brocca-Cofano, E.; Summa, M.; Fabris, M.; De Michele, R.; Bonaccorsi, A.; Busatto, G.; Barbanti-Brodano, G.; Altavilla, G.; Verlengia, G.; Cifelli, P.; Corallini, A.; Caputo, A.; Simonato, M. Increased excitability in tat-transgenic mice: role of tat in HIV-related neurological disorders. Neurobiol. Dis., 2013, 55, 110-119.
[http://dx.doi.org/10.1016/j.nbd.2013.02.004] [PMID: 23454193]
[89]
Bragina, L.; Bonifacino, T.; Bassi, S.; Milanese, M.; Bonanno, G.; Conti, F. Differential expression of metabotropic glutamate and GABA receptors at neocortical glutamatergic and GABAergic axon terminals. Front. Cell. Neurosci., 2015, 9, 345.
[http://dx.doi.org/10.3389/fncel.2015.00345] [PMID: 26388733]
[90]
Terunuma, M.; Pangalos, M.N.; Moss, S.J. Functional modulation of GABAB receptors by protein kinases and receptor trafficking. Adv. Pharmacol., 2010, 58, 113-122.
[http://dx.doi.org/10.1016/S1054-3589(10)58005-0] [PMID: 20655480]
[91]
Ige, A.O.; Bolam, J.P.; Billinton, A.; White, J.H.; Marshall, F.H.; Emson, P.C. Cellular and sub-cellular localisation of GABA(B1) and GABA(B2) receptor proteins in the rat cerebellum. Brain Res. Mol. Brain Res., 2000, 83(1-2), 72-80.
[http://dx.doi.org/10.1016/S0169-328X(00)00199-6] [PMID: 11072097]
[92]
Tabata, T.; Araishi, K.; Hashimoto, K.; Hashimotodani, Y.; van der Putten, H.; Bettler, B.; Kano, M. Ca2+ activity at GABAB receptors constitutively promotes metabotropic glutamate signaling in the absence of GABA. Proc. Natl. Acad. Sci. USA, 2004, 101(48), 16952-16957.
[http://dx.doi.org/10.1073/pnas.0405387101] [PMID: 15550547]
[93]
Luján, R.; Shigemoto, R. Localization of metabotropic GABA receptor subunits GABAB1 and GABAB2 relative to synaptic sites in the rat developing cerebellum. Eur. J. Neurosci., 2006, 23(6), 1479-1490.
[http://dx.doi.org/10.1111/j.1460-9568.2006.04669.x] [PMID: 16553611]
[94]
Rives, M.L.; Vol, C.; Fukazawa, Y.; Tinel, N.; Trinquet, E.; Ayoub, M.A.; Shigemoto, R.; Pin, J.P.; Prézeau, L. Crosstalk between GABAB and mGlu1a receptors reveals new insight into GPCR signal integration. EMBO J., 2009, 28(15), 2195-2208.
[http://dx.doi.org/10.1038/emboj.2009.177] [PMID: 19590495]
[95]
Tadavarty, R.; Rajput, P.S.; Wong, J.M.; Kumar, U.; Sastry, B.R. Sleep-deprivation induces changes in GABA(B) and mGlu receptor expression and has consequences for synaptic long-term depression. PLoS One, 2011, 6(9)e24933
[http://dx.doi.org/10.1371/journal.pone.0024933] [PMID: 21980366]
[96]
Hirono, M.; Yoshioka, T.; Konishi, S. GABA(B) receptor activation enhances mGluR-mediated responses at cerebellar excitatory synapses. Nat. Neurosci., 2001, 4(12), 1207-1216.
[http://dx.doi.org/10.1038/nn764] [PMID: 11704764]
[97]
Luján, R.; Roberts, J.D.; Shigemoto, R.; Ohishi, H.; Somogyi, P. Differential plasma membrane distribution of metabotropic glutamate receptors mGluR1 alpha, mGluR2 and mGluR5, relative to neurotransmitter release sites. J. Chem. Neuroanat., 1997, 13(4), 219-241.
[http://dx.doi.org/10.1016/S0891-0618(97)00051-3] [PMID: 9412905]
[98]
Tamaru, Y.; Nomura, S.; Mizuno, N.; Shigemoto, R. Distribution of metabotropic glutamate receptor mGluR3 in the mouse CNS: differential location relative to pre- and postsynaptic sites. Neuroscience, 2001, 106(3), 481-503.
[http://dx.doi.org/10.1016/S0306-4522(01)00305-0] [PMID: 11591452]
[99]
Hemstapat, K.; Da Costa, H.; Nong, Y.; Brady, A.E.; Luo, Q.; Niswender, C.M.; Tamagnan, G.D.; Conn, P.J. A novel family of potent negative allosteric modulators of group II metabotropic glutamate receptors. J. Pharmacol. Exp. Ther., 2007, 322(1), 254-264.
[http://dx.doi.org/10.1124/jpet.106.117093] [PMID: 17416742]
[100]
Corti, C.; Battaglia, G.; Molinaro, G.; Riozzi, B.; Pittaluga, A.; Corsi, M.; Mugnaini, M.; Nicoletti, F.; Bruno, V. The use of knock-out mice unravels distinct roles for mGlu2 and mGlu3 metabotropic glutamate receptors in mechanisms of neurodegeneration/neuroprotection. J. Neurosci., 2007, 27(31), 8297-8308.
[http://dx.doi.org/10.1523/JNEUROSCI.1889-07.2007] [PMID: 17670976]
[101]
Di Prisco, S.; Merega, E.; Bonfiglio, T.; Olivero, G.; Cervetto, C.; Grilli, M.; Usai, C.; Marchi, M.; Pittaluga, A. Presynaptic, release-regulating mGlu2 -preferring and mGlu3 -preferring autoreceptors in CNS: pharmacological profiles and functional roles in demyelinating disease. Br. J. Pharmacol., 2016, 173(9), 1465-1477.
[http://dx.doi.org/10.1111/bph.13442] [PMID: 26791341]
[102]
Romei, C.; Raiteri, M.; Raiteri, L. Glycine release is regulated by metabotropic glutamate receptors sensitive to mGluR2/3 ligands and activated by N-acetylaspartylglutamate (NAAG). Neuropharmacology, 2013, 66, 311-316.
[http://dx.doi.org/10.1016/j.neuropharm.2012.05.030] [PMID: 22659408]
[103]
Monn, J.A.; Valli, M.J.; Johnson, B.G.; Salhoff, C.R.; Wright, R.A.; Howe, T.; Bond, A.; Lodge, D.; Spangle, L.A.; Paschal, J.W.; Campbell, J.B.; Griffey, K.; Tizzano, J.P.; Schoepp, D.D. Synthesis of the four isomers of 4-aminopyrrolidine-2,4-dicarboxylate: identification of a potent, highly selective, and systemically-active agonist for metabotropic glutamate receptors negatively coupled to adenylate cyclase. J. Med. Chem., 1996, 39(15), 2990-3000.
[http://dx.doi.org/10.1021/jm9601765] [PMID: 8709133]
[104]
Cartmell, J.; Adam, G.; Chaboz, S.; Henningsen, R.; Kemp, J.A.; Klingelschmidt, A.; Metzler, V.; Monsma, F.; Schaffhauser, H.; Wichmann, J.; Mutel, V. Characterization of [3H]-(2S,2‘R,3’R)-2-(2′,3′-dicarboxy-cyclopropyl)glycine ([3H]-DCG IV) binding to metabotropic mGlu2 receptor-transfected cell membranes. Br. J. Pharmacol., 1998, 123(3), 497-504.
[http://dx.doi.org/10.1038/sj.bjp.0701647] [PMID: 9504391]
[105]
Attwell, P.J.; Singh Kent, N.; Jane, D.E.; Croucher, M.J.; Bradford, H.F. Anticonvulsant and glutamate releaseinhibiting properties of the highly potent metabotropic glutamate receptor agonist (2S,29R,39R)-2-(29,39-dicarboxycyclopropyl)glycine (DCG-IV). Brain Res., 1998, 805(1-2), 138-143.
[http://dx.doi.org/10.1016/S0006-8993(98)00698-2] [PMID: 9733953]
[106]
Monn, J.A.; Valli, M.J.; Massey, S.M.; Wright, R.A.; Salhoff, C.R.; Johnson, B.G.; Howe, T.; Alt, C.A.; Rhodes, G.A.; Robey, R.L.; Griffey, K.R.; Tizzano, J.P.; Kallman, M.J.; Helton, D.R.; Schoepp, D.D. Design, synthesis, and pharmacological characterization of (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740): a potent, selective, and orally active group 2 metabotropic glutamate receptor agonist possessing anticonvulsant and anxiolytic properties. J. Med. Chem., 1997, 40(4), 528-537.
[http://dx.doi.org/10.1021/jm9606756] [PMID: 9046344]
[107]
Monn, J.A.; Valli, M.J.; Massey, S.M.; Hansen, M.M.; Kress, T.J.; Wepsiec, J.P.; Harkness, A.R.; Grutsch, J.L., Jr; Wright, R.A., Jr; Johnson, B.G.; Andis, S.L.; Kingston, A.; Tomlinson, R.; Lewis, R.; Griffey, K.R.; Tizzano, J.P.; Schoepp, D.D. Synthesis, pharmacological characterization, and molecular modeling of heterobicyclic amino acids related to (+)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylic acid (LY354740): identification of two new potent, selective, and systemically active agonists for group II metabotropic glutamate receptors. J. Med. Chem., 1999, 42(6), 1027-1040.
[http://dx.doi.org/10.1021/jm980616n] [PMID: 10090786]
[108]
Moghaddam, B.; Adams, B.W. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats. Science, 1998, 281(5381), 1349-1352.
[http://dx.doi.org/10.1126/science.281.5381.1349] [PMID: 9721099]
[109]
Flor, P.J.; Battaglia, G.; Nicoletti, F.; Gasparini, F.; Bruno, V. Neuroprotective activity of metabotropic glutamate receptor ligands. Adv. Exp. Med. Biol., 2002, 513, 197-223.
[http://dx.doi.org/10.1007/978-1-4615-0123-7_7] [PMID: 12575822]
[110]
Kingston, A.E.; Ornstein, P.L.; Wright, R.A.; Johnson, B.G.; Mayne, N.G.; Burnett, J.P.; Belagaje, R.; Wu, S.; Schoepp, D.D. LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology, 1998, 37(1), 1-12.
[http://dx.doi.org/10.1016/S0028-3908(97)00191-3] [PMID: 9680254]
[111]
Hanna, L.; Ceolin, L.; Lucas, S.; Monn, J.; Johnson, B.; Collingridge, G.; Bortolotto, Z.; Lodge, D. Differentiating the roles of mGlu2 and mGlu3 receptors using LY541850, an mGlu2 agonist/mGlu3 antagonist. Neuropharmacology, 2013, 66, 114-121.
[http://dx.doi.org/10.1016/j.neuropharm.2012.02.023] [PMID: 22445601]
[112]
Jin, X.; Semenova, S.; Yang, L.; Ardecky, R.; Sheffler, D.J.; Dahl, R.; Conn, P.J.; Cosford, N.D.; Markou, A. The mGluR2 positive allosteric modulator BINA decreases cocaine self-administration and cue-induced cocaine-seeking and counteracts cocaine-induced enhancement of brain reward function in rats. Neuropsychopharmacology, 2010, 35(10), 2021-2036.
[http://dx.doi.org/10.1038/npp.2010.82] [PMID: 20555310]
[113]
Molinaro, G.; Traficante, A.; Riozzi, B.; Di Menna, L.; Curto, M.; Pallottino, S.; Nicoletti, F.; Bruno, V.; Battaglia, G. Activation of mGlu2/3 metabotropic glutamate receptors negatively regulates the stimulation of inositol phospholipid hydrolysis mediated by 5-hydroxytryptamine2A serotonin receptors in the frontal cortex of living mice. Mol. Pharmacol., 2009, 76(2), 379-387.
[http://dx.doi.org/10.1124/mol.109.056580] [PMID: 19439499]
[114]
Benneyworth, M.A.; Xiang, Z.; Smith, R.L.; Garcia, E.E.; Conn, P.J.; Sanders-Bush, E. A selective positive allosteric modulator of metabotropic glutamate receptor subtype 2 blocks a hallucinogenic drug model of psychosis. Mol. Pharmacol., 2007, 72(2), 477-484.
[http://dx.doi.org/10.1124/mol.107.035170] [PMID: 17526600]
[115]
Caraci, F.; Molinaro, G.; Battaglia, G.; Giuffrida, M.L.; Riozzi, B.; Traficante, A.; Bruno, V.; Cannella, M.; Merlo, S.; Wang, X.; Heinz, B.A.; Nisenbaum, E.S.; Britton, T.C.; Drago, F.; Sortino, M.A.; Copani, A.; Nicoletti, F. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol. Pharmacol., 2011, 79(3), 618-626.
[http://dx.doi.org/10.1124/mol.110.067488] [PMID: 21159998]
[116]
Wenthur, C.J.; Morrison, R.; Felts, A.S.; Smith, K.A.; Engers, J.L.; Byers, F.W.; Daniels, J.S.; Emmitte, K.A.; Conn, P.J.; Lindsley, C.W. Discovery of (R)-(2-fluoro-4-((-4-methoxyphenyl)ethynyl)phenyl) (3-hydroxypiperidin-1-yl)methanone (ML337), an mGlu3 selective and CNS penetrant negative allosteric modulator (NAM). J. Med. Chem., 2013, 56(12), 5208-5212.
[http://dx.doi.org/10.1021/jm400439t] [PMID: 23718281]
[117]
Musante, V.; Longordo, F.; Neri, E.; Pedrazzi, M.; Kalfas, F.; Severi, P.; Raiteri, M.; Pittaluga, A. RANTES modulates the release of glutamate in human neocortex. J. Neurosci., 2008, 28(47), 12231-12240.
[http://dx.doi.org/10.1523/JNEUROSCI.3212-08.2008] [PMID: 19020017]
[118]
Di Prisco, S.; Olivero, G.; Merega, E.; Bonfiglio, T.; Marchi, M.; Pittaluga, A. CXCR4 and NMDA receptors are functionally coupled in rat hippocampal noradrenergic and glutamatergic nerve endings. J. Neuroimmune Pharmacol., 2016, 11(4), 645-656.
[http://dx.doi.org/10.1007/s11481-016-9677-6] [PMID: 27147258]
[119]
Di Prisco, S.; Summa, M.; Chellakudam, V.; Rossi, P.I.; Pittaluga, A. RANTES-mediated control of excitatory amino acid release in mouse spinal cord. J. Neurochem., 2012, 121(3), 428-437.
[http://dx.doi.org/10.1111/j.1471-4159.2012.07720.x] [PMID: 22385043]
[120]
Ayoub, M.A.; Crépieux, P.; Koglin, M.; Parmentier, M.; Pin, J.P.; Poupon, A.; Reiter, E.; Smit, M.; Steyaert, J.; Watier, H.; Wilkinson, T. Antibodies targeting G protein-coupled receptors: Recent advances and therapeutic challenges. MAbs, 2017, 9(5), 735-741.
[http://dx.doi.org/10.1080/19420862.2017.1325052] [PMID: 28475474]
[121]
Olivero, G.; Vergassola, M.; Cisani, F.; Usai, C.; Pittaluga, A. Immuno-pharmacological characterization of presynaptic glun3a-containing nmda autoreceptors: relevance to anti-nmda receptor autoimmune diseases. Mol. Neurobiol., 2019, 56(9), 6142-6155.
[http://dx.doi.org/10.1007/s12035-019-1511-8] [PMID: 30734226]
[122]
Merega, E.; Prisco, S.D.; Severi, P.; Kalfas, F.; Pittaluga, A. Antibody/receptor protein immunocomplex in human and mouse cortical nerve endings amplifies complement-induced glutamate release. Neurosci. Lett., 2015, 600, 50-55.
[http://dx.doi.org/10.1016/j.neulet.2015.06.001] [PMID: 26049008]
[123]
Neale, J.H. N-acetylaspartylglutamate is an agonist at mGluR3 in vivo and in vitro. J. Neurochem., 2011, 119(5), 891-895.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07380.x] [PMID: 21740441]
[124]
Wroblewska, B.; Santi, M.R.; Neale, J.H. N-acetylaspartylglutamate activates cyclic AMP-coupled metabotropic glutamate receptors in cerebellar astrocytes. Glia, 1998, 24(2), 172-179.
[http://dx.doi.org/10.1002/(SICI)1098-1136(199810)24:2<172:AID-GLIA2>3.0.CO;2-6] [PMID: 9728763]
[125]
Yin, S.; Noetzel, M.J.; Johnson, K.A.; Zamorano, R.; Jalan-Sakrikar, N.; Gregory, K.J.; Conn, P.J.; Niswender, C.M. Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS. J. Neurosci., 2014, 34(1), 79-94.
[http://dx.doi.org/10.1523/JNEUROSCI.1129-13.2014] [PMID: 24381270]
[126]
Marek, G.J.; Wright, R.A.; Schoepp, D.D.; Monn, J.A.; Aghajanian, G.K. Physiological antagonism between 5-hydroxytryptamine(2A) and group II metabotropic glutamate receptors in prefrontal cortex. J. Pharmacol. Exp. Ther., 2000, 292(1), 76-87.
[PMID: 10604933]
[127]
Zhang, C.; Marek, G.J. Group III metabotropic glutamate receptor agonists selectively suppress excitatory synaptic currents in the rat prefrontal cortex induced by 5-hydroxytryptamine2A receptor activation. J. Pharmacol. Exp. Ther., 2007, 320(1), 437-447.
[http://dx.doi.org/10.1124/jpet.106.107490] [PMID: 17021259]
[128]
Kammermeier, P.J. Functional and pharmacological characteristics of metabotropic glutamate receptors 2/4 heterodimers. Mol. Pharmacol., 2012, 82(3), 438-447.
[http://dx.doi.org/10.1124/mol.112.078501] [PMID: 22653971]
[129]
Wischhof, L.; Koch, M. 5-HT2A and mGlu2/3 receptor interactions: on their relevance to cognitive function and psychosis. Behav. Pharmacol., 2016, 27(1), 1-11.
[http://dx.doi.org/10.1097/FBP.0000000000000183] [PMID: 26292187]
[130]
Aghajanian, G.K.; Marek, G.J. Serotonin, via 5-HT2A receptors, increases EPSCs in layer V pyramidal cells of prefrontal cortex by an asynchronous mode of glutamate release. Brain Res., 1999, 825(1-2), 161-171.
[http://dx.doi.org/10.1016/S0006-8993(99)01224-X] [PMID: 10216183]
[131]
González-Maeso, J.; Ang, R.L.; Yuen, T.; Chan, P.; Weisstaub, N.V.; López-Giménez, J.F.; Zhou, M.; Okawa, Y.; Callado, L.F.; Milligan, G.; Gingrich, J.A.; Filizola, M.; Meana, J.J.; Sealfon, S.C. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature, 2008, 452(7183), 93-97.
[http://dx.doi.org/10.1038/nature06612] [PMID: 18297054]
[132]
Delille, H.K.; Mezler, M.; Marek, G.J. The two faces of the pharmacological interaction of mGlu2 and 5-HT2A - relevance of receptor heterocomplexes and interaction through functional brain pathways. Neuropharmacology, 2013, 70, 296-305.
[http://dx.doi.org/10.1016/j.neuropharm.2013.02.005] [PMID: 23466331]
[133]
Chaki, S. Group II metabotropic glutamate receptor agonists as a potential drug for schizophrenia. Eur. J. Pharmacol., 2010, 639(1-3), 59-66.
[http://dx.doi.org/10.1016/j.ejphar.2009.12.041] [PMID: 20371240]
[134]
Millán, C.; Luján, R.; Shigemoto, R.; Sánchez-Prieto, J. the inhibition of glutamate release by metabotropic glutamate receptor 7 affectsboth [ca2+]c and camp: evidence for a strong reduction of ca2+ entry in single nerve terminals. j. biol. chem. 2002, 277(16), 14092-14101.
[http://dx.doi.org/10.1074/jbc.m109044200 ] [PMID: 11825890]
[135]
Millán, C.; Luján, R.; Shigemoto, R.; Sánchez-Prieto, J. Subtype-specific expression of group III metabotropic glutamate receptors and Ca2+ channels in single nerve terminals. J. Biol. Chem., 2002, 277(49), 47796-47803.
[http://dx.doi.org/10.1074/jbc.M207531200] [PMID: 12376542]
[136]
Martín, R.; Durroux, T.; Ciruela, F.; Torres, M.; Pin, J.P.; Sánchez-Prieto, J. The metabotropic glutamate receptor mGlu7 activates phospholipase C, translocates munc-13-1 protein, and potentiates glutamate release at cerebrocortical nerve terminals. J. Biol. Chem., 2010, 285(23), 17907-17917.
[http://dx.doi.org/10.1074/jbc.M109.080838] [PMID: 20375012]
[137]
Olivero, G.; Cisani, F.; Vergassola, M.; Pittaluga, A. Prolonged activation of CXCR4 hampers the release-regulating activity of presynaptic NMDA receptors in rat hippocampal synaptosomes. Neurochem. Int., 2019, 126, 59-63.
[http://dx.doi.org/10.1016/j.neuint.2019.03.003] [PMID: 30858017]
[138]
Wang, C.C.; Kuo, J.R.; Huang, S.K.; Wang, S.J. Metabotropic glutamate 7 receptor agonist AMN082 inhibits glutamate release in rat cerebral cortex nerve terminal. Eur. J. Pharmacol., 2018, 823, 11-18.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.038] [PMID: 29378190]
[139]
Mitsukawa, K.; Yamamoto, R.; Ofner, S.; Nozulak, J.; Pescott, O.; Lukic, S.; Stoehr, N.; Mombereau, C.; Kuhn, R.; McAllister, K.H.; van der Putten, H.; Cryan, J.F.; Flor, P.J. A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc. Natl. Acad. Sci. USA, 2005, 102(51), 18712-18717.
[http://dx.doi.org/10.1073/pnas.0508063102] [PMID: 16339898]
[140]
Suzuki, G.; Tsukamoto, N.; Fushiki, H.; Kawagishi, A.; Nakamura, M.; Kurihara, H.; Mitsuya, M.; Ohkubo, M.; Ohta, H. In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. J. Pharmacol. Exp. Ther., 2007, 323(1), 147-156.
[http://dx.doi.org/10.1124/jpet.107.124701] [PMID: 17609420]
[141]
Summa, M.; Di Prisco, S.; Grilli, M.; Usai, C.; Marchi, M.; Pittaluga, A. Presynaptic mGlu7 receptors control GABA release in mouse hippocampus. Neuropharmacology, 2013, 66, 215-224.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.020] [PMID: 22564442]
[142]
Somogyi, P.; Dalezios, Y.; Luján, R.; Roberts, J.D.; Watanabe, M.; Shigemoto, R. High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus. Eur. J. Neurosci., 2003, 17(12), 2503-2520.
[http://dx.doi.org/10.1046/j.1460-9568.2003.02697.x] [PMID: 12823458]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 7
Year: 2020
Page: [655 - 672]
Pages: 18
DOI: 10.2174/1570159X17666191127112339
Price: $65

Article Metrics

PDF: 18