Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Review Article

Advances in Electrospun Thermo-Sensitive Hydrogels Nanofibrous Materials for Biomedical Applications

Author(s): Lulu Lin, Minyue Cheng, Rong Chen* and Weiyang Shen*

Volume 13, Issue 1, 2021

Published on: 25 November, 2019

Page: [13 - 23] Pages: 11

DOI: 10.2174/1876402912666191126102718

Abstract

With the rapid development of nanotechnology, stimulus-responsive nanofibers have in recent years, aroused the interest of many researchers. Due to their biocompatibility, favorable safety, and easy degradability, thermo-sensitive hydrogels, which are responsive to temperature change, have become increasingly attractive in the biomedicine field. Electrospinning is a unique fibrous manufacturing process in which a polymer solution is spun under a strong electric field to form into nanofibers. The porous structure and large surface area of electrospun nanofibers contribute significantly to the application of thermo-sensitive hydrogels in drug release systems, wound dressing materials, and biosensors. In the first part of this study, the mechanism of temperature sensitivity is detailed. Then the classification and preparation of electrospun thermo-sensitive hydrogels nanofibers are illustrated, followed by an introduction of their current applications in biomedical science. Finally, the current limitations and promise of electrospun thermo-sensitive hydrogels nanofibrous materials are presented.

Keywords: Hydrogel, electrospinning, thermo-sensitivity, nanofiber, biomedicine, drug release system.

Graphical Abstract
[1]
Lee, J-H.; Kim, H-W. Emerging properties of hydrogels in tissue engineering. J. Tissue Eng., 2018, 92041731418768285
[http://dx.doi.org/10.1177/2041731418768285]
[2]
Sun, K.; Guo, J.; He, Y.; Song, P.; Xiong, Y.; Wang, R-M. Fabrication of dual-sensitive keratin-based polymer hydrogels and their controllable release behaviors. J. Biomater. Sci. Polym. Ed., 2016, 27(18), 1926-1940.
[http://dx.doi.org/10.1080/09205063.2016.1239955]
[3]
Jeong, B.; Kim, S.W.; Bae, Y.H. Thermosensitive sol–gel reversible hydrogels. Adv. Drug Deliv. Rev., 2012, 64, 154-162.
[http://dx.doi.org/10.1016/j.addr.2012.09.012]
[4]
Liu, F.Y.; Seuring, J.; Agarwal, S. A non-ionic thermophilic hydrogel with positive thermosensitivity in water and electrolyte solution. Macromol. Chem. Phys., 2014, 215, 1466-1472.
[http://dx.doi.org/10.1002/macp.201400155]
[5]
Hoffman, A.S. “Intelligent” polymers in medicine and biotechnology. Artif. Organs, 1995, 19(5), 458-467.
[http://dx.doi.org/10.1111/j.1525-1594.1995.tb02359.x]
[6]
Ankareddi, I.; Brazel, C.S. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. Int. J. Pharm., 2007, 336(2), 241-247.
[http://dx.doi.org/10.1016/j.ijpharm.2006.11.065]
[7]
Wang, Q.F.; Li, S.M.; Wang, Z.Y.; Liu, H.Z.; Li, C.J. Preparation and characterization of a positive thermoresponsive hydrogel for drug loading and release. J. Appl. Polym. Sci., 2009, 111, 1417-1425.
[http://dx.doi.org/10.1002/app.29026]
[8]
Tan, H.; Ramirez, C.M.; Miljkovic, N.; Li, H.; Rubin, J.P.; Marra, K.G. Thermosensitive injectable hyaluronic acid hydrogel for adipose tissue engineering. Biomaterials, 2009, 30(36), 6844-6853.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.058]
[9]
Wilson, M.R.; Jones, D.S.; Andrews, G.P. The development of sustained release drug delivery platforms using melt-extruded cellulose-based polymer blends. J. Pharm. Pharmacol., 2017, 69(1), 32-42.
[http://dx.doi.org/10.1111/jphp.12656]
[10]
Wang, F.; Xia, G.; Lang, X.; Wang, X.; Bao, Z.; Shah, Z.; Cheng, X.; Kong, M.; Feng, C.; Liu, Y.; Chen, X. Influence of the graft density of hydrophobic groups on thermo-responsive nanoparticles for anti-cancer drugs delivery. Colloids Surf. B Biointerfaces, 2016, 148, 147-156.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.042]
[11]
Sun, G.; Feng, C.; Jiang, C.; Zhang, T.; Bao, Z.; Zuo, Y.; Kong, M.; Cheng, X.; Liu, Y.; Chen, X. Thermo-responsive hydroxybutyl chitosan hydrogel as artery intervention embolic agent for hemorrhage control. Int. J. Biol. Macromol., 2017, 105(Pt 1), 566-574.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.082]
[12]
Liao, R.J.; Lei, Y.D.L.; Wan, J.J.; Tang, Z.H.; Guo, B.C.; Zhang, L.Q. Dispersing graphene in hydroxypropyl cellulose by utilizing its LCST behavior. Macromol. Chem. Phys., 2012, 213, 1370-1377.
[http://dx.doi.org/10.1002/macp.201200137]
[13]
Miyazaki, M.; Maeda, T.; Hirashima, K.; Kurokawa, N.; Nagahama, K.; Hotta, A. PEG-based nanocomposite hydrogel: Thermoresponsive sol-gel transition controlled by PLGA-PEG-PLGA molecular weight and solute concentration. Polymer (Guildf.), 2017, 115, 246-254.
[http://dx.doi.org/10.1016/j.polymer.2017.03.016]
[14]
Zhang, E.; Guo, Q.; Ji, F.; Tian, X.; Cui, J.; Song, Y.; Sun, H.; Li, J.; Yao, F. Thermoresponsive polysaccharide-based composite hydrogel with antibacterial and healing-promoting activities for preventing recurrent adhesion after adhesiolysis. Acta Biomater., 2018, 74, 439-453.
[http://dx.doi.org/10.1016/j.actbio.2018.05.037]
[15]
Chung, Y-M.; Simmons, K.L.; Gutowska, A.; Jeong, B. Sol-gel transition temperature of PLGA-g-PEG aqueous solutions. Biomacromolecules, 2002, 3(3), 511-516.
[http://dx.doi.org/10.1021/bm0156431]
[16]
Lai, M.C.; Chang, K.C.; Hsu, S.C.; Chou, M.C.; Hung, W.I.; Hsiao, Y.R.; Lee, H.M.; Hsieh, M.F.; Yeh, J.M. In situ gelation of PEG-PLGA-PEG hydrogels containing high loading of hydroxyapatite: in vitro and in vivo characteristics. Biomed. Mater., 2014, 9(1)015011
[http://dx.doi.org/10.1088/1748-6041/9/1/015011]
[17]
Hu, J.; Li, H.Y.; Williams, G.R.; Yang, H.H.; Tao, L.; Zhu, L.M. Electrospun poly(N-isopropylacrylamide)/ethyl cellulose nanofibers as thermoresponsive drug delivery systems. J. Pharm. Sci., 2016, 105(3), 1104-1112.
[http://dx.doi.org/10.1016/S0022-3549(15)00191-4]
[18]
Lin, X.; Tang, D.; Cui, W.; Cheng, Y. Controllable drug release of electrospun thermoresponsive poly(N-isopropylacrylamide)/poly(2-acrylamido-2- methylpropanesulfonic acid) nanofibers. J. Biomed. Mater. Res. A, 2012, 100(7), 1839-1845.
[http://dx.doi.org/10.1002/jbm.a.34142]
[19]
Li, H.; Williams, G.R.; Wu, J.; Wang, H.; Sun, X.; Zhu, L-M. Poly(N-isopropylacrylamide)/poly(l-lactic acid-co-ɛ-caprolactone) fibers loaded with ciprofloxacin as wound dressing materials. Mater. Sci. Eng. C, 2017, 79, 245-254.
[http://dx.doi.org/10.1016/j.msec.2017.04.058]
[20]
Swamy, B.Y.; Chang, J.H.; Ahn, H.; Lee, W-K.; Chung, I. Thermoresponsive N-vinyl caprolactam grafted sodium alginate hydrogel beads for the controlled release of an anticancer drug. Cellulose, 2013, 2, 1261-1273.
[http://dx.doi.org/10.1007/s10570-013-9897-3]
[21]
Webster, M.; Miao, J.J.; Lynch, B.; Green, D.; Jones-Sawyer, R.; Linhardt, R.J.; Mendenhall, J. Tunable thermo-responsive poly(N-vinylcaprolactam) cellulose nanofibers: Synthesis, characterization, and fabrication. Macromol. Mater. Eng., 2012, 298, 447-453.
[http://dx.doi.org/10.1002/mame.201200081]
[22]
Laukkanen, A.; Hietala, S.; Maunu, S.L.; Tenhu, H. Poly(N-vinylcaprolactam) microgel particles grafted with amphiphilic chains. Macromolecules, 2000, 33, 8703-8708.
[http://dx.doi.org/10.1021/ma000953h]
[23]
González, E.; Frey, M.W. Synthesis, characterization and electrospinning of poly(vinyl caprolactam- co -hydroxymethyl acrylamide) to create stimuli-responsive nanofibers. Polymer (Guildf.), 2017, 108, 154-162.
[http://dx.doi.org/10.1016/j.polymer.2016.11.053]
[24]
Wilke, P.; Coger, V.; Nachev, M.; Schachschal, S.; Million, N.; Barcikowski, S.; Sures, B.; Reimers, K.; Vogt, P.M.; Pich, A. Biocompatible microgel-modified electrospun fibers for zinc ion release. Polymer (Guildf.), 2015, 61, 163-173.
[http://dx.doi.org/10.1016/j.polymer.2015.01.078]
[25]
Tanaka, T.; Sun, S.T.; Hirokawa, Y.; Katayama, S.; Kucera, J.; Hiroce, Y.; Amiya, T. Mechanical instability of gels at the phase transition. Nature, 1987, 325, 796-798.
[http://dx.doi.org/10.1038/325796a0]
[26]
Le, P.N.; Huynh, C.K.; Tran, N.Q. Advances in thermosensitive polymer-grafted platforms for biomedical applications. Mater. Sci. Eng. C, 2018, 92, 1016-1030.
[http://dx.doi.org/10.1016/j.msec.2018.02.006]
[27]
Kondo, A.; Fukuda, H. Preparation of thermo-sensitive magnetic hydrogel microspheres and application to enzyme immobilization. J. Ferment. Bioeng., 1997, 84, 337-341.
[http://dx.doi.org/10.1016/S0922-338X(97)89255-0]
[28]
Formhals, A. Process and apparatus for preparing artificial threads. U.S. Patent 1,975,504, Oct 2,, 1934.
[29]
Göktepe, F.; Mülayim, B.B. Long path towards to success in electrospun nanofiber yarn production since 1930’s: A critical review. AUTEX Res. J., 2018, 18, 87-109.
[http://dx.doi.org/10.1515/aut-2018-0004]
[30]
Yarin, A.L.; Zussman, E. Upward needleless electrospinning of multiple nanofibers. Polymer (Guildf.), 2004, 45, 2977-2980.
[http://dx.doi.org/10.1016/j.polymer.2004.02.066]
[31]
Fang, Y.; Xu, L.; Wang, M. High-throughput preparation of silk fibroin nanofibers by modified bubble-electrospinning. Nanomaterials (Basel), 2018, 8(7), 471.
[http://dx.doi.org/10.3390/nano8070471]
[32]
Patel, S.; Patel, G. A review and analysis on recent advancements in bubble electrospinning technology for nanofiber production. Recent Pat. Nanotechnol., 2019, 13, 80-91.
[http://dx.doi.org/10.2174/1872210513666190306154923]
[33]
Liu, Y.; He, J.H. Bubble electrospinning for mass production of nanofibers. Int. J. Nonlinear Sci. Numer. Simul., 2007, 8, 393-396.
[http://dx.doi.org/10.1515/IJNSNS.2007.8.3.393]
[34]
Shao, Z.B.; Song, Y.H.; Xu, L. Formation mechanism of highly aligned nanofibers by a modified bubble electrospinning. Therm. Sci., 2018, 22, 5-10.
[http://dx.doi.org/10.2298/TSCI160803140S]
[35]
Ma, Z.; Lin, X.; Ren, X. Cellulose acetate nanofibrous membranes for antibacterial applications. Recent Pat. Nanotechnol., 2019, 13(3), 181-188.
[http://dx.doi.org/10.2174/1872210513666190603084519]
[36]
Lee, J.H.; Altemus, B.; Xue, Y.; Castracane, J.; Gadre, A. Fabrication and characterization of aligned continuous polymeric electrospun nanofibers. Micro Nanosyst., 2009, 1, 119-122.
[37]
Wang, C.; Wang, J.; Zeng, L.; Qiao, Z.; Liu, X.; Liu, H.; Zhang, J.; Ding, J. Fabrication of electrospun polymer nanofibers with diverse morphologies. Molecules, 2019, 24(5), 834.
[http://dx.doi.org/10.3390/molecules24050834]
[38]
Kamath, K.R.; Park, K. Biodegradable hydrogels in drug delivery. Adv. Drug Deliv. Rev., 1993, 11, 59-84.
[http://dx.doi.org/10.1016/0169-409X(93)90027-2]
[39]
Dergunov, S.A.; Mun, G.A.; Dergunov, M.A.; Suleimenov, I.E.; Pinkhassik, E. Tunable thermosensitivity in multistimuli-responsive terpolymers. React. Funct. Polym., 2011, 71, 1129-1136.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2011.09.005]
[40]
Winnik, F.M. Fluorescence studies of aqueous solutions of poly(N-isopropylacrylamide) below and above their LCST. Macromolecules, 1990, 23, 233-242.
[http://dx.doi.org/10.1021/ma00203a040]
[41]
Jeong, B.; Kibbey, M.R.; Birnbaum, J.C.; Won, Y-Y.; Gutowska, A. Thermogelling biodegradable polymers with hydrophilic backbones: PEG-g-PLGA. Macromolecules, 2000, 33, 8317-8322.
[http://dx.doi.org/10.1021/ma000638v]
[42]
Schmaljohann, D. Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev., 2006, 58(15), 1655-1670.
[http://dx.doi.org/10.1016/j.addr.2006.09.020]
[43]
Elsayed, M.M. Hydrogel Preparation Technologies: Relevance Kinetics, Thermodynamics and Scaling up Aspects. J. Polym. Environ., 2019, 27, 871-891.
[http://dx.doi.org/10.1007/s10924-019-01376-4]
[44]
Sagitha, P.; Reshmi, C.R.; Sundaran, S.P.; Sujith, A. Recent advances in post-modification strategies of polymeric electrospun membranes. Eur. Polym. J., 2018, 105, 227-249.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.05.033]
[45]
Scarpa, J.S.; Mueller, D.D.; Klotz, I.M. Slow hydrogen-deuterium exchange in a non-α-helical polyamide. JACS, 1967, 89, 6024-6030.
[http://dx.doi.org/10.1021/ja01000a006]
[46]
Chen, Y.; Tang, X.L.; Chen, B.T.; Qiu, G. Low temperature plasma vapor treatment of thermo-sensitive poly(N-isopropylacrylamide) and its application. Appl. Surf. Sci., 2013, 268, 332-336.
[http://dx.doi.org/10.1016/j.apsusc.2012.12.089]
[47]
Chen, H.; Hsieh, Y-L. Ultrafine hydrogel fibers with dual temperature- and pH-responsive swelling behaviors. J. Polym. Sci. A Polym. Chem., 2004, 42, 6331-6339.
[http://dx.doi.org/10.1002/pola.20461]
[48]
Alexander, A. Ajazuddin; Khan, J.; Saraf, S.; Saraf, S. Poly(ethylene glycol)-poly(lactic-co-glycolic acid) based thermosensitive injectable hydrogels for biomedical applications. J. Control. Release, 2013, 172(3), 715-729.
[http://dx.doi.org/10.1016/j.jconrel.2013.10.006]
[49]
Li, J.; Zhu, J.; He, T.; Li, W.; Zhao, Y.; Chen, Z.; Zhang, J.; Wan, H.; Li, R. Prevention of intra-abdominal adhesion using electrospun PEG/PLGA nanofibrous membranes. Mater. Sci. Eng. C, 2017, 78, 988-997.
[http://dx.doi.org/10.1016/j.msec.2017.04.017]
[50]
Spadaro, S.; Santoro, M.; Barreca, F.; Scala, A.; Grimato, S.; Neri, F.; Fazio, E. PEG-PLGA electrospun nanofibrous membranes loaded with Au@Fe2O3 nanoparticles for drug delivery applications. Front. Phys., 2018, 13136201
[http://dx.doi.org/10.1007/s11467-017-0703-9]
[51]
Peng, S.F.; Wu, C. Surfactant effect on pH and temperature sensitivities of poly(N-vinylcaprolactam-co-sodium acrylate) microgels. Macromolecules, 2001, 34, 568-571.
[http://dx.doi.org/10.1021/ma0009909]
[52]
Li, H.; Liu, K.; Williams, G.R.; Wu, J.; Wu, J.; Wang, H.; Niu, S.; Zhu, L-M. Dual temperature and pH responsive nanofiber formulations prepared by electrospinning. Colloids Surf. B Biointerfaces, 2018, 171, 142-149.
[http://dx.doi.org/10.1016/j.colsurfb.2018.07.020]
[53]
Liu, L.; Bai, S.; Yang, H.; Li, S.; Quan, J.; Zhu, L.; Nie, H. Controlled release from thermo-sensitive PNVCL-co-MAA electrospun nanofibers: The effects of hydrophilicity/hydrophobicity of a drug. Mater. Sci. Eng. C, 2016, 67, 581-589.
[http://dx.doi.org/10.1016/j.msec.2016.05.083]
[54]
Su, F.; Wang, Y.; Liu, X.; Shen, X.; Zhang, X.; Xing, Q.; Wang, L.; Chen, Y. Biocompatibility and in vivo degradation of chitosan based hydrogels as potential drug carrier. J. Biomater. Sci. Polym. Ed., 2018, 29(13), 1515-1528.
[http://dx.doi.org/10.1080/09205063.2017.1412244]
[55]
Wang, Q.Q.; Kong, M.; An, Y.; Liu, Y.; Li, J.J.; Zhou, X.; Feng, C.; Li, J.; Jiang, S.Y.; Cheng, X.J.; Chen, X.G. Hydroxybutyl chitosan thermo-sensitive hydrogel: A potential drug delivery system. J. Mater. Sci., 2013, 48, 5614-5623.
[http://dx.doi.org/10.1007/s10853-013-7356-z]
[56]
Zhang, K.; Qian, Y.; Wang, H.; Fan, L.; Huang, C.; Yin, A.; Mo, X. Genipin-crosslinked silk fibroin/hydroxybutyl chitosan nanofibrous scaffolds for tissue-engineering application. J. Biomed. Mater. Res. A, 2010, 95(3), 870-881.
[http://dx.doi.org/10.1002/jbm.a.32895]
[57]
Zhang, K.; Qian, Y.; Wang, H.; Fan, L.; Huang, C.; Mo, X. Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix. J. Biomater. Sci. Polym. Ed., 2011, 22(8), 1069-1082.
[http://dx.doi.org/10.1163/092050610X498204]
[58]
Weißenborn, E.; Braunschweig, B. Hydroxypropyl cellulose as a green polymer for thermo-responsive aqueous foams. Soft Matter, 2019, 15(13), 2876-2883.
[http://dx.doi.org/10.1039/C9SM00093C]
[59]
Kazsoki, A.; Szabó, P.; Zelkó, R. Prediction of the hydroxypropyl cellulose-poly(vinyl alcohol) ratio in aqueous solution containing papaverine hydrochloride in terms of drug loaded electrospun fiber formation. J. Pharm. Biomed. Anal., 2017, 138, 357-362.
[http://dx.doi.org/10.1016/j.jpba.2017.02.030]
[60]
Kazsoki, A.; Domján, A.; Süvegh, K.; Zelkó, R. Microstructural characterization of papaverine-loaded HPC/PVA gels, films and nanofibers. Eur. J. Pharm. Sci., 2018, 122, 9-12.
[http://dx.doi.org/10.1016/j.ejps.2018.06.020]
[61]
Yan, L.; Lin, W.; Bangal, P.R. Nanofiber formation of hydroxylpropylcellulose (HPC). Macromol. Biosci., 2006, 6(7), 532-539.
[http://dx.doi.org/10.1002/mabi.200600067]
[62]
Sridhar, R.; Venugopal, J.R.; Sundarrajan, S.; Ravichandran, R.; Ramalingam, B.; Ramakrishna, S. Electrospun nanofibers for pharmaceutical and medical applications. J. Drug Deliv. Sci. Technol., 2011, 21, 451-468.
[http://dx.doi.org/10.1016/S1773-2247(11)50075-9]
[63]
Wang, L.; Zhang, Y.; Zhang, W.Q.; Ren, T.R.; Wang, F.; Yang, H.F. Laser-induced plasmonic heating on silver nanoparticles/poly(N-isopropylacrylamide) mats for optimizing SERS detection. J. Raman Spectrosc., 2016, 48, 243-250.
[http://dx.doi.org/10.1002/jrs.5012]
[64]
Sarhan, W.A.; Azzazy, H.M.E.; El-Sherbiny, I.M. The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers. Mater. Sci. Eng. C, 2016, 67, 276-284.
[http://dx.doi.org/10.1016/j.msec.2016.05.006]
[65]
Aytac, Z.; Sen, H.S.; Durgun, E.; Uyar, T. Sulfisoxazole/cyclodextrin inclusion complex incorporated in electrospun hydroxypropyl cellulose nanofibers as drug delivery system. Colloids Surf. B Biointerfaces, 2015, 128, 331-338.
[http://dx.doi.org/10.1016/j.colsurfb.2015.02.019]
[66]
Zhang, L.; Wang, Z.; Xiao, Y.; Liu, P.; Wang, S.; Zhao, Y.; Shen, M.; Shi, X. Electrospun PEGylated PLGA nanofibers for drug encapsulation and release. Mater. Sci. Eng. C, 2018, 91, 255-262.
[http://dx.doi.org/10.1016/j.msec.2018.05.045]
[67]
Liu, C.; Huang, Y.; Pang, M.; Yang, Y.; Li, S.; Liu, L.; Shu, T.; Zhou, W.; Wang, X.; Rong, L.; Liu, B. Tissue-engineered regeneration of completely transected spinal cord using induced neural stem cells and gelatin-electrospun poly (lactide-co-glycolide)/polyethylene glycol scaffolds. PLoS One, 2015, 10(3)e0117709
[http://dx.doi.org/10.1371/journal.pone.0117709]
[68]
Kim, T.G.; Park, T.G. Biomimicking extracellular matrix: cell adhesive RGD peptide modified electrospun poly(D,L-lactic-co-glycolic acid) nanofiber mesh. Tissue Eng., 2006, 12(2), 221-233.
[http://dx.doi.org/10.1089/ten.2006.12.221]
[69]
Li, J.J.; Zhu, L.T.; Luo, Z.H. Electrospun fibrous membrane with enhanced swithchable oil/water wettability for oily water separation. Chem. Eng. J., 2016, 287, 474-481.
[http://dx.doi.org/10.1016/j.cej.2015.11.057]
[70]
Maisonet, M.M.; Elineni, K.K.; Toomey, R.G.; Gallant, N.D. Combining nonadhesive materials into microstructured composite surfaces induces cell adhesion and spreading. ACS Biomater. Sci. Eng., 2015, 1, 1163-1173.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00309]
[71]
Wang, J.T.; Chiu, Y.C.; Sun, H.S.; Yoshida, K.; Chen, Y.G.; Satoh, T.; Kakuchi, T.; Chen, W-C. Synthesis of multifunctional poly(1-pyrenemethyl methacrylate)-b-poly(N-isopropylacrylamide)-b-poly(N-methylolacrylamide)s and their electrospun nanofibers for metal ion sensory applications. Polym. Chem., 2015, 6, 2327-2336.
[http://dx.doi.org/10.1039/C4PY01773K]
[72]
Wu, Q.; Wu, D.; Guan, Y. Fast equilibrium micro-extraction from biological fluids with biocompatible core-sheath electrospun nanofibers. Anal. Chem., 2013, 85(12), 5924-5932.
[http://dx.doi.org/10.1021/ac4006974]
[73]
Li, J.B.; Peng, C.W.; Wang, Z.M.; Ren, J. Preparation of thermo-responsive drug-loaded nanofibrous films created by electrospinning. RSC Advances, 2018, 8, 17551-17557.
[http://dx.doi.org/10.1039/C8RA02442A]
[74]
Constantin, M.; Bucatariu, S.; Ascenzi, P.; Simionescu, B.C.; Fundueanu, G. Poly(NIPAAm-co-β-cyclodextrin) microgels with drug hosting and temperature-dependent delivery properties. React. Funct. Polym., 2014, 84, 1-9.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2014.07.024]
[75]
Satilmis, B.; Budd, P.M.; Uyar, T. Systematic hydrolysis of PIM-1 and electrospinning of hydrolyzed PIM-1 ultrafine fibers for an efficient removal of dye from water. React. Funct. Polym., 2017, 121, 67-75.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.10.019]
[76]
Vanangamudi, A.; Dumée, L.F.; Ligneris, E.D.; Duke, M.; Yang, X. Thermo-responsive nanofibrous composite membranes for efficient self-cleaning of protein foulants. J. Membr. Sci., 2019, 574, 309-317.
[http://dx.doi.org/10.1016/j.memsci.2018.12.086]
[77]
Guarino, V.; Cruz-Maya, I.; Altobelli, R.; Abdul Khodir, W.K.; Ambrosio, L.; Alvarez Pèrez, M.A.; Flores, A.A. Electrospun polycaprolactone nanofibres decorated by drug loaded chitosan nano-reservoirs for antibacterial treatments. Nanotechnology, 2017, 28(50)505103
[http://dx.doi.org/10.1088/1361-6528/aa9542]
[78]
Rustad, K.C.; Sorkin, M.; Levi, B.; Longaker, M.T.; Gurtner, G.C. Strategies for organ level tissue engineering. Organogenesis, 2010, 6(3), 151-157.
[http://dx.doi.org/10.4161/org.6.3.12139]
[79]
Montalbano, G.; Toumpaniari, S.; Popov, A.; Duan, P.; Chen, J.; Dalgarno, K.; Scott, W.E., III; Ferreira, A.M. Synthesis of bioinspired collagen/alginate/fibrin based hydrogels for soft tissue engineering. Mater. Sci. Eng. C, 2018, 91, 236-246.
[http://dx.doi.org/10.1016/j.msec.2018.04.101]
[80]
Quirós, J.; Amaral, A.J.R.; Pasparakis, G.; Williams, G.R.; Rosala, R. Electrospun boronic acid-containing polymer membranes as fluorescent sensors for bacteria detection. React. Funct. Polym., 2017, 121, 23-31.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.10.007]
[81]
Patris, S.; Vandeput, M.; Kauffmann, J-M. Antibodies as target for affinity biosensors. Trends Analyt. Chem., 2016, 79, 239-246.
[http://dx.doi.org/10.1016/j.trac.2015.12.005]
[82]
Tzeng, P.; Kuo, C-C.; Lin, S-T.; Chiu, Y-C.; Chen, W-C. New thermoresponsive luminescent electrospun nanofibers prepared from poly[2,7-(9,9-dihexylfluorene)]-block-poly(N-isopropylacry- lamide)/PMMA blends. Macromol. Chem. Phys., 2010, 211, 1408-1416.
[http://dx.doi.org/10.1002/macp.201000088]

© 2024 Bentham Science Publishers | Privacy Policy