Molecular Evaluation of PROGINS Mutation in Progesterone Receptor Gene and Determination of its Frequency, Distribution Pattern and Association with Breast Cancer Susceptibility in Saudi Arabia

Author(s): Ibrahim A. Albalawi, Rashid Mir*, Fasel M. Abu-Duhier

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 20 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aims: Experimental and clinical evidence demonstrate that progesterone hormone and its nuclear receptor, the Progesterone Receptor (PR), play critical role in controlling mammary gland tumorigenesis and breast cancer development. Hormonal therapy (Tomaxifen) is the frontline treatment for hormone-dependent breast cancers. Progesterone hormone induces its action on the target cells by binding with its Progesterone receptor (PgR) therefore any genetic variations, which might induce alienation in the progesterone receptor, can result in an increased susceptibility of gynecological cancers. Alu insertion (PROGINS) mutation in PgR gene is reported to be associated with an increased risk of ovarian cancer and a decreased risk of breast cancer. However, its association with breast cancer risk remains inconclusive. Therefore, we investigated the association of PROGINS allele and its link with breast cancer risk.

Methods: This case control study was performed on 200 subjects in which 100 were breast cancer cases and 100 gender matched healthy controls.The mutation was detected by using mutation specific PCR and results were confirmed by direct Sanger sequencing.

Results: A clinically significant difference was reported in genotype distribution of PROGINs allele among the cases and gender-matched healthy controls (P<0. 032). Genotype frequencies of A1/A1, A1/A2, A2/A2 reported in cases was 81%, 19% (18% & 1%) and in matched healthy controls were 93%, 7% (6% & 1%). The higher frequency of PROGINs allele (19%) was observed in cases than the healthy controls (7%). The findings indicated that PgR variants (CC vs CT) increased the risk of Breast cancer in codominant inheritance model with OR= 3.44, 95% CI =1. 30-9.09, P<0.021) whereas nonsignificant association was found for CC vs TT genotypes with OR=1.14, 95% CI=0.07-18.658, P=0. 92. However, subgroup analysis revealed that CT + TT vs CC genotype increased the risk of breast cancer in dominant inheritance model tested OR = 3. 11, 95% CI = (1.24-7.79), P = 0.015). A nonsignificant association for PgR (CC+CT) vs TT) genotypes were reported in breast cancer OR = 1. 0, 95% CI= (0. 061-16.21), P=1) in recessive inheritance model tested. However, analysis with clinicalpathological variables revealed that the PROGINs allele is significantly associated with the distant metastasis and advanced stage of the disease.

Conclusion: The mutation specific PCR was successfully developed as an alternative to Sanger sequencing for the cost-effective detection for PROGINS allele of progesterone receptor gene. A clinically significant correlation of PROGINs allele was reported with the distant metastasis and advanced stage of the disease. Taken together, these results demonstrated that PROGINS variant is associated with an increased susceptibility to Breast cancer, providing novel insights into the genetic etiology and underlying biology of Breast carcinogenesis. Further studies with large sample sizes are required to validate our findings.

Keywords: Breast cancer, progesterone receptor (PR) gene, PROGINS mutation, PgR (+331C>T), progesterone receptor-PRA and PRB, gene variation.

[1]
Bray, F.; Ren, J.S.; Masuyer, E.; Ferlay, J. Global estimates of cancer prevalence for 27 sites in the adult population in 2008. Int. J. Cancer, 2013, 132(5), 1133-1145.
[http://dx.doi.org/10.1002/ijc.27711] [PMID: 22752881]
[2]
Al Balawi, I.A.; Mir, R.; Abu-Duhier, F.M. Potential Impact of Vascular Endothelial Growth Factor Gene Variation (-2578C>A) on Breast Cancer Susceptibility in Saudi Arabia: a Case-Control Study. Asian Pac. J. Cancer Prev., 2018, 19(4), 1135-1143.
[PMID: 29699375]
[3]
Mir, R.; Javid, J.; Al Balawi, I.A.; Alkharsah, K.R.; Hadi, M.A.; Rahman, M.A.; Hamoud, E.; Al Alawi, Y.; Al Zahrani, A.B.M.; Abu-Duhier, F.M. A germline mutation in the BRCA1 3’UTR variant predicts susceptibility to breast cancer in a Saudi Arabian population. Asian Pac. J. Cancer Prev., 2018, 19(3), 859-866.
[PMID: 29582646]
[4]
Lee, K.W.C.; Lord, S.; Finn, R.S.; Lim, E.; Martin, A.; Loi, S.; Lynch, J.; Friedlander, M.; Lee, C.K. The impact of ethnicity on efficacy and toxicity of cyclin D kinase 4/6 inhibitors in advanced breast cancer: a meta-analysis. Breast Cancer Res. Treat., 2019, 174(1), 271-278.
[http://dx.doi.org/10.1007/s10549-018-5054-x] [PMID: 30465154]
[5]
Cheon, Y.P.; Li, Q.; Xu, X.; DeMayo, F.J.; Bagchi, I.C.; Bagchi, M.K. A genomic approach to identify novel progesterone receptor regulated pathways in the uterus during implantation. Mol. Endocrinol., 2002, 16(12), 2853-2871.
[http://dx.doi.org/10.1210/me.2002-0270] [PMID: 12456805]
[6]
Sharif, Z.; Barfeh, S.B.; Marouzi, S.; Rad, A.S.; Asoodeh, A.; Chamani, J. Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: Binary and ternary systems. J. Solution Chem., 2017, 46(2), 488-504.
[http://dx.doi.org/10.1007/s10953-017-0590-2]
[7]
Zolfagharzadeh, M.; Pirouzi, M.; Asoodeh, A.; Saberi, M.R.; Chamani, J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J. Biomol. Struct. Dyn., 2014, 32(12), 1936-1952.
[http://dx.doi.org/10.1080/07391102.2013.843062] [PMID: 24125112]
[8]
Kamshad, M.; Jahanshah Talab, M.; Beigoli, S.; Sharifirad, A.; Chamani, J. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. J. Biomol. Struct. Dyn., 2019, 37(8), 2030-2040.
[http://dx.doi.org/10.1080/07391102.2018.1475258] [PMID: 29757090]
[9]
Shakibapour, N.; Dehghani Sani, F.; Beigoli, S.; Sadeghian, H.; Chamani, J. Multi-spectroscopic and molecular modeling studies to reveal the interaction between propyl acridone and calf thymus DNA in the presence of histone H1: binary and ternary approaches. J. Biomol. Struct. Dyn., 2019, 37(2), 359-371.
[http://dx.doi.org/10.1080/07391102.2018.1427629] [PMID: 29338579]
[10]
Anderson, E. The role of oestrogen and progesterone receptors in human mammary development and tumorigenesis. Breast Cancer Res., 2002, 4(5), 197-201.
[http://dx.doi.org/10.1186/bcr452] [PMID: 12223124]
[11]
Kariagina, A.; Aupperlee, M.D.; Haslam, S.Z. Progesterone receptor isoform functions in normal breast development and breast cancer. Crit. Rev. Eukaryot. Gene Expr., 2008, 18(1), 11-33.
[http://dx.doi.org/10.1615/CritRevEukarGeneExpr.v18.i1.20] [PMID: 18197783]
[12]
Hilton, H.N.; Clarke, C.L.; Graham, J.D. Estrogen and progesterone signalling in the normal breast and its implications for cancer development. Mol. Cell. Endocrinol., 2018, 466, 2-14.
[http://dx.doi.org/10.1016/j.mce.2017.08.011] [PMID: 28851667]
[13]
Gompel, A.; Plu-Bureau, G. Progesterone, progestins and the breast in menopause treatment. Climacteric, 2018, 21(4), 326-332.
[http://dx.doi.org/10.1080/13697137.2018.1476483] [PMID: 29852797]
[14]
Terry, K.L.; De Vivo, I.; Titus-Ernstoff, L.; Sluss, P.M.; Cramer, D.W. Genetic variation in the progesterone receptor gene and ovarian cancer risk. Am. J. Epidemiol., 2005, 161(5), 442-451.
[http://dx.doi.org/10.1093/aje/kwi064] [PMID: 15718480]
[15]
Rowe, S.M.; Coughlan, S.J.; McKenna, N.J.; Garrett, E.; Kieback, D.G.; Carney, D.N.; Headon, D.R. Ovarian carcinoma-associated TaqI restriction fragment length polymorphism in intron G of the progesterone receptor gene is due to an Alu sequence insertion. Cancer Res., 1995, 55(13), 2743-2745.
[PMID: 7796397]
[16]
Kieback, D.G.; Tong, X-W.; Weigel, N.L.; Agoulnik, I.U. A genetic mutation in the progesterone receptor (PROGINS) leads to an increased risk of non-familial breast and ovarian cancer causing inadequate control of estrogen receptor driven proliferation. J. Soc. Gynecol. Investig., 1998, 5, 40a.
[http://dx.doi.org/10.1016/S1071-5576(97)86082-0]
[17]
Lai, P.F.; Georgiou, E.X.; Tribe, R.M.; Johnson, M.R. The impact of progesterone and RU-486 on classic pro-labour proteins & contractility in human myometrial tissues during 24-hour exposure to tension & interleukin-1β. Mol. Cell. Endocrinol., 2020, 500110633
[http://dx.doi.org/10.1016/j.mce.2019.110633] [PMID: 31678609]
[18]
Sarzehi, S.; Chamani, J. Investigation on the interaction between tamoxifen and human holo-transferrin: determination of the binding mechanism by fluorescence quenching, resonance light scattering and circular dichroism methods. Int. J. Biol. Macromol., 2010, 47(4), 558-569.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.08.002] [PMID: 20708639]
[19]
Chamani, J. Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J. Mol. Struct., 2010, 979(1-3), 227-234.
[http://dx.doi.org/10.1016/j.molstruc.2010.06.035]
[20]
Yang, DS.; Sung, HJ.; Woo, OH.; Park, KH.; Woo, SU. Association of a progesterone receptor gene +331 G/A polymorphism with breast cancer risk: a meta-analysis. Cancer Genet. Cytogenet., 2010, 196,2, 194-197.
[21]
Kapoor, P.M.; Lindström, S.; Behrens, S.; Wang, X.; Michailidou, K.; Bolla, M.K. Breast Cancer Association Consortium.Assessment of interactions between 205 breast cancer susceptibility loci and 13 established risk factors in relation to breast cancer risk, in the Breast Cancer Association Consortium. Int. J. Epidemiol., 2019.
[PMID: 31605532]
[22]
Yu, K.D.; Chen, A.X.; Shao, Z.M. No association between a progesterone receptor gene promoter polymorphism (+331G>A) and breast cancer risk in Caucasian women: evidence from a literature-based meta-analysis. Breast Cancer Res. Treat., 2010, 122(3), 853-858.
[http://dx.doi.org/10.1007/s10549-010-0738-x] [PMID: 20076999]
[23]
Chaudhary, S.; Panda, A.K.; Mishra, D.R.; Mishra, S.K. Association of +331G/A PgR polymorphism with susceptibility to female reproductive cancer: evidence from a meta-analysis. PLoS One, 2013, 8(1)e53308
[http://dx.doi.org/10.1371/journal.pone.0053308] [PMID: 23349706]
[24]
Qi, X.L.; Yao, J.; Zhang, Y. No association between the progesterone receptor gene polymorphism (+331G/a) and the risk of breast cancer: an updated meta-analysis. BMC Med. Genet., 2017, 18(1), 123.
[http://dx.doi.org/10.1186/s12881-017-0487-3] [PMID: 29084518]
[25]
Karadeniz, M.; Erdogan, M.; Berdeli, A.; Tamsel, S. Fusun Saygili1 and Candeger Yilmaz. The progesterone receptor PROGINS polymorphism is not related to oxidative stress factors in women with polycystic ovary syndrome. Cardiovasc. Diabetol., 2007, 6(29), 1-7.
[26]
Ghali, R.M.; Al-Mutawa, M.A.; Ebrahim, B.H.; Jrah, H.H.; Zaied, S.; Bhiri, H.; Hmila, F.; Mahjoub, T.; Almawi, W.Y. Progesterone Receptor (PGR) Gene Variants Associated with Breast Cancer and Associated Features: a Case-Control Study. Pathol. Oncol. Res., 2018.
[PMID: 29302853]
[27]
Mote, P.A.; Balleine, R.L.; McGowan, E.M.; Clarke, C.L. Heterogeneity of progesterone receptors A and B expression in human endometrial glands and stroma. Hum. Reprod., 2000, 15(Suppl. 3), 48-56.
[http://dx.doi.org/10.1093/humrep/15.suppl_3.48] [PMID: 11041221]
[28]
Li, A.J.; Baldwin, R.L.; Karlan, B.Y. Estrogen and progesterone receptor subtype expression in normal and malignant ovarian epithelial cell cultures. Am. J. Obstet. Gynecol., 2003, 189(1), 22-27.
[http://dx.doi.org/10.1067/mob.2003.328] [PMID: 12861133]
[29]
Ismail, P.M.; DeMayo, F.J.; Amato, P.; Lydon, J.P. Progesterone induction of calcitonin expression in the murine mammary gland. J. Endocrinol., 2004, 180(2), 287-295.
[http://dx.doi.org/10.1677/joe.0.1800287] [PMID: 14765981]
[30]
Ismail, P.M.; Amato, P.; Soyal, S.M.; DeMayo, F.J.; Conneely, O.M.; O’Malley, B.W.; Lydon, J.P. Progesterone involvement in breast development and tumorigenesis--as revealed by progesterone receptor “knockout” and “knockin” mouse models. Steroids, 2003, 68(10-13), 779-787.
[http://dx.doi.org/10.1016/S0039-128X(03)00133-8] [PMID: 14667968]
[31]
Yadav, P.; Mir, R.; Nandi, K.; Javid, J.; Masroor, M.; Ahmad, I.; Zuberi, M.; Kaza, R.; Jain, S.; Khurana, N.; Ray, P.C.; Saxena, A. The C609T (Pro187Ser) Null Polymorphism of the NQO1 Gene Contributes Significantly to Breast Cancer Susceptibility in North Indian Populations: a Case Control Study. Asian Pac. J. Cancer Prev., 2016, 17(3), 1215-1219.
[http://dx.doi.org/10.7314/APJCP.2016.17.3.1215] [PMID: 27039751]
[32]
Stenzig, J.; Schweikert, A.; Piasecki, A.; Höppner, G.; Eschenhagen, T.; Rau, T. Progesterone receptor variants associated with the PROGINS haplotype exhibit functional properties similar to those of wild-type progesterone receptor. Pharmacogenet. Genomics, 2012, 22(8), 629-641.
[http://dx.doi.org/10.1097/FPC.0b013e3283558256] [PMID: 22722322]
[33]
Huggins, G.S.; Wong, J.Y.; Hankinson, S.E.; De Vivo, I. GATA5 activation of the progesterone receptor gene promoter in breast cancer cells is influenced by the +331G/A polymorphism. Cancer Res., 2006, 66(3), 1384-1390.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2715] [PMID: 16452193]
[34]
Pearce, C.L.; Wu, A.H.; Gayther, S.A.; Bale, A.E.; Beck, P.A.; Beesley, J.; Chanock, S.; Cramer, D.W.; DiCioccio, R.; Edwards, R.; Fredericksen, Z.S.; Garcia-Closas, M.; Goode, E.L.; Green, A.C.; Hartmann, L.C.; Hogdall, E.; Kjaer, S.K.; Lissowska, J.; McGuire, V.; Modugno, F.; Moysich, K.; Ness, R.B.; Ramus, S.J.; Risch, H.A.; Sellers, T.A.; Song, H.; Stram, D.O.; Terry, K.L.; Webb, P.M.; Whiteman, D.C.; Whittemore, A.S.; Zheng, W.; Pharoah, P.D.; Chenevix-Trench, G.; Pike, M.C.; Schildkraut, J.; Berchuck, A. Australian Cancer Study (Ovarian Cancer) and Australian Cancer Study Group.Ovarian Cancer Association Consortium.Progesterone receptor variation and risk of ovarian cancer is limited to the invasive endometrioid subtype: results from the Ovarian Cancer Association Consortium pooled analysis. Br. J. Cancer, 2008, 98(2), 282-288.
[http://dx.doi.org/10.1038/sj.bjc.6604170] [PMID: 18219286]
[35]
Doll, A.; Abal, M.; Rigau, M.; Monge, M.; Gonzalez, M.; Demajo, S.; Colás, E.; Llauradó, M.; Alazzouzi, H.; Planagumá, J.; Lohmann, M.A.; Garcia, J.; Castellvi, S.; Ramon y Cajal, J.; Gil-Moreno, A.; Xercavins, J.; Alameda, F.; Reventós, J. Novel molecular profiles of endometrial cancer-new light through old windows. J. Steroid Biochem. Mol. Biol., 2008, 108(3-5), 221-229.
[http://dx.doi.org/10.1016/j.jsbmb.2007.09.020] [PMID: 18061438]
[36]
Cao, P.; Miao, B.; Xu, Y.; Fan, Q.; Zhang, Q.; Zhang, G.; Zhou, C.; Xu, Y. Role of gene polymorphisms related to progesterone elevation in women undergoing long GnRH agonist protocols. Reprod. Biomed. Online, 2020, 40(3), 381-392.
[http://dx.doi.org/10.1016/j.rbmo.2019.12.013] [PMID: 32204850]
[37]
Berchuck, A.; Schildkraut, J.M.; Wenham, R.M.; Calingaert, B.; Ali, S.; Henriott, A.; Halabi, S.; Rodriguez, G.C.; Gertig, D.; Purdie, D.M.; Kelemen, L.; Spurdle, A.B.; Marks, J.; Chenevix-Trench, G. Progesterone receptor promoter +331A polymorphism is associated with a reduced risk of endometrioid and clear cell ovarian cancers. Cancer Epidemiol. Biomarkers Prev., 2004, 13(12), 2141-2147.
[PMID: 15598772]
[38]
Rockwell, L.C.; Rowe, E.J.; Arnson, K.; Jackson, F.; Froment, A.; Ndumbe, P.; Seck, B.; Jackson, R.; Lorenz, J.G. Worldwide distribution of allelic variation at the progesterone receptor locus and the incidence of female reproductive cancers. Am. J. Hum. Biol., 2012, 24(1), 42-51.
[http://dx.doi.org/10.1002/ajhb.21233] [PMID: 22121098]
[39]
Fowler, A.M.; Salem, K.; DeGrave, M.; Ong, I.M.; Rassman, S.; Powers, G.L.; Kumar, M.; Michel, C.J.; Mahajan, A.M. Progesterone Receptor Gene Variants in Metastatic Estrogen Receptor Positive Breast Cancer. Horm. Cancer, 2020, 11(2), 63-75.
[http://dx.doi.org/10.1007/s12672-020-00377-3] [PMID: 31942683]
[40]
Feigelson, H.S.; Rodriguez, C.; Jacobs, E.J.; Diver, W.R.; Thun, M.J.; Calle, E.E. No association between the progesterone receptor gene +331G/A polymorphism and breast cancer. Cancer Epidemiol. Biomarkers Prev., 2004, 13(6), 1084-1085.
[PMID: 15184270]
[41]
Pearce, C.L.; Hirschhorn, J.N.; Wu, A.H.; Burtt, N.P.; Stram, D.O.; Young, S.; Kolonel, L.N.; Henderson, B.E.; Altshuler, D.; Pike, M.C. Clarifying the PROGINS allele association in ovarian and breast cancer risk: a haplotype-based analysis. J. Natl. Cancer Inst., 2005, 97(1), 51-59.
[http://dx.doi.org/10.1093/jnci/dji007] [PMID: 15632380]
[42]
Fernández, L.P.; Milne, R.L.; Barroso, E.; Cuadros, M.; Arias, J.I.; Ruibal, A.; Benítez, J.; Ribas, G. Estrogen and progesterone receptor gene polymorphisms and sporadic breast cancer risk: a Spanish case-control study. Int. J. Cancer, 2006, 119(2), 467-471.
[http://dx.doi.org/10.1002/ijc.21847] [PMID: 16477637]
[43]
Pooley, K.A.; Healey, C.S.; Smith, P.L.; Pharoah, P.D.; Thompson, D.; Tee, L.; West, J.; Jordan, C.; Easton, D.F.; Ponder, B.A.; Dunning, A.M. Association of the progesterone receptor gene with breast cancer risk: a single-nucleotide polymorphism tagging approach. Cancer Epidemiol. Biomarkers Prev., 2006, 15(4), 675-682.
[http://dx.doi.org/10.1158/1055-9965.EPI-05-0679] [PMID: 16614108]
[44]
Romano, A.; Lindsey, P.J.; Fischer, D.C.; Delvoux, B.; Paulussen, A.D.; Janssen, R.G.; Kieback, D.G. Two functionally relevant polymorphisms in the human progesterone receptor gene (+331 G/A and progins) and the predisposition for breast and/or ovarian cancer. Gynecol. Oncol., 2006, 101(2), 287-295.
[http://dx.doi.org/10.1016/j.ygyno.2005.10.040] [PMID: 16360811]
[45]
Johnatty, S.E.; Spurdle, A.B.; Beesley, J.; Chen, X.; Hopper, J.L.; Duffy, D.L.; Chenevix-Trench, G. Kathleen Cuningham Consortium for Research in Familial Breast Cancer.Progesterone receptor polymorphisms and risk of breast cancer: results from two Australian breast cancer studies. Breast Cancer Res. Treat., 2008, 109(1), 91-99.
[http://dx.doi.org/10.1007/s10549-007-9627-3] [PMID: 17592773]
[46]
Diergaarde, B.; Potter, J.D.; Jupe, E.R.; Manjeshwar, S.; Shimasaki, C.D.; Pugh, T.W.; Defreese, D.C.; Gramling, B.A.; Evans, I.; White, E. Polymorphisms in genes involved in sex hormone metabolism, estrogen plus progestin hormone therapy use, and risk of postmenopausal breast cancer. Cancer Epidemiol. Biomarkers Prev., 2008, 17(7), 1751-1759.
[http://dx.doi.org/10.1158/1055-9965.EPI-08-0168] [PMID: 18628428]
[47]
Kotsopoulos, J.; Tworoger, S.S.; De Vivo, I.; Hankinson, S.E.; Hunter, D.J.; Willett, W.C.; Chen, W.Y. +331G/A variant in the progesterone receptor gene, postmenopausal hormone use and risk of breast cancer. Int. J. Cancer, 2009, 125(7), 1685-1691.
[http://dx.doi.org/10.1002/ijc.24477] [PMID: 19462450]
[48]
Reding, K.W.; Li, C.I.; Weiss, N.S.; Chen, C.; Carlson, C.S.; Duggan, D.; Thummel, K.E.; Daling, J.R.; Malone, K.E. Genetic variation in the progesterone receptor and metabolism pathways and hormone therapy in relation to breast cancer risk. Am. J. Epidemiol., 2009, 170(10), 1241-1249.
[http://dx.doi.org/10.1093/aje/kwp298] [PMID: 19846565]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 5
Year: 2020
Page: [760 - 770]
Pages: 11
DOI: 10.2174/1871530319666191125153050
Price: $65

Article Metrics

PDF: 14
HTML: 1