Evaluation of Bioactive Component, Free Radical Scavenging Potentials and Protein Qualities of Gomphrena celosoides and Zea mays Leaves

Author(s): Bob-Chile A. Adaeze, Peter U. Amadi*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The assessment of underexploited leaves has become crucial to supplement the rapidly depleting sources of bioactive components as well as provide available nutrient sources for local inhabitants.

Methods: This study thus investigated the bioactive components of the oil, and fatty acid composition, free radical scavenging potentials, and protein qualities of leaves of Z. mays and G. celosioides using standard methods. The bioactive components of the oils and fatty acids were determined by Gas Chromatograpy, while the amino acid and in-vitro antioxidant potentials were determined using a Technicon Sequential Multi-Sample (TSM) Amino Acid Analyzer, and spectrophotometer, respectively.

Results: The Z. Mays leaves showed the abundance of farnesene, hexadecanoic acids, and caryophellene while G. celosioides produced high level of octadecadienoic acid, hexadecanoic acid, and phytol. Z. mays and G. celosioides contained 72.48% and 60.55% unsaturated fatty acids respectively, with the abundance of linolenic acid for Z. mays and oleic acid for G. celosioides. The result for the in vitro antioxidant % inhibition showed a concentration dependent free radical scavenging potentials of the leaves. Both G. celosioides and Z. mays produced greater 1,1-diphenyl-2- picrylhydrazyl (DPPH), and hydrogen peroxide radical scavenging potentials than ascorbic acid, while at 40ppm the nitric oxide and 2,2- azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical % inhibition of Z. mays leaves were lower than those for ascorbic acid.

Discussion: The number of essential amino acids in both plants were 48.20 and 39.25 g/100g, total branched chain amino acids (TBCAA) were 21.15 and 16.92 g/100g, predicted protein efficiency ratios (P-PERs) were in the range of 3.02-3.23 and 2.68-2.77, and the essential amino acid index (EAAI) were 1.52 and 1.48, for Z. mays and G. celosioides leaves respectively.

Conclusion: From these results, the utilization of Z. mays and G. celosioides for high quality protein, unsaturated fatty acids and potent antioxidant sources, should be massively encouraged.

Keywords: Zea mays, Gomphrena celosioides, protein quality, essential oil, fatty acid, free radical.

[1]
Amadi, B.A.; Peters, D.E.; Agomuo, E.N.; Amadi, P.U.; Denson, G.O. Nutrient composition of some selected diets of Ijaw people of Bayelsa state. Pol. J. Nat. Sci., 2018, 33(1), 59-74.
[2]
Arjouniab, Y.; Romane, A.; Felsbc, A.; Boukird, A.; Algabr, M. Antioxidant activity and chemical composition of essential oil of Cupressus atlantica gaussen. Curr. Bioact. Compd., 2015, 11, 56-60.
[http://dx.doi.org/10.2174/157340721101150804151917]
[3]
de Moura, R.M.; Pereira, P.S.; Januário, A.H. França, Sde.C.; Dias, D.A. Antimicrobial screening and quantitative determination of benzoic acid derivative of Gomphrena celosioides by TLC-densitometry. Chem. Pharm. Bull. (Tokyo), 2004, 52(11), 1342-1344.
[http://dx.doi.org/10.1248/cpb.52.1342]
[4]
Ignacimuthu, S.; Ayyanar, M. Plants used for non-medicinal purposes by the tribal people in kalakad Mundanthurai Tiger reserve. Southern India. Indian J. Tradit. Knowl., 2009, 9(3), 515-518.
[5]
Amadi, P.U.; Agomuo, E.N.; Bob-Chile Agada, A.; Njoku, U.C.; Ifeanacho, M.O.; Okereke, C.J.; Iheka, C.U.; Osuoha, J.O. Toxicities selected medicinal plants, and floras of lower phyla. Alexandria J. Med., 2018, 54, 587-596.
[http://dx.doi.org/10.1016/j.ajme.2018.05.001]
[6]
de Sousa, D.P. Analgesic-like activity of essential oils constituents. Molecules, 2011, 16(3), 2233-2252.
[http://dx.doi.org/10.3390/molecules16032233]
[7]
Biondo, P.; Carbonera, F.; Zawadzki, F.; Chiavelli, L.; Pilau, E.J.; Prado, I.N.; Visentainer, J.V. Antioxidant capacity and identification of bioactive compounds by GC-MS of essential oils from spices, herbs and citrus. Curr. Bioact. Compd., 2017, 13(2), 137-143.
[http://dx.doi.org/10.2174/1573407212666160614080846]
[8]
Agomuo, E. Amadi, P. Ogunka-Nnoka, C. Amadi, B. Ifeanacho, M.; Njoku, U. Chemical composition of Duranta repens leaf and seed oils. OCL Lipids. Oil Seeds & Crops, 2017, 24(6), 1-8.
[9]
Hussein, L.; el-Fouly, M.M.; el-Baz, F.K.; Ghanem, S.A. Nutritional quality and the presence of anti-nutritional factors in Leaf Protein Concentrates (LPC). Int. J. Food Sci. Nutr., 1999, 50(5), 333-343.
[http://dx.doi.org/10.1080/096374899101067]
[10]
Mansour, F.A.; Gogahy, K.; Bidie, P.A.; Camara-Cesse, M.; Monteomo, F.G.; Kolia, I.K.; Djaman, J.A.; Dosso, M. Anti-inflammatory and antioxidant effects of ethanol extract of Gomphrena celosioides (Amaranthaceae) in wistar rats. Int. J. Pharm. Chem. Biol. Sci., 2017, 4(4), 503-511.
[11]
Organisation for Economic Cooperation and Development (OECD). Guidance document on the recognition, assessment, and use of clinical signs as humane endpoints for experimental animals used in safety evaluation; OECD: Paris, 2000.
[12]
Adeoti, M.F.; Gogahy, K.; Bidie, P.A.; Camara-Cesse, M.; Monteomo, F.G.; Kolia, I.K.; Djaman, J.A.; Dosso, M. Anti-inflammatory and antioxidant effects of ethanol extract of Gomphrena celosioides (Amaranthaceae) in wistar rats. J Pharm Chem Biol Sci, 2017, 4(4), 503-511.
[13]
Agomuo, E.N.; Amadi, P.U. Nutritional and antioxidant properties of oils from selected bagasse, agricultural residues, and fodders. J. Am. Coll. Nutr., 2019, 38(2), 132-140.
[http://dx.doi.org/10.1080/07315724.2018.1484307]
[14]
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945-948.
[http://dx.doi.org/10.1021/jf00018a005]
[15]
Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis, 1989, 10(6), 1003-1008.
[http://dx.doi.org/10.1093/carcin/10.6.1003]
[16]
Alam, M.N.; Bristi, N.J.; Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J., 2013, 21(2), 143-152.
[http://dx.doi.org/10.1016/j.jsps.2012.05.002]
[17]
Pellegrini, N.; Serafini, M.; Colombi, B.; Del Rio, D.; Salvatore, S.; Bianchi, M.; Brighenti, F. Total antioxidant capacity of plant foods, beverages and oils consumed in Italy assessed by three different in vitro assays. J. Nutr., 2003, 133(9), 2812-2819.
[http://dx.doi.org/10.1093/jn/133.9.2812]
[18]
Sutharsingh, D.C.R.; Kavimani, S.; Jayakar, B.; Uvarani, M.; Thangathirupathi, A. Quantitative phytochemical estimation and antioxidant studies on aerial parts of Naravelia zeylanica. Int J Pharm Stud Res, 2011, 2(2), 52-56.
[19]
Benitez, L.V. Amino acid and fatty acid profiles in aquaculture nutrition studies In SS De Silva. Proceedings of the Third Asian Fish Nutrition Network Meeting, 1989, pp. 23-35.
[20]
Rama Rao, M.V.; Tara, M.R.; Krishnan, C.K. Colorimetric estimation of tryptophan content of pulses. J. Food SciTech, (Mysore), 1974, 11, 13-216.
[21]
Ogunka-Nnoka, C.U.; Amadi, P.U.; Ogbonna, P.C.; Ogbegbor, P.O. Assessment of the protein quality and mineral bioavailability of Dacryodes edulis seed and seed coat mixture. J. Sci. Res. Rep., 2017, 14(1), 1-11.
[http://dx.doi.org/10.9734/JSRR/2017/32405]
[22]
Amadi, P.U.; Ogunka Nnoka, C.; Abbey, B.W. Biotransformation of plantain pseudostem fibres using local enzyme sources; Analysis of their potential as commercial poultry feed. Biocatal. Biotransform., 2018, 37(3), 224-232.
[http://dx.doi.org/10.1080/10242422.2018.1532412]
[23]
Steinke, F.H. Precher, E.E.; Hopkins, D.T. Nutritional evaluation (PER) of isolated soybean protein and combinations of food proteins. J. Food Sci., 1980, 45, 323-327.
[http://dx.doi.org/10.1111/j.1365-2621.1980.tb02606.x]
[24]
Çelik, K.; Toğar, B.; Türkez, H.; Taşpinar, N. In vitro cytotoxic, genotoxic, and oxidative effects of acyclic sesquiterpene farnesene. Turk. J. Biol., 2014, 38, 253-259.
[http://dx.doi.org/10.3906/biy-1309-55]
[25]
Sarikurkcu, C.; Sabih Ozer, M.; Cakir, A.; Eskici, M.; Mete, E. Sabih, O.M. Cakir, A. Eskici, M.; Mete, E. GC/MS evaluation and in vitro antioxidant activity of essential oil and solvent extracts of an endemic plant used as folk remedy in Turkey: Phlomis bourgaei Boiss. Evid. Based Complement. Alternat. Med., 2013, 2013, 293080.
[26]
Afoulous, S.; Ferhout, H.; Raoelison, E.G.; Valentin, A.; Moukarzel, B.; Couderc, F.; Bouajila, J. Chemical composition and anticancer, antiinflammatory, antioxidant and antimalarial activities of leaves essential oil of Cedrelopsis grevei. Food Chem. Toxicol., 2013, 56, 352-362.
[http://dx.doi.org/10.1016/j.fct.2013.02.008]
[27]
Guimarães-Santos, A.; Santos, D.S.; Santos, I.R.; Lima, R.R.; Pereira, A.; de Moura, L.S.; Carvalho, R.N., Jr; Lameira, O.; Gomes-Leal, W. Copaiba oil-resin treatment is neuroprotective and reduces neutrophil recruitment and microglia activation after motor cortex excitotoxic injury. Evid. Based Complement. Alternat. Med., 2012, 2012, 918174.
[http://dx.doi.org/10.1155/2012/918174]
[28]
Katsuyama, S.; Mizoguchi, H.; Kuwahata, H.; Komatsu, T.; Nagaoka, K.; Nakamura, H.; Bagetta, G.; Sakurada, T.; Sakurada, S. Involvement of peripheral cannabinoid and opioid receptors in β-caryophyllene-induced antinociception. Eur. J. Pain, 2013, 17(5), 664-675.
[http://dx.doi.org/10.1002/j.1532-2149.2012.00242.x]
[29]
Camila, P.S.; Mirian, S.S.; Vanine, G.M. Antinociceptive and Antioxidant Activities of Phytol In vivo and In vitro Models. Neurosci. J., 2013, 2013, 9.
[30]
Dahham, S.S.; Tabana, Y.M.; Iqbal, M.A.; Ahamed, M.B.; Ezzat, M.O.; Majid, A.S.; Majid, A.M. The anticancer, antioxidant and antimicrobial properties of the sesquiterpene β-caryophyllene from the essential oil of Aquilaria crassna. Molecules, 2015, 20(7), 11808-11829.
[http://dx.doi.org/10.3390/molecules200711808]
[31]
Bamba, A. Yapi Houphouet, F. Bahi, G.A. Djyh, B.N. Djoupoh, A.P.; Gnahoue, G. Effects of aqueous and ethanolic extracts of Entandrophragma angolense, Cola nitida and Gomphrena celosioides against doxorubicin-induced cardiotoxicity in rats. J. Adv. Med. Pharm. Sci., 2016, 10(4), 1-13.
[http://dx.doi.org/10.9734/JAMPS/2016/29269]
[32]
Jones, P.J.; Senanayake, V.K.; Pu, S.; Jenkins, D.J.; Connelly, P.W.; Lamarche, B.; Couture, P.; Charest, A.; Baril-Gravel, L.; West, S.G.; Liu, X.; Fleming, J.A.; McCrea, C.E.; Kris-Etherton, P.M. DHA enriched high-oleic acid canola oil improves lipid profile and lowers predicted cardiovascular disease risk in the canola oil multicenter randomized controlled trial. Am. J. Clin. Nutr., 2014, 100(1), 88-97.
[http://dx.doi.org/10.3945/ajcn.113.081133]
[33]
Ku, C.M.; Lin, J.Y. Farnesol, a sesquiterpene alcohol in essential oils, ameliorates serum allergic antibody titres and lipid profiles in ovalbumin-challenged mice. Allergol. Immunopathol. (Madr.), 2016, 44(2), 149-159.
[http://dx.doi.org/10.1016/j.aller.2015.05.009]
[34]
Orsavova, J.; Misurcova, L.; Ambrozova, J.V.; Vicha, R.; Mlcek, J. fatty acids composition of vegetable oils and its contribution to dietary energy intake and dependence of cardiovascular mortality on dietary intake of fatty acids. Int. J. Mol. Sci., 2015, 16(6), 12871-12890.
[http://dx.doi.org/10.3390/ijms160612871]
[35]
Sabudak, T. Fatty acid composition of seed and leaf oils of pumpkin, walnut, almond, maize, sunflower and melon. Chem. Nat. Compd., 2007, 43(4), 465-467.
[http://dx.doi.org/10.1007/s10600-007-0163-5]
[36]
Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol., 2011, 48(4), 412-422.
[http://dx.doi.org/10.1007/s13197-011-0251-1]
[37]
Aluko, B.T.; Oloyede, O.I.; Afolayan, A.J. Polyphenolic contents and free radical scavenging potential of extracts from leaves of Ocimum americanum L. Pak. J. Biol. Sci., 2013, 16(1), 22-30.
[http://dx.doi.org/10.3923/pjbs.2013.22.30]
[38]
Arowora, K.A.; Ezeonu, C.S.; Imo, C.; Nkaa, C.G. Protein levels and amino acids composition in some leaf vegetables sold at Wukari in Taraba State, Nigeria. Int. J. Biol. Sci. App., 2017, 4(2), 19-24.
[39]
Omoyeni, O.A.; Olaofe, O and; Akinyeye, R. O. Amino acid composition of ten commonly eaten indigenous leafy vegetables of South-West Nigeria. World J. Nutr. Health., 2015, 3(1), 16-21.
[40]
Adeyeye, E.I. Proximate, minerals and amino acids composition of Acanthurus monronviae and Lutjanus goreensis Fish Muscle. BMR Biotechnology, 2014, 1(1), 1-21.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 7
Year: 2020
Published on: 27 October, 2020
Page: [1108 - 1115]
Pages: 8
DOI: 10.2174/1573407215666191125105900
Price: $65

Article Metrics

PDF: 8
HTML: 2
EPUB: 1
PRC: 1