Natural Polymer-based Stimuli-responsive Hydrogels

Author(s): Yuheng Jiang, Ying Wang, Qin Li, Chen Yu*, Wanli Chu*

Journal Name: Current Medicinal Chemistry

Volume 27 , Issue 16 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

The abilities of intelligent polymer hydrogels to change their structure and volume phase in response to external stimuli have provided new possibilities for various advanced technologies and great research and application potentials in the medical field. The natural polymer-based hydrogels have the advantages of environment-friendliness, rich sources and good biocompatibility. Based on their responsiveness to external stimuli, the natural polymer-based hydrogels can be classified into the temperature-responsive hydrogel, pH-responsive hydrogel, light-responsive hydrogel, electricresponsive hydrogel, redox-responsive hydrogel, enzyme-responsive hydrogel, magnetic-responsive hydrogel, multi-responsive hydrogel, etc. In this review, we have compiled some recent studies on natural polymer-based stimuli-responsive hydrogels, especially the hydrogels prepared from polysaccharides. The preparation methods, properties and applications of these hydrogels in the medical field are highlighted.

Keywords: Smart hydrogels, Stimuli-responsive, Natural polymers, Polysaccharides, Chemical stimuli.

[1]
Shi, Y. Preparation and Characterization of Temperature and pH-Sensitive Natural Polymer Hydrogels., Master Thesis, Donghua University: Shanghai. 2005.
[2]
Su, X.; Chen, B. Tough, resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels. Carbohydr. Polym., 2018, 197, 497-507.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.082] [PMID: 30007640]
[3]
Lu, C.; Zha, L. Research progress in stimuli responsive properties of intelligent nano-hydrogels. J. Func. Pol., 2012, 25, 211-220.
[4]
Das, S.; Kumar, R.; Jha, N.N.; Maji, S.K. Controlled exposure of bioactive growth factor in 3D amyloid hydrogel for stem cells differentiation. Adv. Healthc. Mater., 2017, 6(18), 1700368-1700381.
[http://dx.doi.org/10.1002/adhm.201700368] [PMID: 28736995]
[5]
Ward, M.A.; Georgiou, T.K. Thermoresponsive polymers for biomedical applications. Polymers (Basel), 2011, 3(3), 1215-1242.
[http://dx.doi.org/10.3390/polym3031215]
[6]
Li, X.; Chen, R.; Xu, S.; Liu, H.; Hu, Y. Thermoresponsive behavior and rheology of SiO2-hyaluronic acid/poly(N-isopropylacrylamide) (NaHA/PNIPAm) core-shell structured microparticles. J. Chem. Technol. Biotechnol., 2015, 90(3), 407-414.
[http://dx.doi.org/10.1002/jctb.4308]
[7]
Liu, L.; Zhang, Y.; Yu, S.; Zhang, Z.; He, C.; Chen, X. pH- and amylase-responsive carboxymethyl starch/poly(2-isobutyl-acrylic acid) hybrid microgels as effective enteric carriers for oral insulin delivery. Biomacromolecules, 2018, 19(6), 2123-2136.
[http://dx.doi.org/10.1021/acs.biomac.8b00215] [PMID: 29664632]
[8]
Qu, J.; Zhao, X.; Ma, P.X.; Guo, B. Injectable antibacterial conductive hydrogels with dual response to an electric field and pH for localized “smart” drug release. Acta Biomater., 2018, 72, 55-69.
[http://dx.doi.org/10.1016/j.actbio.2018.03.018] [PMID: 29555459]
[9]
Qiu, Y.; Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev., 2001, 53(3), 321-339.
[http://dx.doi.org/10.1016/S0169-409X(01)00203-4] [PMID: 11744175]
[10]
Garnica-Palafox, I.M.; Sánchez-Arévalo, F.M. Influence of natural and synthetic crosslinking reagents on the structural and mechanical properties of chitosan-based hybrid hydrogels. Carbohydr. Polym., 2016, 151, 1073-1081.
[http://dx.doi.org/10.1016/j.carbpol.2016.06.036] [PMID: 27474657]
[11]
Donohue, J. The hydrogen bond in organic crystals. J. Phys. Chem., 1952, 56(4), 502-510.
[http://dx.doi.org/10.1021/j150496a023]
[12]
Natansohn, A.; Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev., 2002, 102(11), 4139-4175.
[http://dx.doi.org/10.1021/cr970155y] [PMID: 12428986]
[13]
Zhang, G.; Chen, T.; Li, C.; Gong, W.; Zhu, M. Spiropyran-based molecular photoswitches. Youji Huaxue, 2013, 33, 927-942.
[http://dx.doi.org/10.6023/cjoc201210006]
[14]
Monier, M.; Abdel-Latif, D.; Ji, H. Synthesis and application of photo-active carboxymethyl cellulose derivatives. React. Funct. Polym., 2016, 102, 137-146.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.03.013]
[15]
Kim, A.R.; Lee, S.L.; Park, S.N. Properties and in vitro drug release of pH- and temperature-sensitive double cross-linked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Int. J. Biol. Macromol. , 2018, 118(Pt A), 731-740.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.061] [PMID: 29940230]
[16]
Fundueanu, G.; Constantin, M.; Ascenzi, P. Preparation and characterization of pH- and temperature-sensitive pullulan microspheres for controlled release of drugs. Biomaterials, 2008, 29(18), 2767-2775.
[http://dx.doi.org/10.1016/j.biomaterials.2008.03.025] [PMID: 18396330]
[17]
Thérien-Aubin, H.; Wang, Y.; Nothdurft, K.; Prince, E.; Cho, S.; Kumacheva, E. Temperature-responsive nanofibrillar hydrogels for cell encapsulation. Biomacromolecules, 2016, 17(10), 3244-3251.
[http://dx.doi.org/10.1021/acs.biomac.6b00979] [PMID: 27615746]
[18]
Wang, L.; Wu, Y.; Men, Y.; Shen, J.; Liu, Z. Thermal-sensitive Starch-g-PNIPAM prepared by Cu(0) catalyzed SET-LRP at molecular level. RSC Advances, 2015, 5(87), 70758-70765.
[http://dx.doi.org/10.1039/C5RA14765D]
[19]
Cruz, A.; García-Uriostegui, L.; Ortega, A.; Isoshima, T.; Burillo, G. Radiation grafting of N-vinylcaprolactam onto nano and macrogels of chitosan: Synthesis and characterization. Carbohydr. Polym., 2017, 155, 303-312.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.083] [PMID: 27702516]
[20]
Bhattarai, N.; Matsen, F.A.; Zhang, M. PEG-grafted chitosan as an injectable thermoreversible hydrogel. Macromol. Biosci., 2005, 5(2), 107-111.
[http://dx.doi.org/10.1002/mabi.200400140] [PMID: 15719428]
[21]
Bhattarai, N.; Ramay, H.R.; Gunn, J.; Matsen, F.A.; Zhang, M. PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J. Control. Release, 2005, 103(3), 609-624.
[http://dx.doi.org/10.1016/j.jconrel.2004.12.019] [PMID: 15820408]
[22]
Chen, J-P.; Cheng, T-H. Preparation and evaluation of thermo-reversible copolymer hydrogels containing chitosan and hyaluronic acid as injectable cell carriers. Polymer (Guildf.), 2009, 50(1), 107-116.
[http://dx.doi.org/10.1016/j.polymer.2008.10.045]
[23]
Fabiano, A.; Bizzarri, R.; Zambito, Y. Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil. Int. J. Nanomedicine, 2017, 12, 633-643.
[http://dx.doi.org/10.2147/IJN.S121642] [PMID: 28144144]
[24]
Xia, G.; Liu, Y.; Tian, M.; Gao, P.; Bao, Z.; Bai, X.; Yu, X.; Lang, X.; Hu, S.; Chen, X. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(17), 3172-3185.
[http://dx.doi.org/10.1039/C7TB00479F]
[25]
Walker, K.J.; Madihally, S.V. Anisotropic temperature sensitive chitosan-based injectable hydrogels mimicking cartilage matrix. J. Biomed. Mater. Res. B Appl. Biomater., 2015, 103(6), 1149-1160.
[http://dx.doi.org/10.1002/jbm.b.33293] [PMID: 25285432]
[26]
Donohue, J. The hydrogen band in organic crystals. J. Phys. Chem., 1952, 56, 502-510.
[http://dx.doi.org/10.1021/j150496a023]
[27]
Yang, Y-S.; Zhou, Y.; Chiang, F.B.Y.; Long, Y. Temperature-responsive hydroxypropylcellulose based thermochromic material and its smart window application. RSC Advances, 2016, 6(66), 61449-61453.
[http://dx.doi.org/10.1039/C6RA12454B]
[28]
Gagnon, M-A.; Lafleur, M. Comparison of the structure and the transport properties of low-set and high-set curdlan hydrogels. J. Colloid Interface Sci., 2011, 357(2), 419-427.
[http://dx.doi.org/10.1016/j.jcis.2011.02.033] [PMID: 21402382]
[29]
Yuan, M.; Bi, B.; Huang, J.; Zhuo, R.; Jiang, X. Thermosensitive and photocrosslinkable hydroxypropyl chitin-based hydrogels for biomedical applications. Carbohydr. Polym., 2018, 192, 10-18.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.031] [PMID: 29691000]
[30]
Zeng, Q.; Han, Y.; Li, H.; Chang, J. Design of a thermosensitive bioglass/agarose-alginate composite hydrogel for chronic wound healing. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(45), 8856-8864.
[http://dx.doi.org/10.1039/C5TB01758K]
[31]
Wei, Z.; Yang, J.H.; Liu, Z.Q.; Xu, F.; Zhou, J.X.; Zrínyi, M.; Osada, Y.; Chen, Y.M. Novel biocompatible polysaccharide‐based self‐healing hydrogel. Adv. Funct. Mater., 2015, 25(9), 1352-1359.
[http://dx.doi.org/10.1002/adfm.201401502]
[32]
Dou, X.Q.; Yang, X.M.; Li, P.; Zhang, Z.G.; Schönherr, H.; Zhang, D.; Feng, C.L. Novel pH responsive hydrogels for controlled cell adhesion and triggered surface detachment. Soft Matter, 2012, 8(37), 9539-9544.
[http://dx.doi.org/10.1039/c2sm26442k]
[33]
Rang, K.A.; Lee, S.L.; Park, S.N. Properties and in vitro drug release of pH- and temperature-sensitive double crosslinked interpenetrating polymer network hydrogels based on hyaluronic acid/poly (N-isopropylacrylamide) for transdermal delivery of luteolin. Int. J. Biol. Macromol., 2018, 118(Pt A), 731-740.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.061] [PMID: 29940230]
[34]
Ding, L.; Jiang, Y.; Zhang, J.; Klok, H.A.; Zhong, Z. pH-sensitive coiled-coil peptide-cross-linked hyaluronic acid nanogels: synthesis and targeted intracellular protein delivery to CD44 positive cancer cells. Biomacromolecules, 2018, 19(2), 555-562.
[http://dx.doi.org/10.1021/acs.biomac.7b01664] [PMID: 29284258]
[35]
Rahmani, V.; Sheardown, H. Protein-alginate complexes as pH-/ion-sensitive carriers of proteins. Int. J. Pharm., 2018, 535(1-2), 452-461.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.039] [PMID: 29170114]
[36]
Rasib, S.Z.M.; Ahmad, Z.; Khan, A.; Akil, H.M.; Othman, M.B.H.; Hamid, Z.A.A.; Ullah, F. Synthesis and evaluation on pH- and temperature-responsive chitosan-p(MAA-co-NIPAM) hydrogels. Int. J. Biol. Macromol., 2018, 108, 367-375.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.021] [PMID: 29222015]
[37]
Zhang, W.; Jin, X.; Li, H.; Zhang, R-R.; Wu, C-W. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr. Polym., 2018, 186, 82-90.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.008] [PMID: 29456012]
[38]
Xie, A.J.; Yin, H.S.; Liu, H.M.; Zhu, C.Y.; Yang, Y.J. Chinese quince seed gum and poly (N,N-diethylacryl amide-co-methacrylic acid) based pH-sensitive hydrogel for use in drug delivery. Carbohydr. Polym., 2018, 185(6), 96-104.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.007] [PMID: 29421064]
[39]
Kurdtabar, M.; Koutenaee, R.N.; Bardajee, G.R. Synthesis and characterization of a novel pH-responsive nanocomposite hydrogel based on chitosan for targeted drug release. J. Polym. Res., 2018, 25(5), 119-129.
[http://dx.doi.org/10.1007/s10965-018-1499-1]
[40]
Pu, H-T.; Jiang, F-J.; Yang, Z-L. Preparation and properties of soft magnetic particles based on Fe3O4 and hollow polystyrene microsphere composite. Mater. Chem. Phys., 2006, 100(1), 10-14.
[http://dx.doi.org/10.1016/j.matchemphys.2005.11.032]
[41]
Li, B.; Jia, D.; Zhou, Y.; Hu, Q.; Cai, W. In situ hybridization to chitosan/magnetite nanocomposite induced by the magnetic field. J. Magn. Magn. Mater., 2006, 306(2), 223-227.
[http://dx.doi.org/10.1016/j.jmmm.2006.01.250]
[42]
Thiruvengadam, V.; Vitta, S. Ni-bacterial cellulose nanocomposite; a magnetically active inorganic–organic hybrid gel. RSC Advances, 2013, 3(31), 12765-12773.
[http://dx.doi.org/10.1039/c3ra40944a]
[43]
Konwar, A.; Gogoi, A.; Chowdhury, D. Magnetic alginate–Fe3O4 hydrogel fiber capable of ciprofloxacin hydrochloride adsorption/separation in aqueous solution. RSC Advances, 2015, 5(99), 81573-81582.
[http://dx.doi.org/10.1039/C5RA16404D]
[44]
Zhu, H.; Fu, Y.; Jiang, R.; Yao, J.; Xiao, L.; Zeng, G. Optimization of copper(II) adsorption onto novel magnetic calcium alginate/maghemite hydrogel beads using response surface methodology. Ind. Eng. Chem. Res., 2014, 53(10), 4059-4066.
[http://dx.doi.org/10.1021/ie4031677]
[45]
Zhou, Y.; Fu, S.; Zhang, L.; Zhan, H.; Levit, M.V. Use of carboxylated cellulose nanofibrils-filled magnetic chitosan hydrogel beads as adsorbents for Pb(II). Carbohydr. Polym., 2014, 101, 75-82.
[http://dx.doi.org/10.1016/j.carbpol.2013.08.055] [PMID: 24299751]
[46]
Zhang, Y.; Yang, B.; Zhang, X.; Xu, L.; Tao, L.; Li, S.; Wei, Y. A magnetic self-healing hydrogel. Chem. Commun. (Camb.), 2012, 48(74), 9305-9307.
[http://dx.doi.org/10.1039/c2cc34745h] [PMID: 22885473]
[47]
Zolfagharian, A.; Kaynak, A.; Sui, Y.K.; Kouzani, A.Z. Polyelectrolyte soft actuators: 3D printed chitosan and cast gelatin. 3D Printing and Additive Manufacturing, 2018, 5(2), 138-150.
[48]
Liu, Q.; Dong, Z.; Ding, Z.; Hu, Z.; Yu, D.; Hu, Y.; Abidi, N.; Li, W. Electroresponsive homogeneous polyelectrolyte complex hydrogels from naturally derived polysaccharides. ACS Sustain. Chem.& Eng., 2018, 6(5), 7052-7063.
[http://dx.doi.org/10.1021/acssuschemeng.8b00921]
[49]
Dai, H.; Ou, S.; Huang, Y.; Liu, Z.; Huang, H. Enhanced swelling and multiple-responsive properties of gelatin/sodium alginate hydrogels by the addition of carboxymethyl cellulose isolated from pineapple peel. Cellulose, 2017, 25(1), 593-606.
[http://dx.doi.org/10.1007/s10570-017-1557-6]
[50]
Shi, X.; Zheng, Y.; Wang, G.; Lin, Q.; Fan, J. pH- and electro-response characteristics of bacterial cellulose nanofiber/sodium alginate hybrid hydrogels for dual controlled drug delivery. RSC Advances, 2014, 4(87), 47056-47065.
[http://dx.doi.org/10.1039/C4RA09640A]
[51]
Atoufi, Z.; Zarrintaj, P.; Motlagh, G.H.; Amiri, A.; Bagher, Z.; Kamrava, S.K. A novel bio electro active alginate-aniline tetramer/ agarose scaffold for tissue engineering: synthesis, characterization, drug release and cell culture study. J. Biomater. Sci. Polym. Ed., 2017, 28(15), 1617-1638.
[http://dx.doi.org/10.1080/09205063.2017.1340044] [PMID: 28589747]
[52]
Yang, C.; Liu, Z.; Chen, C.; Shi, K.; Zhang, L.; Ju, X-J.; Wang, W.; Xie, R.; Chu, L-Y. Reduced graphene oxide-containing smart hydrogels with excellent electro-response and mechanical properties for soft actuators. ACS Appl. Mater. Interfaces, 2017, 9(18), 15758-15767.
[http://dx.doi.org/10.1021/acsami.7b01710] [PMID: 28425695]
[53]
di Luca, M.; Vittorio, O.; Cirillo, G.; Curcio, M.; Czuban, M.; Voli, F.; Farfalla, A.; Hampel, S.; Nicoletta, F.P.; Iemma, F. Electro-responsive graphene oxide hydrogels for skin bandages: The outcome of gelatin and trypsin immobilization. Int. J. Pharm., 2018, 546(1-2), 50-60.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.027] [PMID: 29758346]
[54]
Peng, L.; Liu, Y.; Huang, J.; Li, J.; Gong, J.; Ma, J. Microfluidic fabrication of highly stretchable and fast electro-responsive graphene oxide/polyacrylamide/alginate hydrogel fibers. Eur. Polym. J., 2018, 103, 335-341.
[http://dx.doi.org/10.1016/j.eurpolymj.2018.04.019]
[55]
Desponds, A.; Freitag, R. Light-responsive bioconjugates as novel tools for specific capture of biologicals by photoaffinity precipitation. Biotechnol. Bioeng., 2005, 91(5), 583-591.
[http://dx.doi.org/10.1002/bit.20479] [PMID: 16044470]
[56]
Natansohn, A.; Rochon, P. Photoinduced motions in azo-containing polymers. Chem. Rev., 2002, 102(11), 4139-4175.
[http://dx.doi.org/10.1002/chin.200304235] [PMID: 12428986]
[57]
Chiang, C.Y.; Chu, C.C. Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior. Carbohydr. Polym., 2015, 119, 18-25.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.043] [PMID: 25563940]
[58]
Zheng, P.; Hu, X.; Zhao, X.; Li, L.; Tam, K.C.; Gan, L.H. Photoregulated sol-gel transition of novel azobenzene-functionalized hydroxypropyl methylcellulose and Itsα-cyclodextrin complexes. Macromol. Rapid Commun., 2004, 25(5), 678-682.
[http://dx.doi.org/10.1002/marc.200300123]
[59]
Monier, M.; Abdel-Latif, D.A.; Ji, H.F. Synthesis and application of photo-active carboxymethyl cellulose derivatives. React. Funct. Polym., 2016, 102, 137-146.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.03.013]
[60]
Berkovic, G.; Krongauz, V.; Weiss, V. Spiropyrans and spirooxazines for memories and switches. Chem. Rev., 2000, 100(5), 1741-1754.
[http://dx.doi.org/10.1021/cr9800715] [PMID: 11777418]
[61]
Vales, T.P.; Badon, I.W.T.; Kim, H-J. Multi-responsive hydrogels functionalized with a photochromic spiropyran-conjugated chitosan network. Macromol. Res., 2018, 26(10), 950-953.
[http://dx.doi.org/10.1007/s13233-018-6126-9]
[62]
Giammanco, G.E.; Sosnofsky, C.T.; Ostrowski, A.D. Light-responsive iron(III)-polysaccharide coordination hydrogels for controlled delivery. ACS Appl. Mater. Interfaces, 2015, 7(5), 3068-3076.
[http://dx.doi.org/10.1021/am506772x] [PMID: 25591038]
[63]
Narayanan, R.P.; Melman, G.; Letourneau, N.J.; Mendelson, N.L.; Melman, A. Photodegradable iron(III) cross-linked alginate gels. Biomacromolecules, 2012, 13(8), 2465-2471.
[http://dx.doi.org/10.1021/bm300707a] [PMID: 22775540]
[64]
Wang, H.; Di, J.; Sun, Y.; Fu, J.; Wei, Z.; Matsui, H. del C. Alonso, A.; Zhou, S., Biocompatible PEG-Chitosan@Car-bon dots hybrid nanogels for two-photon fluorescence imaging, near-infrared light/pH dual-responsive drug carrier, and synergistic therapy. Adv. Funct. Mater., 2015, 25(34), 5537-5547.
[http://dx.doi.org/10.1002/adfm.201501524]
[65]
Chen, X.; Liu, Z.; Parker, S.G.; Zhang, X.; Gooding, J.J.; Ru, Y.; Liu, Y.; Zhou, Y. Light-induced hydrogel based on tumor-targeting mesoporous silica nanoparticles as a theranostic platform for sustained cancer treatment. ACS Appl. Mater. Interfaces, 2016, 8(25), 15857-15863.
[http://dx.doi.org/10.1021/acsami.6b02562] [PMID: 27265514]
[66]
Sun, T.; Zhu, C.; Xu, J. Multiple stimuli-responsive selenium-functionalized biodegradable starch-based hydrogels. Soft Matter, 2018, 14(6), 921-926.
[http://dx.doi.org/10.1039/C7SM02137B] [PMID: 29309083]
[67]
Wang, C.; Fadeev, M.; Vázquez-González, M.; Willner, I. Stimuli-responsive donor–acceptor and DNA-crosslinked hydrogels: application as shape-memory and self-healing materials. Adv. Funct. Mater., 2018, 28(35), 1803111-1803120.
[http://dx.doi.org/10.1002/adfm.201803111]
[68]
Wang, L.; Zhou, W.; Wang, Q.; Xu, C.; Tang, Q.; Yang, H. An injectable, dual responsive, and self-healing hydrogel based on oxidized sodium alginate and hydrazide-modified poly(ethyleneglycol). Molecules, 2018, 23(3), 546-557.
[http://dx.doi.org/10.3390/molecules23030546] [PMID: 29494526]
[69]
Tang, L.; Wen, L.; Xu, S.; Pi, P.; Wen, X. Ca2+, redox, and thermoresponsive supramolecular hydrogel with programmed quadruple shape memory effect. Chem. Commun. (Camb.), 2018, 54(58), 8084-8087.
[http://dx.doi.org/10.1039/C8CC03304H] [PMID: 29971302]
[70]
Crescenzi, V.; Francescangeli, A.; Taglienti, A. New gelatin-based hydrogels via enzymatic networking. Biomacromolecules, 2002, 3(6), 1384-1391.
[http://dx.doi.org/10.1021/bm025657m] [PMID: 12425680]
[71]
Liu, Y.; Terrell, J.L.; Tsao, C-Y.; Wu, H-C.; Javvaji, V.; Kim, E.; Cheng, Y.; Wang, Y.; Ulijn, R.V.; Raghavan, S.R.; Rubloff, G.W.; Bentley, W.E.; Payne, G.F. Biofabricating multifunctional soft matter with enzymes and stimuli-responsive materials. Adv. Funct. Mater., 2012, 22(14), 3004-3012.
[http://dx.doi.org/10.1002/adfm.201200095]
[72]
Kono, H.; Zakimi, M. Preparation, water absorbency, and enzyme degradability of novel chitin- and cellulose/chitin-based superabsorbent hydrogels. J. Appl. Polym. Sci., 2013, 128(1), 572-581.
[http://dx.doi.org/10.1002/app.38217]
[73]
Huber, D.; Tegl, G.; Mensah, A.; Beer, B.; Baumann, M.; Borth, N.; Sygmund, C.; Ludwig, R.; Guebitz, G.M. A dual-enzyme hydrogen peroxide generation machinery in hydrogels supports antimicrobial wound treatment. ACS Appl. Mater. Interfaces, 2017, 9(18), 15307-15316.
[http://dx.doi.org/10.1021/acsami.7b03296] [PMID: 28429928]
[74]
Sadat Ebrahimi, M.M.; Voss, Y.; Schönherr, H. Rapid detection of Escherichia coli via enzymatically triggered reactions in self-reporting chitosan hydrogels. ACS Appl. Mater. Interfaces, 2015, 7(36), 20190-20199.
[http://dx.doi.org/10.1021/acsami.5b05746] [PMID: 26322857]
[75]
Koetting, M.C.; Peters, J.T.; Steichen, S.D.; Peppas, N.A. Stimulus-responsive hydrogels: Theory, modern advances, and applications. Mater. Sci. Eng. Rep., 2015, 93, 1-49.
[http://dx.doi.org/10.1016/j.mser.2015.04.001] [PMID: 27134415]
[76]
Scheja, S.; Domanskyi, S.; Gamella, M.; Wormwood, K.L.; Darie, C.C.; Poghossian, A.; Schöning, M.J.; Melman, A.; Privman, V.; Katz, E. Glucose-triggered insulin release from Fe3+ -cross-linked alginate hydrogel: experimental study and theoretical modeling. ChemPhysChem, 2017, 18(12), 1541-1551.
[http://dx.doi.org/10.1002/cphc.201700195] [PMID: 28301717]
[77]
Zou, X.; Zhao, X.; Ye, L. Synthesis of cationic chitosan hydrogel and its controlled glucose-responsive drug release behavior. Chem. Eng. J., 2015, 273, 92-100.
[http://dx.doi.org/10.1016/j.cej.2015.03.075]
[78]
Darvishi, S.; Souissi, M.; Kharaziha, M.; Karimzadeh, F.; Sahara, R.; Ahadian, S. Gelatin methacryloyl hydrogel for glucose biosensing using Ni nanoparticles-reduced graphene oxide: an experimental and modeling study. Electrochim. Acta, 2018, 261, 275-283.
[http://dx.doi.org/10.1016/j.electacta.2017.12.126]
[79]
Shrestha, B.K.; Ahmad, R.; Mousa, H.M.; Kim, I-G.; Kim, J.I.; Neupane, M.P.; Park, C.H.; Kim, C.S. High-performance glucose biosensor based on chitosan-glucose oxidase immobilized polypyrrole/Nafion/functionalized multi-walled carbon nanotubes bio-nanohybrid film. J. Colloid Interface Sci., 2016, 482, 39-47.
[http://dx.doi.org/10.1016/j.jcis.2016.07.067] [PMID: 27485503]
[80]
Liu, H.; Rong, L.; Wang, B.; Xie, R.; Sui, X.; Xu, H.; Zhang, L.; Zhong, Y.; Mao, Z. Facile fabrication of redox/pH dual stimuli responsive cellulose hydrogel. Carbohydr. Polym., 2017, 176, 299-306.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.085] [PMID: 28927612]
[81]
Yang, X.; Liu, G.; Peng, L.; Guo, J.; Tao, L.; Yuan, J.; Chang, C.; Wei, Y.; Zhang, L. Highly efficient self‐healable and dual responsive cellulose‐based hydrogels for controlled release and 3D cell culture. Adv. Funct. Mater., 2017, 27(40), 1703174-1703183.
[http://dx.doi.org/10.1002/adfm.201703174]
[82]
Hu, X.; Wang, Y.; Zhang, L.; Xu, M.; Dong, W.; Zhang, J. Redox/pH dual stimuli-responsive degradable Salecan-g-SS-poly(IA-co-HEMA) hydrogel for release of doxorubicin. Carbohydr. Polym., 2017, 155, 242-251.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.077] [PMID: 27702509]
[83]
Kim, M.Y.; Kim, J. Chitosan microgels embedded with catalase nanozyme-loaded mesocellular silica foam for glucose-responsive drug delivery. ACS Biomater. Sci. Eng., 2017, 3(4), 572-578.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00716]
[84]
Li, J.; Hu, W.; Zhang, Y.; Tan, H.; Yan, X.; Zhao, L.; Liang, H. pH and glucose dually responsive injectable hydrogel prepared by in situ crosslinking of phenylboronic modified chitosan and oxidized dextran. J. Polym. Sci. A Polym. Chem., 2015, 53(10), 1235-1244.
[http://dx.doi.org/10.1002/pola.27556]
[85]
Zhu, B.; Ma, D.; Wang, J.; Zhang, J.; Zhang, S. Multi-responsive hydrogel based on lotus root starch. Int. J. Biol. Macromol., 2016, 89, 599-604.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.029] [PMID: 27177459]
[86]
Zhang, Y.; Fu, C.; Li, Y.; Wang, K.; Wang, X.; Wei, Y.; Tao, L. Synthesis of an injectable, self-healable and dual responsive hydrogel for drug delivery and 3D cell cultivation. Polym. Chem., 2016, 8(3), 537-544.
[http://dx.doi.org/10.1039/C6PY01704E]
[87]
Samal, S.K.; Dash, M.; Dubruel, P.; Van Vlierberghe, S. Smart polymer hydrogels: properties, synthesis and applications. In: Smart Polymers and their Applications; De, M.R.A.; Armas, J.S.R., Eds.; Woodhead Publishing: Cambridge, 2014, Vol. 8, pp. 237-270.
[http://dx.doi.org/10.1533/9780857097026.1.237]
[88]
Akilbekova, D.; Shaimerdenova, M.; Adilov, S.; Berillo, D. Biocompatible scaffolds based on natural polymers for regenerative medicine. Int. J. Biol. Macromol., 2018, 114, 324-333.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.116] [PMID: 29578021]
[89]
Alinejad, Y.; Adoungotchodo, A.; Hui, E.; Zehtabi, F.; Lerouge, S. An injectable chitosan/chondroitin sulfate hydrogel with tunable mechanical properties for cell therapy/tissue engineering. Int. J. Biol. Macromol., 2018, 113, 132-141.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.069] [PMID: 29452185]
[90]
DingWen, Z.; Liu, Y.; Peng, Q. Application of intelligent hydrogel in tissue engineering. Chin. J. Tis. Eng. Res., 2014, 18(12), 1944-1950.
[http://dx.doi.org/10.3969/j.issn.2095-4344.2014.12.023]
[91]
Ressler, A.; Ródenas-Rochina, J.; Ivanković, M.; Ivanković, H.; Rogina, A.; Gallego Ferrer, G. Injectable chitosan-hydroxyapatite hydrogels promote the osteogenic differentiation of mesenchymal stem cells. Carbohydr. Polym., 2018, 197, 469-477.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.029] [PMID: 30007636]
[92]
Sheng, Y.; Liu, Y.; Sun, L.; Chen, L.; Zhao, X. Co-culturing of a new-style nano-peptide and pre-osteoblasts. Beij. Biomed. Eng., 2009, 28(1), 55-60.
[93]
Hong, L.; Tabata, Y.; Miyamoto, S.; Yamamoto, M.; Yamada, K.; Hashimoto, N.; Ikada, Y. Bone regeneration at rabbit skull defects treated with transforming growth factor-β1 incorporated into hydrogels with different levels of biodegradability. J. Neurosurg., 2000, 92(2), 315-325.
[http://dx.doi.org/10.3171/jns.2000.92.2.0315] [PMID: 10659020]
[94]
Liu, R.; Dai, L.; Si, C.; Zeng, Z. Antibacterial and hemostatic hydrogel via nanocomposite from cellulose nanofibers. Carbohydr. Polym., 2018, 195, 63-70.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.085] [PMID: 29805020]
[95]
Hsieh, F-Y.; Han, H-W.; Chen, X-R.; Yang, C-S.; Wei, Y.; Hsu, S.H. Non-viral delivery of an optogenetic tool into cells with self-healing hydrogel. Biomaterials, 2018, 174, 31-40.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.014] [PMID: 29777961]
[96]
Sapir, Y.; Cohen, S.; Friedman, G.; Polyak, B. The promotion of in vitro vessel-like organization of endothelial cells in magnetically responsive alginate scaffolds. Biomaterials, 2012, 33(16), 4100-4109.
[http://dx.doi.org/10.1016/j.biomaterials.2012.02.037] [PMID: 22417620]
[97]
Wu, S.W.; Liu, X.; Miller, A.L., II; Cheng, Y.S.; Yeh, M.L.; Lu, L. Strengthening injectable thermo-sensitive NIPAAm-g-chitosan hydrogels using chemical cross-linking of disulfide bonds as scaffolds for tissue engineering. Carbohydr. Polym., 2018, 192, 308-316.
[http://dx.doi.org/10.1016/j.carbpol.2018.03.047] [PMID: 29691026]
[98]
Hu, Y.Y.; Xu, M.; Liu, Y.; Xie, X.; Bao, W.; Song, A.; Hao, J. Chitosan gel incorporated peptide-modified AuNPs for sustained drug delivery with smart pH responsiveness. J. Mater. Chem. B Mater. Biol. Med., 2017, 5, 1174-1181.
[http://dx.doi.org/10.1039/C6TB02098D]
[99]
Su, X.L.X. Multifunctional smart hydrogels: potential in tissue engineering and cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2018, 6, 4714-4730.
[http://dx.doi.org/10.1039/C8TB01078A]
[100]
Kajjari, P.B.; Manjeshwar, L.S.; Aminabhavi, T.M. Novel pH- and temperature-responsive blend hydrogel microspheres of sodium alginate and PNIPAAm-g-GG for controlled release of isoniazid. AAPS PharmSciTech, 2012, 13(4), 1147-1157.
[http://dx.doi.org/10.1208/s12249-012-9838-8] [PMID: 22956057]
[101]
Li, J.; Hu, W.; Zhang, Y.; Tan, H.; Yan, X.; Zhao, L.; Liang, H. pH and glucose dually responsive injectable hydrogel prepared byin situcrosslinking of phenylboronic modified chitosan and oxidized dextran. Polym. Chem., 2015, 53(10), 1235-1244.
[http://dx.doi.org/10.1002/pola.27556]
[102]
Zhang, W.; Jin, X.; Li, H.; Zhang, R.R.; Wu, C.W. Injectable and body temperature sensitive hydrogels based on chitosan and hyaluronic acid for pH sensitive drug release. Carbohydr. Polym., 2018, 186, 82-90.
[http://dx.doi.org/10.1016/j.carbpol.2018.01.008]
[103]
Dabiri, S.M.H.; Lagazzo, A.; Barberis, F.; Shayganpour, A.; Finocchio, E.; Pastorino, L. New in-situ synthetized hydrogel composite based on alginate and brushite as a potential pH sensitive drug delivery system. Carbohydr. Polym., 2017, 177, 324-333.
[http://dx.doi.org/10.1016/j.carbpol.2017.08.046] [PMID: 28962775]
[104]
O’Neill, H.S.; Herron, C.C.; Hastings, C.L.; Deckers, R.; Lopez Noriega, A.; Kelly, H.M.; Hennink, W.E.; McDonnell, C.O.; O’Brien, F.J.; Ruiz-Hernández, E.; Duffy, G.P. A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomater., 2017, 48, 110-119.
[http://dx.doi.org/10.1016/j.actbio.2016.10.001] [PMID: 27773752]
[105]
Hosny, K.M. Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS PharmSciTech, 2009, 10(4), 1336-1342.
[http://dx.doi.org/10.1208/s12249-009-9335-x] [PMID: 19902361]
[106]
Cao, Y.; Zhang, C.; Shen, W.; Cheng, Z.; Yu, L.L.; Ping, Q. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J. Control. Release, 2007, 120(3), 186-194.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.009] [PMID: 17582643]
[107]
Han, X.; Zhang, W.; Yu, K.; Jia, Q. Advances in the application of magnetic hydrogels as drug carriers. Material Guide A. Overview, 2017, 31(8), 30-35.
[108]
Biedermann, A.R.; Jackson, M.; Bilardello, D.; Feinberg, J.M.; Brown, M.C.; McEnroe, S.A. Influence of static alternating field demagnetization on anisotropy of magnetic susceptibility: experiments and implications. Geochem. Geophys. Geosyst., 2017, 18(9), 3292-3308.
[http://dx.doi.org/10.1002/2017GC007073]
[109]
Naderi, Z.; Azizian, J. Synthesis and characterization of carboxymethyl chitosan/Fe3O4 and MnFe2O4 nanocomposites hydrogels for loading and release of curcumin. J. Photochem. Photobiol. B, 2018, 185, 206-214.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.06.014] [PMID: 29966987]
[110]
Wang, Y.; Li, B.; Xu, F.; Han, Z.; Wei, D.; Jia, D.; Zhou, Y. Tough magnetic chitosan hydrogel nanocomposites for remotely stimulated drug release. Biomacromolecules, 2018, 19(8), 3351-3360.
[http://dx.doi.org/10.1021/acs.biomac.8b00636] [PMID: 29995388]
[111]
Dubey, P.; Gopinath, P. Functionalized graphene oxide based nanocarrier for tumor-targeted combination therapy to elicit enhanced cytotoxicity against breast cancer cells in vitro. Chem. Select., 2016, 1(15), 4845-4855.
[http://dx.doi.org/10.1002/slct.201600886]
[112]
Zhang, D.; Sun, P.; Li, P.; Xue, A.; Zhang, X.; Zhang, H.; Jin, X. A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guérin in the treatment of bladder cancer. Biomaterials, 2013, 34(38), 10258-10266.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.027] [PMID: 24070571]
[113]
Oliveira, M.B.; Bastos, H.X.S.; Mano, J.F. Sequentially moldable and bondable four-dimensional hydrogels compatible with cell encapsulation. Biomacromolecules, 2018, 19(7), 2742-2749.
[http://dx.doi.org/10.1021/acs.biomac.8b00337] [PMID: 29698598]
[114]
Sangwan, W.; Petcharoen, K.; Paradee, N.; Lerdwijitjarud, W.; Sirivat, A. Electrically responsive materials based on polycarbazole/sodium alginate hydrogel blend for soft and flexible actuator application. Carbohydr. Polym., 2016, 151, 213-222.
[http://dx.doi.org/10.1016/j.carbpol.2016.05.077] [PMID: 27474560]
[115]
Zhao, G.; Wang, Z.; Wei, C.; Zhao, H.; Wu, Y.; Fu, Y.; Yang, J. Effect of CaCl2 and glycerol on response performance of biological gel electric actuator. Mater. Res. Express, 2018, 5(6), 65702-65715.
[http://dx.doi.org/10.1088/2053-1591/aac809]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 16
Year: 2020
Published on: 04 June, 2020
Page: [2631 - 2657]
Pages: 27
DOI: 10.2174/0929867326666191122144916
Price: $65

Article Metrics

PDF: 31
HTML: 9