Hollow Zinc Oxide Microflowers for Selective Preconcentration of Selenium Ions in Natural Water

Author(s): Ting Huang*, Guanghui Yuan

Journal Name: Current Analytical Chemistry

Volume 16 , Issue 8 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Selenium’s popularity in a wide variety of products and industries means that it has, unfortunately, become a common environmental pollutant, particularly from sources such as industrial wastewater discharge and agricultural runoff.

Objective: Quantification of the selenium (IV) ion content of natural water sources via atomic fluorescence spectrophotometry (AFS) was performed using hollow ZnO microflowers as the enriched materials. The hollow ZnO microflowers were prepared via a hydrothermal method with polystyrene (PS) microspheres as the template.

Methods: Since the pH of the selenium (IV) solution is known to influence the degree of adsorption onto the sorbent, both the acidity of adsorption and elution were studied at various pH values to obtain the adsorption isotherm and adsorption capacity of the sorbent. AFS was used to quantify the amount of selenium ion that was present in the samples. The structure of the hollow ZnO microflowers was characterized using XRD, SEM, and TEM characterization methodologies.

Results: When the pH was between 6.0 and 7.0, the percentage of Se (IV) adsorption was as high as 93%. It was found that the amount of Se (IV) that was eluted from the sorbent exceeded 96% with 5.0 mL of a 0.01 mol L−1 NaOH solution over the course of 10 minutes. The maximum adsorption capacity was 31.5, 31.8, and 32.0 mg·g−1 at 273, 333, and 353 K, respectively.

Conclusion: The LOD for Se (IV) detection via enrichment was achieved at 0.006 μg L−1 with a linear range between 0.1 and 200 μg L−1. Thus, this method is applicable to the analysis of natural water samples and GBW(E)080394.

Keywords: Hollow ZnO microflowers, preconcentration, selenium(IV), sorption, natural water, Atomic Fluorescence Spectrophotometry (AFS).

B’Hymer. C.; Caruso, J.A. Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J. Chromatogr. A, 2006, 1114(1), 1-20.
[http://dx.doi.org/10.1016/j.chroma.2006.02.063] [PMID: 16551466]
Chatterjee, A.; Shibata, Y.; Yoneda, M.; Banerjee, R.; Uchida, M.; Kon, H.; Morita, M. Identification of volatile selenium compounds produced in the hydride generation system from organoselenium compounds. Anal. Chem., 2001, 73(13), 3181-3186.
[http://dx.doi.org/10.1021/ac001356w] [PMID: 11467571]
Sun, Y.C.; Chang, Y.C.; Su, C.K.; On-line, K. On-line HPLC-UV/Nano-TiO2-ICPMS system for the determination of inorganic selenium species. Anal. Chem., 2006, 78(8), 2640-2645.
[http://dx.doi.org/10.1021/ac051899b] [PMID: 16615774]
Pedrero, Z.; Madrid, Y. Novel approaches for selenium speciation in foodstuffs and biological specimens: A review. Anal. Chim. Acta, 2009, 634(2), 135-152.
[http://dx.doi.org/10.1016/j.aca.2008.12.026] [PMID: 19185112]
Bennett, W.W.; Teasdale, P.R.; Panther, J.G.; Welsh, D.T.; Jolley, D.F. New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent. Anal. Chem., 2010, 82(17), 7401-7407.
[http://dx.doi.org/10.1021/ac101543p] [PMID: 20695441]
Sengupta, M.K.; Dasgupta, P.K. An automated hydride generation interface to ICPMS for measuring total arsenic in environmental samples. Anal. Chem., 2009, 81(23), 9737-9743.
[http://dx.doi.org/10.1021/ac9020243] [PMID: 19891455]
Shah, M.; Meija, J.; Caruso, J.A. Relative mass defect filtering of high-resolution mass spectra for exploring minor selenium volatiles in selenium-enriched green onions. Anal. Chem., 2007, 79(3), 846-853.
[http://dx.doi.org/10.1021/ac060703k] [PMID: 17263309]
Hu, C.; Chen, Q.; Chen, G.; Liu, H.; Qu, J. Removal of Se(IV) and Se(VI) from drinking water by coagulation. Separ. Purif. Tech., 2015, 142, 65-70.
Karimi-Maleh, H.; Fakude, C.T.; Mabuba, N.; Peleyeju, G.M.; Arotiba, O.A. The determination of 2-phenylphenol in the presence of 4-chlorophenol using nano-Fe3O4/ionic liquid paste electrode as an electrochemical sensor. J. Colloid Interface Sci., 2019, 554, 603-610.
[http://dx.doi.org/10.1016/j.jcis.2019.07.047] [PMID: 31330427]
Fahimeh, T.J.; Mehdi, S.N.; Hassan, K.M. 3D reduced graphene oxide/FeNi3-ionic liquid nanocomposite modified sensor; an electrical synergic effect for development of tert-butylhydroquinone and folic acid sensor. Compos., Part B Eng., 2019, 172, 666-670.
Bo, G.; Zahra, S. Modification of ZnIn2S4 by anthraquinone-2-sulfonate doped polypyrrole as acceptor-donor system for enhanced photocatalytic degradation of tetracycline. J. Photoch. Photobio. A, 2017, 348, 150-160.
Shaghayegh, S.; Mohammad, A. Synergistic effect of hybrid stainless steel fiber and carbon nanotube on mechanical properties and electromagnetic interference shielding of polypropylene nanocomposites. Compos., Part B Eng., 2019, 165, 662-670.
Zelmanov, G.; Semiat, R. Selenium removal from water and its recovery using iron (Fe3+) oxide/hydroxide-based nanoparticles sol (NanoFe) as an adsorbent. Separ. Purif. Tech., 2013, 103, 167-172.
Rajamohan, N.; Rajasimman, M. Biosorption of Selenium using activated plant based sorbent-effect of variables, isotherm and kinetic modeling. Biocatal. Agricul. Bio., 2015, 4(4), 795-800.
Gorchev, H.G.; Ozolins, G. WHO guidelines for drinking-water quality. WHO Chron., 1984, 38(3), 104-108.
[PMID: 6485306]
Kallis, G.; Butler, D. The EU water framework directive: measures and implications. Water Policy, 2011, 3(2), 125-142.
Kagami, T.; Narita, T.; Kuroda, M.; Notaguchi, E.; Yamashita, M.; Sei, K.; Soda, S.; Ike, M. Effective selenium volatilization under aerobic conditions and recovery from the aqueous phase by Pseudomonas stutzeri NT-I. Water Res., 2013, 47(3), 1361-1368.
[http://dx.doi.org/10.1016/j.watres.2012.12.001] [PMID: 23270669]
Staicu, L.C.; van Hullebusch, E.D.; Oturan, M.A.; Ackerson, C.J.; Lens, P.N. Removal of colloidal biogenic selenium from wastewater. Chemosphere, 2015, 125, 130-138.
[http://dx.doi.org/10.1016/j.chemosphere.2014.12.018] [PMID: 25559175]
Fu, Y.; Wang, J.; Liu, Q.; Zeng, H. Water-dispersible magnetic nanoparticle-graphene oxide composites for selenium removal. Carbon, 2014, 77, 710-721.
Kwon, J.H.; Wilson, L.D.; Sammynaiken, R. Sorptive uptake of selenium with magnetite and its supported materials onto activated carbon. J. Colloid Interface Sci., 2015, 457, 388-397.
[http://dx.doi.org/10.1016/j.jcis.2015.07.013] [PMID: 26226648]
Schwindt, V.C.; Ardenghi, J.S.; Bechthold, P. Selenium adsorption at different coverages on Fe(100)and Fe(lll): A DFT study. Appl. Surf. Sci., 2014, 315, 252-260.
Lenz, M.; Lens, P.N.L. The essential toxin: the changing perception of selenium in environmental sciences. Sci. Total Environ., 2009, 407(12), 3620-3633.
[http://dx.doi.org/10.1016/j.scitotenv.2008.07.056] [PMID: 18817944]
Sharrad, M.O.M.; Liu, H.; Fan, M. Evaluation of FeOOH performance on selenium reduction. Separ. Purif. Tech., 2012, 84, 29-34.
Klas, S.; Kirk, D.W. Understanding the positive effects of low pH and limited aeration on selenate removal from water by elemental iron. Separ. Purif. Tech., 2013, 116, 222-229.
Harris, P.J.F. Carbon Nanotube Science: Synthesis, Properties and Applications; Cambridge University Press: Cambridge, UK, 2009.
Kang, D.; Yu, X.; Ge, M.; Xiao, F.; Xu, H. Novel Al-doped carbon nanotubes with adsorption and coagulation promotion for organic pollutant removal. J. Environ. Sci. (China), 2017, 54, 1-12.
[http://dx.doi.org/10.1016/j.jes.2016.04.022] [PMID: 28391917]
Kayvani Fard, A.; Mckay, G.; Manawi, Y.; Malaibari, Z.; Hussien, M.A. Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal. Chemosphere, 2016, 164, 142-155.
[http://dx.doi.org/10.1016/j.chemosphere.2016.08.099] [PMID: 27588573]
Kashiwa, M.; Nishimoto, S.; Takahashi, K.; Ike, M.; Fujita, M. Factors affecting soluble selenium removal by a selenate-reducing bacterium Bacillus sp. SF-1. J. Biosci. Bioeng., 2000, 89(6), 528-533.
[http://dx.doi.org/10.1016/S1389-1723(00)80051-1] [PMID: 16232792]
Mayordomo, N.; Foerstendorf, H.; Lützenkirchen, J.; Heim, K.; Weiss, S.; Alonso, U.; Missana, T.; Schmeide, K.; Jordan, N. Selenium(IV) sorption onto γ-Al2O3: a consistent descriptionof the surface speciation by spectroscopy and thermodynamic modeling. Environ. Sci. Technol., 2018, 52(2), 581-588.
[http://dx.doi.org/10.1021/acs.est.7b04546] [PMID: 29231722]
Kamaraj, R.; Vasudevan, S. Decontamination of selenate from aqueous solution by oxidized multi-walled carbon nanotubes. Powder Technol., 2015, 274, 268-275.
Rovira, M.; Giménez, J.; Martínez, M.; Martínez-Lladó, X.; de Pablo, J.; Martí, V.; Duro, L. Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J. Hazard. Mater., 2008, 150(2), 279-284.
[http://dx.doi.org/10.1016/j.jhazmat.2007.04.098] [PMID: 17531378]
Bleiman, N.; Mishael, Y.G. Selenium removal from drinking water by adsorption to chitosan-clay composites and oxides: Batch and columns tests. J. Hazard. Mater., 2010, 183(1-3), 590-595.
[http://dx.doi.org/10.1016/j.jhazmat.2010.07.065] [PMID: 20708334]
Han, D.S.; Batchelor, B.; Abdel-Wahab, A. Sorption of selenium(IV) and selenium(VI) to mackinawite (FeS): effect of contact time, extent of removal, sorption envelopes. J. Hazard. Mater., 2011, 186(1), 451-457.
[http://dx.doi.org/10.1016/j.jhazmat.2010.11.017] [PMID: 21112149]
Zhang, L.; Liu, N.; Yang, L.; Lin, Q. Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution. J. Hazard. Mater., 2009, 170(2-3), 1197-1203.
[http://dx.doi.org/10.1016/j.jhazmat.2009.05.098] [PMID: 19553009]
Zhang, J.; Tu, J.P.; Cai, G.F.; Du, G.H.; Wang, X.L.; Liu, P.C. Enhanced electrochromic performance of highly ordered, macroporous WO3 arrays electrodeposited using polystyrene colloidal crystals as template. Electrochim. Acta, 2013, 99, 1-8.
Wang, X.; Liu, J.; Feng, X.; Guo, M.; Sun, D. Fabrication of hollow Fe3O4-polyaniline spheres with sulfonated polystyrene templates. Mater. Chem. Phys., 2008, 112, 319-321.
Eliasa, J.; Utkea, I.; Yoon, S.; Bechelany, M.; Weidenkaff, A.; Michlera, J.; Philippe, L. Electrochemical growth of ZnO nanowires on atomic layer deposition coated polystyrene sphere templates. Electrochim. Acta, 2013, 110, 387-392.
Svecova, L.; Dossot, M.; Cremel, S.; Simonnot, M.O.; Sardin, M.; Humbert, B.; Den Auwer, C.; Michot, L.J. Sorption of selenium oxyanions on TiO2 (rutile) studied by batch or column experiments and spectroscopic methods. J. Hazard. Mater., 2011, 189(3), 764-772.
[http://dx.doi.org/10.1016/j.jhazmat.2011.02.090] [PMID: 21458156]
Yuan, G.H. Synthesis of Graphene based composites and their application in lithium rechargable batteries; Northwest University, 2016.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 25 October, 2020
Page: [957 - 964]
Pages: 8
DOI: 10.2174/1573411015666191122120331
Price: $65

Article Metrics

PDF: 21