Antiplatelet Effect of a Pulaimab [Anti-GPIIb/IIIa F(ab)2 Injection] Evaluated by a Population Pharmacokinetic-pharmacodynamic Model

Author(s): Ya-Ou Liu, Zi-Ning Wang, Chao-Yang Chen, Xian-Han Zhuang, Chang-Geng Ruan, Ying Zhou, Yi-Min Cui*

Journal Name: Current Drug Metabolism

Volume 20 , Issue 13 , 2019


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Cardiovascular disease has one of the highest mortality rates among all the diseases. Platelets play an important role in the pathogenesis of cardiovascular diseases. Platelet membrane glycoprotein GPIIb/IIIa antagonists are the most effective antiplatelet drugs, and pulaimab is one of these. The study aims to promote individual medication of pulaimab [anti-GPIIb/IIIa F(ab)2 injection] by discovering the pharmacological relationship among the dose, concentration, and effects. The goal of this study is to establish a population pharmacokineticpharmacodynamic model to evaluate the antiplatelet effect of intravenous pulaimab injection.

Methods: Data were collected from 59 healthy subjects who participated in a Phase-I clinical trial. Plasma concentration was used as the pharmacokinetic index, and platelet aggregation inhibition rate was used as the pharmacodynamic index. The basic pharmacokinetics model was a two-compartment model, whereas the basic pharmacodynamics model was a sigmoid-EMAX model with a direct effect. The covariable model was established by a stepwise method. The final model was verified by a goodness-of-fit method, and predictive performance was assessed by a Bootstrap (BS) method.

Results: In the final model, typical population values of the parameters were as follows: central distribution Volume (V1), 183 L; peripheral distribution Volume (V2), 349 L; Central Clearance (CL), 31 L/h; peripheral clearance(Q), 204 L/h; effect compartment concentration reaching half of the maximum effect (EC50), 0.252 mg/L; maximum effect value (EMAX), 54.0%; and shape factor (γ), 0.42. In the covariable model, thrombin time had significant effects on CL and EMAX. Verification by the goodness-of-fit and BS methods showed that the final model was stable and reliable.

Conclusion: A model was successfully established to evaluate the antiplatelet effect of intravenous pulaimab injection that could provide support for the clinical therapeutic regimen.

Keywords: Chinese healthy subjects, pulaimab [anti-GPIIb/IIIa F(ab)2 injection], antiplatelet, population pharmacokinetics, population pharmacodynamics, model.

[1]
Undas, A.; Ariëns, R.A. Fibrin clot structure and function: a role in the pathophysiology of arterial and venous thromboembolic diseases. Arterioscler. Thromb. Vasc. Biol., 2011, 31(12), e88-e99.
[http://dx.doi.org/10.1161/ATVBAHA.111.230631] [PMID: 21836064]
[2]
Gurewich, V.; Hume, M.; Patrick, M. The laboratory diagnosis of venous thromboembolic disease by measurement of fibrinogen-fibrin degradation products and fibrin monomer. Chest, 1973, 64(5), 585-590.
[http://dx.doi.org/10.1378/chest.64.5.585] [PMID: 4750329]
[3]
Kounis, N.G.; Evans, W.H. Thromboembolic disease treated with anticoagulants and defibrinating drugs. Practitioner, 1979, 222(1329), 420-422.
[PMID: 450842]
[4]
Sonnabend, D.; Cooper, D.; Fiddes, P.; Penny, R. Fibrin degradation products in thrombo-embolic disease. Pathology, 1972, 4(1), 47-51.
[http://dx.doi.org/10.3109/00313027209068923] [PMID: 4622192]
[5]
Levi, M.; Schultz, M.; van der Poll, T. Sepsis and thrombosis. Semin. Thromb. Hemost., 2013, 39(5), 559-566.
[http://dx.doi.org/10.1055/s-0033-1343894] [PMID: 23625756]
[6]
Richter, I.H.; Cliffton, E.E.; Epstein, S.; Musacchio, F.; Nassar, A.; Favazza, A.G.; Katabi, G.; Derosas, A.M.; Prado, H. Fibrinolysin therapy in thromboembolic diseases. N. Y. State J. Med., 1962, 62, 3746-3750.
[PMID: 13986448]
[7]
Miniati, M.; Fiorillo, C.; Becatti, M.; Monti, S.; Bottai, M.; Marini, C.; Grifoni, E.; Formichi, B.; Bauleo, C.; Arcangeli, C.; Poli, D.; Nassi, P.A.; Abbate, R.; Prisco, D. Fibrin resistance to lysis in patients with pulmonary hypertension other than thromboembolic. Am. J. Respir. Crit. Care Med., 2010, 181(9), 992-996.
[http://dx.doi.org/10.1164/rccm.200907-1135OC] [PMID: 20075386]
[8]
Kolandaivelu, K.; Bhatt, D.L. Antiplatelet therapy in coronary heart disease prevention. Cardiol. Clin., 2011, 29(1), 71-85.
[http://dx.doi.org/10.1016/j.ccl.2010.10.001] [PMID: 21257101]
[9]
Kübler, W. Secondary and primary prevention of coronary heart disease: platelet aggregation inhibitors and anticoagulants. Z. Kardiol., 2002, 91(2)(Suppl. 2), 40-48.
[PMID: 12436764]
[10]
Clappers, N.; Brouwer, M.A.; Verheugt, F.W.A. Antiplatelet treatment for coronary heart disease. Heart, 2007, 93(2), 258-265.
[http://dx.doi.org/10.1136/hrt.2005.071209] [PMID: 17228079]
[11]
Becker, R.C. Antiplatelet therapy in coronary heart disease. Emerging strategies for the treatment and prevention of acute myocardial infarction. Arch. Pathol. Lab. Med., 1993, 117(1), 89-96.
[PMID: 8418769]
[12]
Chen, A.L.; Xia, L.L.; Liu, Y.; Zhang, L.; Wang, L.Y.; Wang, R.; Zhu, J. Compliance of antiplatelet and related nursing intervention in the eldly patients with coronary heart disease. Prog. Mod. Biomed., 2010, 23, 68-95.
[13]
Thompson, P.L.; Hobbs, M.; Jamrozik, K.D.; Parsons, R. The impact of thrombolytic and antiplatelet therapy on coronary heart disease mortality. J. Am. Coll. Cardiol., 1991, 17(2), A160.
[http://dx.doi.org/10.1016/0735-1097(91)91607-G]
[14]
Sabatine, M.S.; Cannon, C.P.; Gibson, C.M.; López-Sendón, J.L.; Montalescot, G.; Theroux, P.; Claeys, M.J.; Cools, F.; Hill, K.A.; Skene, A.M.; McCabe, C.H.; Braunwald, E. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N. Engl. J. Med., 2005, 352(12), 1179-1189.
[http://dx.doi.org/10.1056/NEJMoa050522] [PMID: 15758000]
[15]
Donahoe, S.M.; Sabatine, M.S. Adding clopidogrel to aspirin improves outcome in ST-elevation myocardial infarction patients receiving fibrinolytic therapy. Expert Rev. Pharmacoecon. Outcomes Res., 2005, 5(6), 751-761.
[http://dx.doi.org/10.1586/14737167.5.6.751] [PMID: 19807617]
[16]
Ferguson, J.J. Clopidogrel plus aspirin in patients with acute myocardial infarction treated with fibrinolytic therapy-CLARITY-TIMI 28. Future Cardiol., 2005, 1(5), 605-610.
[http://dx.doi.org/10.2217/14796678.1.5.605] [PMID: 19804099]
[17]
Valettas, N. Does clopidogrel provide additional benefit to aspirin and fibrinolytic therapy in patients after STEMI? Nat. Clin. Pract. Cardiovasc. Med., 2005, 2(10), 500-501.
[http://dx.doi.org/10.1038/ncpcardio0293] [PMID: 16186842]
[18]
Kheiri, B.; Osman, M.; Abdalla, A.; Haykal, T.; Barbarawi, M.; Zayed, Y.; Hicks, M.; Ahmed, S.; Bachuwa, G.; Hassan, M.; Bhatt, D.L. Ticagrelor versus clopidogrel after fibrinolytic therapy in patients with ST-elevation myocardial infarction: a systematic review and meta-analysis of randomized clinical trials. J. Thromb. Thrombolysis, 2018, 46(3), 299-303.
[http://dx.doi.org/10.1007/s11239-018-1706-2] [PMID: 29934940]
[19]
Jennings, L.K.; Saucedo, J.F. Antiplatelet and anticoagulant agents: key differences in mechanisms of action, clinical application, and therapeutic benefit in patients with non-ST-segment-elevation acute coronary syndromes. Curr. Opin. Cardiol., 2008, 23(4), 302-308.
[http://dx.doi.org/10.1097/HCO.0b013e3283021ad9] [PMID: 18520712]
[20]
Davutoglu, V.; Soydinc, S.; Sezen, Y. Complete lysis of left ventricular giant thrombus with fibrinolytic therapy in clopidogrel resistant patient. J. Thromb. Thrombolysis, 2003, 15(1), 59-63.
[http://dx.doi.org/10.1023/A:1026196502756] [PMID: 14574077]
[21]
Borzak, S. Clopidogrel was effective in patients who have MI with ST segment elevation receiving aspirin and fibrinolytic therapy. Evid. Based Med., 2005, 10(4), 111.
[http://dx.doi.org/10.1136/ebm.10.4.111]
[22]
Anand, S.; Yusuf, S.; Xie, C.; Pogue, J.; Eikelboom, J.; Budaj, A.; Sussex, B.; Liu, L.; Guzman, R.; Cina, C.; Crowell, R.; Keltai, M.; Gosselin, G. Oral anticoagulant and antiplatelet therapy and peripheral arterial disease. N. Engl. J. Med., 2007, 357(3), 217-227.
[http://dx.doi.org/10.1056/NEJMoa065959] [PMID: 17634457]
[23]
Veitch, A.M.; Baglin, T.P.; Gershlick, A.H.; Harnden, S.M.; Tighe, R.; Cairns, S. Guidelines for the management of anticoagulant and antiplatelet therapy in patients undergoing endoscopic procedures. Gut, 2008, 57(9), 1322-1329.
[http://dx.doi.org/10.1136/gut.2007.142497] [PMID: 18469092]
[24]
Baron, T.H.; Kamath, P.S.; Mcbane, R.D. New anticoagulant and antiplatelet agents: a primer for the gastroenterologist. Clin. Gastroenterol. Hepatol., 2014, 12(2), 187-195.
[25]
Kidane, A.G.; Salacinski, H.; Tiwari, A.; Bruckdorfer, K.R.; Seifalian, A.M. Anticoagulant and antiplatelet agents: their clinical and device application(s) together with usages to engineer surfaces. Biomacromolecules, 2004, 5(3), 798-813.
[http://dx.doi.org/10.1021/bm0344553] [PMID: 15132664]
[26]
Connolly, S.J.; Pogue, J.; Eikelboom, J.; Flaker, G.; Commerford, P.; Franzosi, M.G.; Healey, J.S.; Yusuf, S. ACTIVE W. Investigators. Benefit of oral anticoagulant over antiplatelet therapy in atrial fibrillation depends on the quality of international normalized ratio control achieved by centers and countries as measured by time in therapeutic range. Circulation, 2008, 118, 2029-2037.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.750000] [PMID: 18955670]
[27]
Ruiz-Nodar, J.M.; Marín, F.; Hurtado, J.A.; Valencia, J.; Pinar, E.; Pineda, J.; Gimeno, J.R.; Sogorb, F.; Valdés, M.; Lip, G.Y. Anticoagulant and antiplatelet therapy use in 426 patients with atrial fibrillation undergoing percutaneous coronary intervention and stent implantation implications for bleeding risk and prognosis. J. Am. Coll. Cardiol., 2008, 51(8), 818-825.
[http://dx.doi.org/10.1016/j.jacc.2007.11.035] [PMID: 18294566]
[28]
Farid, N.A.; Small, D.S.; Payne, C.D.; Jakubowski, J.A.; Brandt, J.T.; Li, Y.G.; Ernest, C.S.; Salazar, D.E.; Konkoy, C.S.; Winters, K.J. Effect of atorvastatin on the pharmacokinetics and pharmacodynamics of prasugrel and clopidogrel in healthy subjects. Pharmacotherapy, 2008, 28(12), 1483-1494.
[http://dx.doi.org/10.1592/phco.28.12.1483] [PMID: 19025429]
[29]
Cilla, D.D., Jr; Whitfield, L.R.; Gibson, D.M.; Sedman, A.J.; Posvar, E.L. Multiple-dose pharmacokinetics, pharmacodynamics, and safety of atorvastatin, an inhibitor of HMG-CoA reductase, in healthy subjects. Clin. Pharmacol. Ther., 1996, 60(6), 687-695.
[http://dx.doi.org/10.1016/S0009-9236(96)90218-0] [PMID: 8988072]
[30]
Whitfield, L.R.; Stern, R.H.; Sedman, A.J.; Abel, R.; Gibson, D.M. Effect of food on the pharmacodynamics and pharmacokinetics of atorvastatin, an inhibitor of HMG-CoA reductase. Eur. J. Drug Metab. Pharmacokinet., 2000, 25(2), 97-101.
[http://dx.doi.org/10.1007/BF03190074] [PMID: 11112089]
[31]
Date, A.A.; Nagarsenker, M.S. Novel delivery systems of atorvastatin should be evaluated for pharmacodynamics instead of pharmacokinetics. J. Pharm. Pharmacol., 2007, 59(11), 1583-1584.
[http://dx.doi.org/10.1211/jpp.59.11.0017] [PMID: 17976271]
[32]
Lennernäs, H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet., 2003, 42(13), 1141-1160.
[http://dx.doi.org/10.2165/00003088-200342130-00005] [PMID: 14531725]
[33]
Wang, Q.; Wang, J.; Shao, Y.F.; Han, J.B.; Gai, Y.Y.; Sha, C.J.; Dend, Y.W.; Liu, W.H. School of Pharmacy,Yantai University; State Key Laboratory of Long-actingand Targeting Drug Delivery System, Luye Pharma Group Ltd. Pharmacokinetics and pharmacodynamics of atorvastatin calcium tablets in Beagle dogs evaluated by enzyme activity and LC-MS / MS methods. Chinese J. New Drug., 2016, 2, 1.
[34]
Neerati, P.; Gade, J. Influence of atorvastatin on the pharmacokinetics and pharmacodynamics of glyburide in normal and diabetic rats. Eur. J. Pharm. Sci., 2011, 42(3), 285-289.
[http://dx.doi.org/10.1016/j.ejps.2010.12.006] [PMID: 21182938]
[35]
Nie, W.; Shun, D.J.; Zuo, G.L.; Ruan, C.G. Pulaimab concentration in human plasma was determined by sandwich ELISA. Chinese Phar. Affair., 2008, 22(8), 664-667.
[36]
Ruan, C.G. [Monoclonal antibody SZ-21 to platelet membrane glycoprotein IIIa]. Zhonghua Yi Xue Za Zhi, 1987, 67(2), 76-78.
[PMID: 3109715]
[37]
Dai, K.; An, G.; Ruan, C. [Construction and characterization of bispecific single-chain antibody fragments SZ-2/SZ-21 against platelet glycoprotein Ib alpha and beta3]. Zhonghua Yi Xue Za Zhi, 2002, 82(21), 1493-1497.
[PMID: 12509914]
[38]
Schwippert-Houtermans, B.; Strapatsakis, S.; Roesen, P.; Tschoepe, D. Evaluation of an antibody-based genotype classification of the platelet fibrinogen receptor (GPIIb/IIIa). Cytometry, 2001, 46(4), 238-242.
[http://dx.doi.org/10.1002/cyto.1133] [PMID: 11514957]
[39]
Bakchoul, T1.; Boylan, B.; Sachs, U.J.; Bein, G.; Ruan,C.; Santoso, S.; Newman, P.J. Blockade of maternal anti‐HPA‐1a-mediated platelet clearance by an HPA‐1a epitope-specific F(ab′)2 in an in vivo mouse model of alloimmune thrombocytopenia. Transfusion, 2009, 49(2), 265-270.
[http://dx.doi.org/10.1111/j.1537-2995.2008.01972.x] [PMID: 19000229]
[40]
Shao, B.J.; Zhao, Y.M.; Shen, F.; Ruan, C.G. [Studies on the antithrombotic effects of anti-platelet mAb SZ-21 F(ab’)(2) fragment]. Xibao Yu Fenzi Mianyixue Zazhi, 2003, 19(3), 269-271.
[PMID: 15155091]
[41]
Xi, T.F.; Zhang, J.C.; Tian, W.H.; Wang, C.R.; Lei, X.H.; Wai, H.Y.; Ruan, C.G. New method to quantitate platelets adhered on biomaterials using monoclonal antibodies to human platelet membrane glycoprotein SZ-21. Biomater. Artif. Cells Artif. Organs, 1990, 18(3), 423-435.
[http://dx.doi.org/10.3109/10731199009117318] [PMID: 2383668]
[42]
Mohri, H.; Tanabe, J.; Fujita, H.; Kanamori, H.; Ohkubo, T. Anti-fibrinogen antibody mediates fibrinogen binding to platelet membrane glycoprotein IIb-IIIa. Br. J. Haematol., 1993, 85(2), 341-347.
[http://dx.doi.org/10.1111/j.1365-2141.1993.tb03176.x] [PMID: 8280606]
[43]
Kaku, S.; Yano, S.; Kawasaki, T.; Sakai, Y.; Suzuki, K.; Kawamura, K.; Masuho, Y.; Satoh, N.; Takenaka, T.; Landolfi, N.F.; Co, M.S. Comparison of the antiplatelet agent potential of the whole molecule, F(ab)2 and Fab fragments of humanized anti-GPIIb/IIIa monoclonal antibody in monkeys. Gen. Pharmacol., 1996, 27(3), 435-439.
[http://dx.doi.org/10.1016/0306-3623(95)02057-8] [PMID: 8723521]
[44]
Kiss, R.G.; Lu, H.R.; Roskams, T.; Jang, I.K.; Plow, E.F.; Gold, H.K.; Collen, D. Time course of the effects of a single bolus injection of F(ab’)2 fragments of the antiplatelet GPIIb/IIIa antibody 7E3 on arterial eversion graft occlusion, platelet aggregation, and bleeding time in dogs. Arterioscler. Thromb., 1994, 14(3), 367-374.
[http://dx.doi.org/10.1161/01.ATV.14.3.367] [PMID: 8123640]
[45]
Stuttle, A.W.J.; Peters, A.M.; Loutfi, I.; Lumley, P.; George, P.; Lavender, J.P. Use of an anti-platelet monoclonal antibody F(ab’)2 fragment for imaging thrombus. Nucl. Med. Commun., 1988, 9(9), 647-655.
[http://dx.doi.org/10.1097/00006231-198809000-00007] [PMID: 3186085]
[46]
An, G.; Dong, N.; Shao, B.; Zhu, M.; Ruan, C. Expression and characterization of the ScFv fragment of antiplatelet GPIIIa monoclonal antibody SZ-21. Thromb. Res., 2002, 105(4), 331-337.
[47]
Kaku, S.; Kawasaki, T.; Sakai, Y.; Taniuchi, Y.; Yano, S.; Suzuki, K.; Terazaki, C.; Kawamura, K.; Masuho, Y.; Satoh, N. Antithrombotic effect of a humanized anti-GPIIb/IIIa monoclonal antibody, YM207, in a photochemically induced thrombosis model in monkeys. Eur. J. Pharmacol., 1995, 279(2-3), 115-121.
[48]
Olson, S.C.; Bockbrader, H.; Boyd, R.A.; Cook, J.; Koup, J.R.; Lalonde, R.L.; Siedlik, P.H.; Powell, J.R. Impact of population pharmacokinetic-pharmacodynamic analyses on the drug development process: experience at Parke-Davis. Clin. Pharmacokinet., 2000, 38(5), 449-459.
[http://dx.doi.org/10.2165/00003088-200038050-00005] [PMID: 10843462]
[49]
W?Hlby, U.; Jonsson, E.N.; Karlsson, M.O. Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS PharmSci, 2002, 4(4), 68-79.
[http://dx.doi.org/10.1208/ps040427]
[50]
Jen, J.; Laughlin, M.; Chung, C.; Heft, S.; Affrime, M.B.; Gupta, S.K.; Glue, P.; Hajian, G. Ribavirin dosing in chronic hepatitis C: application of population pharmacokinetic-pharmacodynamic models. Clin. Pharmacol. Ther., 2002, 72(4), 349-361.
[http://dx.doi.org/10.1067/mcp.2002.127112] [PMID: 12386637]
[51]
Dahan, A.; Olofsen, E.; Sigtermans, M.; Noppers, I.; Niesters, M.; Aarts, L.; Bauer, M.; Sarton, E. Population pharmacokinetic-pharmacodynamic modeling of ketamine-induced pain relief of chronic pain. Eur. J. Pain, 2011, 15(3), 258-267.
[http://dx.doi.org/10.1016/j.ejpain.2010.06.016] [PMID: 20638877]
[52]
Mentré, F.; Pousset, F.; Comets, E.; Plaud, B.; Diquet, B.; Montalescot, G.; Ankri, A.; Mallet, A.; Lechat, P. Population pharmacokinetic-pharmacodynamic analysis of fluindione in patients. Clin. Pharmacol. Ther., 1998, 63(1), 64-78.
[http://dx.doi.org/10.1016/S0009-9236(98)90122-9] [PMID: 9465843]
[53]
Lieberman, R.; McMichael, J. Role of pharmacokinetic-pharmacodynamic principles in rational and cost-effective drug development. Ther. Drug Monit., 1996, 18(4), 423-428.
[http://dx.doi.org/10.1097/00007691-199608000-00019] [PMID: 8857562]
[54]
Singh, A.P.; Shin, Y.G.; Shah, D.K. Application of Pharmacokinetic-Pharmacodynamic Modeling and Simulation for Antibody-Drug Conjugate Development. Pharm. Res., 2015, 32(11), 3508-3525.
[http://dx.doi.org/10.1007/s11095-015-1626-1] [PMID: 25666843]
[55]
Fossler, M.J.; Ebling, W.F.; Ma, S.; Kornhauser, D.; Mondick, J.; Barrett, J.S.; Garner, D.; Quon, C.Y.; Pieniaszek, H.J. Jr Integrated pharmacokinetic/pharmacodynamic model of XV459, a potent and specific GPIIb/IIIa inhibitor, in healthy male volunteers. J. Clin. Pharmacol., 2002, 42(12), 1326-1334.
[http://dx.doi.org/10.1177/0091270002042012003] [PMID: 12463727]
[56]
Zannikos, P.N.; Rohatagi, S.; Jensen, B.K.; DePhillips, S.L.; Rhodes, G.R. Pharmacokinetics and concentration-effect analysis of intravenous RGD891, a platelet GPIIb/IIIa antagonist, using mixed-effects modeling (NONMEM). J. Clin. Pharmacol., 2000, 40(10), 1129-1140.
[PMID: 11028252]
[57]
Harder, S.; Klinkhardt, U.; Breddin, H.K. Pharmacodynamic-pharmacokinetic interrelations of the GPIIb/IIIa-antagonist YM337. Clin. Pharmacol. Ther., 1999, 65(2), 179-179.
[http://dx.doi.org/10.1016/S0009-9236(99)80249-5]
[58]
Furuya, A.; Nozawa, M.; Gotoh, J.; Jingu, S.; Akimoto, M.; Higuchi, S.; Suwa, T.; Ogata, H. Pharmacokinetic and pharmacodynamic analysis of TS-943, a selective non-peptide platelet glycoprotein-IIb/IIIa (GPIIb/IIIa) receptor antagonist, using a nonlinear mixed effect model in dogs. J. Pharm. Pharmacol., 2002, 54(7), 921-927.
[http://dx.doi.org/10.1211/002235702760089036] [PMID: 12162710]
[59]
Gilchrist, I.C. Platelet glycoprotein IIb/IIIa inhibitors in percutaneous coronary intervention: focus on the pharmacokinetic-pharmacodynamic relationships of eptifibatide. Clin. Pharmacokinet., 2003, 42(8), 703-720.
[http://dx.doi.org/10.2165/00003088-200342080-00001] [PMID: 12846593]
[60]
Furuya, A.; Kato, N.; Jingu, S.; Akimoto, M.; Kasai, O.; Suwa, T.; Sato, M.; Ogata, H. Comparison of stepwise and simultaneous estimations of population pharmacokinetics and pharmacodynamics of TS-943. Eur. J. Drug Metab. Pharmacokinet., 2003, 28(3), 191-199.
[http://dx.doi.org/10.1007/BF03190485] [PMID: 14527092]
[61]
Cox, D.S.; Kleiman, N.S.; Boyle, D.A.; Aluri, J.; Parchman, L.G.; Holdbrook, F.; Fossler, M.J. Pharmacokinetics and pharmacodynamics of argatroban in combination with a platelet glycoprotein IIB/IIIA receptor antagonist in patients undergoing percutaneous coronary intervention. J. Clin. Pharmacol., 2004, 44(9), 981-990.
[http://dx.doi.org/10.1177/0091270004267651] [PMID: 15317826]
[62]
Koch, H.J. Population methods in drug development and related fields. Clin. Pharmacokinet., 1996, 31(2), 164.
[http://dx.doi.org/10.2165/00003088-199631020-00007] [PMID: 8853937]
[63]
Wakefield, J. The Bayesian Analysis of Population Pharmacokinetic Models. Publ. Am. Stat. Assoc., 1996, 91(433), 62-75.
[http://dx.doi.org/10.1080/01621459.1996.10476664]
[64]
Samara, E.; Granneman, R. Role of population pharmacokinetics in drug development. A pharmaceutical industry perspective. Clin. Pharmacokinet., 1997, 32(4), 294-312.
[http://dx.doi.org/10.2165/00003088-199732040-00003] [PMID: 9113438]
[65]
Sheiner, L.; Wakefield, J. Population modelling in drug development. Stat. Methods Med. Res., 1999, 8(3), 183-193.
[http://dx.doi.org/10.1177/096228029900800302] [PMID: 10636334]
[66]
Meibohm, B.; Läer, S.; Panetta, J.C.; Barrett, J.S. Population pharmacokinetic studies in pediatrics: issues in design and analysis. AAPS J., 2005, 7(2), E475-E487.
[http://dx.doi.org/10.1208/aapsj070248] [PMID: 16353925]
[67]
Rosenbaum, S.E.; Carter, A.A.; Dudley, M.N. Population Pharmacokinetics: Fundamentals, Methods and Applications. Drug Develop. Commun., 1995, 21(9), 27.
[68]
Suri, A.; Chapel, S.; Lu, C.; Venkatakrishnan, K. Physiologically based and population PK modeling in optimizing drug development: A predict-learn-confirm analysis. Clin. Pharmacol. Ther., 2015, 98(3), 336-344.
[http://dx.doi.org/10.1002/cpt.155] [PMID: 26031410]
[69]
Booth, B.P.; Rahman, A.; Dagher, R.; Griebel, D.; Lennon, S.; Fuller, D.; Sahajwalla, C.; Mehta, M.; Gobburu, J.V. Population pharmacokinetic-based dosing of intravenous busulfan in pediatric patients. J. Clin. Pharmacol., 2007, 47(1), 101-111.
[http://dx.doi.org/10.1177/0091270006295789] [PMID: 17192508]
[70]
Periclou, A.P.; Avramis, V.I. NONMEM population pharmacokinetic studies of cytosine arabinoside after high-dose and after loading bolus followed by continuous infusion of the drug in pediatric patients with leukemias. Cancer Chemother. Pharmacol., 1996, 39(1-2), 42-50.
[http://dx.doi.org/10.1007/s002800050536] [PMID: 8995498]
[71]
Mentré, F.; Dubruc, C.; Thénot, J.P. Population pharmacokinetic analysis and optimization of the experimental design for mizolastine solution in children. J. Pharmacokinet. Pharmacodyn., 2001, 28(3), 299-319.
[http://dx.doi.org/10.1023/A:1011583210549] [PMID: 11468942]
[72]
Zobell, J.T.; Stockmann, C.; Young, D.C.; Cash, J.; McDowell, B.J.; Korgenski, K.; Sherwin, C.M.; Spigarelli, M.; Chatfield, B.A.; Ampofo, K. Population pharmacokinetic and pharmacodynamic modeling of high-dose intermittent ticarcillin-clavulanate administration in pediatric cystic fibrosis patients. Clin. Ther., 2011, 33(11), 1844-1850.
[http://dx.doi.org/10.1016/j.clinthera.2011.09.010] [PMID: 22018680]
[73]
Karlsson, M.O.; Lutsar, I.; Milligan, P.A. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob. Agents Chemother., 2009, 53(3), 935-944.
[http://dx.doi.org/10.1128/AAC.00751-08] [PMID: 19075073]
[74]
Fukudo, M.; Yano, I.; Masuda, S.; Goto, M.; Uesugi, M.; Katsura, T.; Ogura, Y.; Oike, F.; Takada, Y.; Egawa, H.; Uemoto, S.; Inui, K. Population pharmacokinetic and pharmacogenomic analysis of tacrolimus in pediatric living-donor liver transplant recipients. Clin. Pharmacol. Ther., 2006, 80(4), 331-345.
[http://dx.doi.org/10.1016/j.clpt.2006.06.008] [PMID: 17015051]
[75]
Williams, P.J.; Ette, E.I. The role of population pharmacokinetics in drug development in light of the Food and Drug Administration’s. Guidance for Industry: population pharmacokinetics. Clin. Pharmacokinet., 2000, 39(6), 385-395.
[http://dx.doi.org/10.2165/00003088-200039060-00001] [PMID: 11192472]
[76]
Willmann, S.; Edginton, A.N.; Kleine-Besten, M.; Jantratid, E.; Thelen, K.; Dressman, J.B. Whole-body physiologically based pharmacokinetic population modelling of oral drug administration: inter-individual variability of cimetidine absorption. J. Pharm. Pharmacol., 2009, 61(7), 891-899.
[http://dx.doi.org/10.1211/jpp.61.07.0008] [PMID: 19589231]
[77]
Sun, H.; Fadiran, E.O.; Jones, C.D.; Lesko, L.; Huang, S.M.; Higgins, K.; Hu, C.; Machado, S.; Maldonado, S.; Williams, R.; Hossain, M.; Ette, E.I. Population pharmacokinetics. A regulatory perspective. Clin. Pharmacokinet., 1999, 37(1), 41-58.
[http://dx.doi.org/10.2165/00003088-199937010-00003] [PMID: 10451782]
[78]
Musuamba, F.T.; Mourad, M.; Haufroid, V.; Delattre, I.K.; Verbeeck, R.K.; Wallemacq, P. Time of drug administration, CYP3A5 and ABCB1 genotypes, and analytical method influence tacrolimus pharmacokinetics: a population pharmacokinetic study. Ther. Drug Monit., 2009, 31(6), 734-742.
[http://dx.doi.org/10.1097/FTD.0b013e3181bf8623] [PMID: 19855314]
[79]
Chung, E.K. Beta-lactam antimicrobial dosing optimization inobese patients compared to non-obese patients using population pharmacokinetic/pharmacodynamic approach;; Dissertations & Theses – Gradworks, Purdue University: Lafayette,. , 2015.
[80]
Struys, M.M.R.F.; Sahinovic, M.; Lichtenbelt, B.J.; Vereecke, H.E.; Absalom, A.R. Optimizing intravenous drug administration by applying pharmacokinetic/pharmacodynamic concepts. Br. J. Anaesth., 2011, 107(1), 38-47.
[http://dx.doi.org/10.1093/bja/aer108] [PMID: 21624964]
[81]
Bergstrand, M.; Hooker, A.C.; Wallin, J.E.; Karlsson, M.O. Prediction-corrected visual predictive checks for diagnosing nonlinear mixed-effects models. AAPS J., 2011, 13(2), 143-151.
[http://dx.doi.org/10.1208/s12248-011-9255-z] [PMID: 21302010]
[82]
Arshad, U.; Chasseloup, E.; Nordgren, R.; Karlsson, M.O. Development of visual predictive checks accounting for multimodal parameter distributions in mixture models. J. Pharmacokinet. Pharmacodyn., 2019, 46(3), 241-250.
[http://dx.doi.org/10.1007/s10928-019-09632-9] [PMID: 30968312]
[83]
Lee, E.K. asVPC: Average Shifted Visual Predictive Checks, 2015.
[84]
Huh, Y.; Hutmacher, M.M. Application of a hazard-based visual predictive check to evaluate parametric hazard models. J. Pharmacokinet. Pharmacodyn., 2016, 43(1), 57-71.
[http://dx.doi.org/10.1007/s10928-015-9454-9] [PMID: 26563504]
[85]
Wang, D.D.; Zhang, S. Standardized visual predictive check versus visual predictive check for model evaluation. J. Clin. Pharmacol., 2012, 52(1), 39-54.
[http://dx.doi.org/10.1177/0091270010390040] [PMID: 21257797]
[86]
Greenland, S. The bootstrap method for standard errors and confidence intervals of the adjusted attributable risk. Epidemiology, 1992, 3(3), 271-272.
[http://dx.doi.org/10.1097/00001648-199205000-00015] [PMID: 1591328]
[87]
Moschini, G.; Prescott, D.M.; Stengos, T. Nonparametric kernel estimation applied to forecasting: an evaluation based on the bootstrap. Empir. Econ., 1988, 13(3-4), 141-154.
[http://dx.doi.org/10.1007/BF01972445]
[88]
Kooperberg; Charles; Petitti; Diana, B. The bookstrap method for standard errors and confidence intervals of the adjusted attributed risk: the authors reply. Adv. Neurol., 1992, 3(3), 272-273.
[89]
Gillette, M.; Morneau, K.; Hoang, V.; Virani, S.; Jneid, H. Antiplatelet management for coronary heart disease: advances and challenges. Curr. Atheroscler. Rep., 2016, 18(6), 35.
[http://dx.doi.org/10.1007/s11883-016-0581-6] [PMID: 27139709]
[90]
Gaspoz, J.M.; Coxson, P.G.; Goldman, P.A.; Williams, L.W.; Kuntz, K.M.; Hunink, M.G.; Goldman, L. Cost effectiveness of aspirin, clopidogrel, or both for secondary prevention of coronary heart disease. N. Engl. J. Med., 2002, 346(23), 1800-1806.
[http://dx.doi.org/10.1056/NEJM200206063462309] [PMID: 12050341]
[91]
Ho, W.K.; Hankey, G.J.; Eikelboom, J.W. Prevention of coronary heart disease with aspirin and clopidogrel: efficacy, safety, costs and cost-effectiveness. Expert Opin. Pharmacother., 2004, 5(3), 493-503.
[http://dx.doi.org/10.1517/14656566.5.3.493] [PMID: 15013918]
[92]
Koshy, S.K.; Salahuddin, S.; Karunakaran, B.; Nalakath, S.Y.; Bhaskaran, J.; Haridas, P.V.; Mandalay, A.; Faizal, A. Aspirin and clopidogrel resistance using the cone and plate(let) analyser in Indian patients with coronary artery disease. Heart Asia, 2014, 6(1), 159-162.
[http://dx.doi.org/10.1136/heartasia-2014-010568] [PMID: 27326196]
[93]
Canner, P.L. Aspirin in coronary heart disease. Comparison of six clinical trials. Isr. J. Med. Sci., 1983, 19(5), 413-423.
[PMID: 6345461]
[94]
Sanmuganathan, P.S.; Ghahramani, P.; Jackson, P.R.; Wallis, E.J.; Ramsay, L.E. Aspirin for primary prevention of coronary heart disease: safety and absolute benefit related to coronary risk derived from meta-analysis of randomised trials. Heart, 2001, 85(3), 265-271.
[http://dx.doi.org/10.1136/heart.85.3.265] [PMID: 11179262]
[95]
Gratsianskiĭ, N.A. [Antiplatelet therapy in coronary heart disease. Some problems and achivements]. Kardiologiia, 2010, 50(6), 4-21.
[PMID: 20659022]
[96]
Ragosta, M.; Beller, G.A. The assessment of patients with congestive heart failure as a manifestation of coronary artery disease. Coron. Artery Dis., 1998, 9(10), 645-651.
[http://dx.doi.org/10.1097/00019501-199809000-00004] [PMID: 9894616]
[97]
Mehta, J.; Mehta, P. Status of antiplatelet drugs in coronary heart disease. JAMA, 1979, 241(24), 2649-2651.
[http://dx.doi.org/10.1001/jama.1979.03290500051026] [PMID: 439365]
[98]
Yamamoto, K.; Hokimoto, S.; Chitose, T.; Morita, K.; Ono, T.; Kaikita, K.; Tsujita, K.; Abe, T.; Deguchi, M.; Miyagawa, H.; Saruwatari, J.; Sumida, H.; Sugiyama, S.; Nakagawa, K.; Ogawa, H. Impact of CYP2C19 polymorphism on residual platelet reactivity in patients with coronary heart disease during antiplatelet therapy. J. Cardiol., 2011, 57(2), 194-201.
[http://dx.doi.org/10.1016/j.jjcc.2010.10.007] [PMID: 21168310]
[99]
Catella-Lawson, F.; Reilly, M.P.; Kapoor, S.C.; Cucchiara, A.J.; DeMarco, S.; Tournier, B.; Vyas, S.N.; FitzGerald, G.A. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N. Engl. J. Med., 2001, 345(25), 1809-1817.
[http://dx.doi.org/10.1056/NEJMoa003199] [PMID: 11752357]
[100]
Cruz-Fernandez, J.M. Antiplatelet drugs in the treatment of acute coronary syndromes: focus on cyclooxygenase inhibitors. Eur. Heart J. Suppl., 2001, 3(I), I23-I30.
[101]
Williams, G.W. An update on nonsteroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors. Curr. Pain Headache Rep., 2005, 9(6), 377-389.
[http://dx.doi.org/10.1007/s11916-005-0017-4] [PMID: 16282038]
[102]
Luong, C.; Miller, A.; Barnett, J.; Chow, J.; Ramesha, C.; Browner, M.F. Flexibility of the NSAID binding site in the structure of human cyclooxygenase-2. Nat. Struct. Biol., 1996, 3(11), 927-933.
[http://dx.doi.org/10.1038/nsb1196-927] [PMID: 8901870]
[103]
Feldman, M.; McMahon, A.T. Do cyclooxygenase-2 inhibitors provide benefits similar to those of traditional nonsteroidal anti-inflammatory drugs, with less gastrointestinal toxicity? Ann. Intern. Med., 2000, 132(2), 134-143.
[http://dx.doi.org/10.7326/0003-4819-132-2-200001180-00008] [PMID: 10644275]
[104]
Falcão Gonçalves, P.; Menezes Falcão, L. Oral antiplatelet therapy in coronary disease. Am. J. Ther., 2017, 24(6), e744-e750.
[http://dx.doi.org/10.1097/MJT.0000000000000378] [PMID: 26752652]
[105]
Pratico, D.; Iuliano, L.; Alessandri, C.; Bonavita, S.; Violi, F. Antiplatelet activity of dipyridamole in cyclooxygenase independent platelet aggregation. Thromb. Res., 1991, 61(Suppl. S1), 107.
[http://dx.doi.org/10.1016/0049-3848(91)90615-4]
[106]
Sharis, P.J.; Cannon, C.P.; Loscalzo, J. The antiplatelet effects of ticlopidine and clopidogrel. Ann. Intern. Med., 1998, 129(5), 394-405.
[http://dx.doi.org/10.7326/0003-4819-129-5-199809010-00009] [PMID: 9735068]
[107]
Smith, S.M.G.; Judge, H.M.; Peters, G.; Storey, R.F. Multiple antiplatelet effects of clopidogrel are not modulated by statin type in patients undergoing percutaneous coronary intervention. Platelets, 2004, 15(8), 465-474.
[http://dx.doi.org/10.1080/0953710412331272532] [PMID: 15763887]
[108]
Farid, N.A.; Kurihara, A.; Wrighton, S.A. Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J. Clin. Pharmacol., 2010, 50(2), 126-142.
[http://dx.doi.org/10.1177/0091270009343005] [PMID: 19948947]
[109]
Gardell, S.J. Ticlopidine and clopidogrel: antithrombotic agents that block ADP-mediated platelet activation. Perspect. Drug Discov. Des., 1994, 1(3), 521-526.
[http://dx.doi.org/10.1007/BF02171863]
[110]
Yang, L.H.; Hoppensteadt, D.; Fareed, J. Modulation of vasoconstriction by clopidogrel and ticlopidine. Thromb. Res., 1998, 92(2), 83-89.
[http://dx.doi.org/10.1016/S0049-3848(98)00114-5] [PMID: 9792116]
[111]
Quinn, M.J.; Fitzgerald, D.J. Ticlopidine and clopidogrel. Circulation, 1999, 100(15), 1667-1672.
[http://dx.doi.org/10.1161/01.CIR.100.15.1667] [PMID: 10517740]
[112]
Bhatt, D.L.; Bertrand, M.E.; Berger, P.B.; L’Allier, P.L.; Moussa, I.; Moses, J.W.; Dangas, G.; Taniuchi, M.; Lasala, J.M.; Holmes, D.R.; Ellis, S.G.; Topol, E.J. Meta-analysis of randomized and registry comparisons of ticlopidine with clopidogrel after stenting. J. Am. Coll. Cardiol., 2002, 39(1), 9-14.
[http://dx.doi.org/10.1016/S0735-1097(01)01713-2] [PMID: 11755280]
[113]
Zhang, S. Progress and clinical evaluation of platelet membrane glycoprotein gpiib/iiia receptor antagonists. Zhongguo Yiyuan Yongyao Pingjia Yu Fenxi, 2006.
[114]
Ning-Zheng, D.; Yu-Jie, C. Generation of human Fab antibody against platelet membrane glycoprotein IIb/IIIa and its effect on platelet aggregation. Chinese J. Cell. Mol. Immunol., 2009, 25(1), 65-67.
[115]
Feng, J.H.; Lai, W.Y.; Ou, W.C.; Liu, J.; Bin, J.P.; Liu, Y.L. Role of platelet membrane glycoprotein II b/III a receptor activation in no-reflow after myocardial reperfusion. J. First Mil. Med. Univ., 2003, 23(9), 888-891.
[PMID: 13129710]
[116]
Han, Y.; Wang, Z.; Wang, A. [Alterations of platelet membrane glycoproteins in patients with diabetes mellitus and their clinical significance]. Zhonghua Xue Ye Xue Za Zhi, 1999, 20(3), 127-129.
[PMID: 11601237]
[117]
Dong, N.Z.; Cui, Y.J.; Ruan, C.G. Generation of human Fab antibody against platelet membrane glycoprotein IIb/IIIa and its effect on platelet aggregation Chinese J. Cell. Mol. Immunol., 2009, 25(1), 65.
[118]
Vorchheimer, D.A.; Badimon, J.J.; Fuster, V. Platelet glycoprotein IIb/IIIa receptor antagonists in cardiovascular disease. JAMA, 1999, 281(15), 1407-1414.
[http://dx.doi.org/10.1001/jama.281.15.1407] [PMID: 10217057]
[119]
Ming, Y.Y.; Jun, W.; Ming, H.W. Abciximab-induced thrombocytopenia and its treatment. World Clin. Drug., 2009, 2009, 118-120.
[120]
Chang, G.R. Development and Clinical Application of Antiplatelet Drugs; China Pharmacy, 2013.
[121]
Jian, D. The immunogenicity and control of therapeutic monoclonal antibodies. China Licens. Pharma., 2012, 9(9), 15-20.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 13
Year: 2019
Published on: 23 January, 2020
Page: [1060 - 1072]
Pages: 13
DOI: 10.2174/1389200220666191122120238
Price: $65

Article Metrics

PDF: 23
HTML: 4
EPUB: 1
PRC: 1