Design, Synthesis and Evaluation of Novel Substituted (5-methyl-1H-pyrazol-3-yl)- 1,3,4-oxadiazole as Potent Androgen Receptor Antagonist

Author(s): Sasikumar Andavar*, Mohanasrinivasan Vaithilingam*, Divakar Selvaraj, Ajeeshkumar A. Kumaran, Krishnaswamy Devanathan

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Androgen Receptor (AR) is one of the highly explored targets for the treatment of prostate cancer. The emergence of point mutation in the Ligand Binding Domain (LBD) of AR has resulted in the development of resistance against AR antagonist. The point mutation T877A, W741L and F876L confer resistance to flutamide, bicalutamide and enzalutamide respectively. There is no AR antagonist in the present clinical set up without resistance. Hence, our aim in this study is to design a novel molecule to overcome the resistance caused by point mutation.

Methods: Here, we developed novel AR antagonist bearing (5-methyl-1H-pyrazol-3-yl)-1, 3,4-oxadiazole core by rational drug design. The test molecules 8a-h were synthesized from the corresponding dihydrazide compounds 7a-h on treatment with phosphorous oxychloride on reflux conditions. The structure of the molecules was confirmed from spectral data such as IR, 1H-NMR, HRMS and 13C-NMR. The synthesized compounds were screened for cytotoxicity in prostate cancer cell lines LNCaP-FGC and PC3. The confirmation of AR mediated activity of the test compounds was confirmed by gene expression study. The interaction of the best active ligands with mutant AR was predicted and drug design was rationalized through docking studies.

Results: The test compounds 8a-h were synthesized and the structures were conformed using suitable techniques like IR, 1H-NMR, HRMS and 13C-NMR. Among the tested compounds, 8b and 8d showed potent antiproliferative activity against mutant AR cell lines. Further, these compounds significantly decreased the gene expression of prostate cancer biomarkers.

Conclusion: In this study, we have identified a potential hit molecule for AR antagonism that could be further developed to obtain a potent clinical candidate.

Keywords: Oxadiazole, androgen receptor, androgen receptor antagonist, T877A, LNCaP, LBD.

Culig, Z.; Santer, F.R. Androgen receptor signaling in prostate cancer. Cancer Metastasis Rev., 2014, 33(2-3), 413-427.
[] [PMID: 24384911]
Tan, M.H.; Li, J.; Xu, H.E.; Melcher, K.; Yong, E.L. Androgen receptor: Structure, role in prostate cancer and drug discovery. Acta Pharmacol. Sin., 2015, 36(1), 3-23.
Balk, S.P. Androgen receptor as a target in androgen-independent prostate cancer. Urology, 2002, 60(3), 132-138.
[] [PMID: 12231070]
Brinkmann, A.O.; Blok, L.J.; de Ruiter, P.E.; Doesburg, P.; Steketee, K.; Berrevoets, C.A.; Trapman, J. Mechanisms of androgen receptor activation and function. J. Steroid Biochem. Mol. Biol., 1999, 69(1-6), 307-313.
[] [PMID: 10419007]
Heidenreich, A.; Bellmunt, J.; Bolla, M.; Joniau, S.; Mason, M.; Matveev, V.; Mottet, N.; Schmid, H.P.; van der Kwast, T.; Wiegel, T.; Zattoni, F. EAU guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of clinically localised disease. Eur. Urol., 2011, 59(1), 61-71.
[] [PMID: 21056534]
Feldman, B.J.; Feldman, D. The development of androgen-independent prostate cancer. Nat. Rev. Cancer, 2001, 1(1), 34-45.
[] [PMID: 11900250]
Mostaghel, E.A.; Nelson, P.S. Intracrine androgen metabolism in prostate cancer progression: Mechanisms of castration resistance and therapeutic implications. Best Pract. Res. Clin. Endocrinol. Metab., 2008, 22(2), 243-258.
[] [PMID: 18471783]
Attard, G.; Reid, A.H.; Yap, T.A.; Raynaud, F.; Dowsett, M.; Settatree, S.; Barrett, M.; Parker, C.; Martins, V.; Folkerd, E.; Clark, J.; Cooper, C.S.; Kaye, S.B.; Dearnaley, D.; Lee, G.; de Bono, J.S. Phase I clinical trial of a selective inhibitor of CYP17, abiraterone acetate, confirms that castration-resistant prostate cancer commonly remains hormone driven. J. Clin. Oncol., 2008, 26(28), 4563-4571.
[] [PMID: 18645193]
Taplin, M.E.; Bubley, G.J.; Shuster, T.D.; Frantz, M.E.; Spooner, A.E.; Ogata, G.K.; Keer, H.N.; Balk, S.P. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. N. Engl. J. Med., 1995, 332(21), 1393-1398.
[] [PMID: 7723794]
McCrea, E.; Sissung, T.M.; Price, D.K.; Chau, C.H.; Figg, W.D. Androgen receptor variation affects prostate cancer progression and drug resistance. Pharmacol. Res., 2016, 114, 152-162.
[] [PMID: 27725309]
Liu, H.; Wang, L.; Tian, J.; Li, J.; Liu, H. Molecular dynamics studies on the enzalutamide resistance mechanisms induced by androgen receptor mutations. J. Cell. Biochem., 2017, 118(9), 2792-2801.
[] [PMID: 28181296]
Zhou, J.; Geng, G.; Shi, Q.; Sauriol, F.; Wu, J.H. Design and synthesis of androgen receptor antagonists with bulky side chains for overcoming antiandrogen resistance. J. Med. Chem., 2009, 52(17), 5546-5550.
[] [PMID: 19725582]
Selvaraj, D.; Hariharan, S.; Muthiah, R. Identification of pharmacophore for wild and T877A mutant androgen receptor antagonist: Challenges in designing 3D-QSAR for mutant protein. IJQSPR, 2017, 2(2), 47-61.
Andrieu, T.; Bertolini, R.; Nichols, S.E.; Setoud, R.; Frey, F.J.; Baker, M.E.; Frey, B.M. A novel steroidal antiandrogen targeting wild type and mutant androgen receptors. Biochem. Pharmacol., 2011, 82(11), 1651-1662.
[] [PMID: 21907706]
Matsubara, N.; Mukai, H.; Hosono, A.; Onomura, M.; Sasaki, M.; Yajima, Y.; Hashizume, K.; Yasuda, M.; Uemura, M.; Zurth, C. Erratum to: Phase 1 study of darolutamide (ODM-201), a new-generation androgen receptor antagonist, in Japanese patients with metastatic castration-resistant prostate cancer. Cancer Chemother. Pharmacol., 2017, 80(6), 1073-1077.
[] [PMID: 29063294]
Batchu, H.; Bhattacharyya, S.; Kant, R.; Batra, S. Palladium-catalyzed chelation-assisted regioselective oxidative dehydrogenative homocoupling/ortho-hydroxylation in N-phenylpyrazoles. J. Org. Chem., 2015, 80(15), 7360-7374.
[] [PMID: 26151504]
Schmidt, A.; Münster, N.; Dreger, A. Functionalized 4-aminoquinolines by rearrangement of pyrazole N-heterocyclic carbenes. Angew. Chem. Int. Ed. Engl., 2010, 49(15), 2790-2793.
[] [PMID: 20229542]
Dawwod, K.M.; Gawad, H.A.; Mohamed, H.A.; Badria, F.A.E. Synthesis, anti-HSV-1, and cytotoxic activities of some new pyrazole- and isoxazole-based heterocycles. Med. Chem. Res., 2011, 20(7), 912-919.
Ivachtchenko, A.V.; Ivanenkov, Y.A.; Mitkin, O.D.; Vorobiev, A.A.; Kuznetsova, I.V.; Shevkun, N.A.; Koryakova, A.G.; Karapetian, R.N.; Trifelenkov, A.S.; Kravchenko, D.V.; Veselov, M.S.; Chufarova, N.V. Design, synthesis and biological evaluation of novel 5-oxo-2-thioxoimidazolidine derivatives as potent androgen receptor antagonists. Eur. J. Med. Chem., 2015, 99, 51-66.
[] [PMID: 26046313]
Divakar, S.; Saravanan, K.; Karthikeyan, P.; Elancheran, R.; Kabilan, S.; Balasubramanian, K.K.; Devi, R.; Kotoky, J.; Ramanathan, M. Iminoenamine based novel androgen receptor antagonist exhibited anti-prostate cancer activity in androgen independent prostate cancer cells through inhibition of AKT pathway. Chem. Biol. Interact., 2017, 275, 22-34.
[] [PMID: 28757136]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[] [PMID: 25618350]
Guo, C.; Pairish, M.; Linton, A.; Kephart, S.; Ornelas, M.; Nagata, A.; Burke, B.; Dong, L.; Engebretsen, J.; Fanjul, A.N. Design of oxobenzimidazoles and oxindoles as novel androgen receptor antagonists. Bioorg. Med. Chem. Lett., 2012, 22(7), 2572-2578.
[] [PMID: 22377517]
Lee, H.J.; Chang, C. Recent advances in androgen receptor action. Cell. Mol. Life Sci., 2003, 60(8), 1613-1622.
[] [PMID: 14504652]
Nyquist, M.D.; Dehm, S.M. Interplay between genomic alterations and androgen receptor signaling during prostate cancer development and progression. Horm. Cancer, 2013, 4(2), 61-69.
[] [PMID: 23307762]
Deng, Q.; Zhang, Z.; Wu, Y.; Yu, W.Y.; Zhang, J.; Jiang, Z.M.; Zhang, Y.; Liang, H.; Gui, Y.T. Non-genomic action of androgens is mediated by rapid phosphorylation and regulation of androgen receptor trafficking. Cell. Physiol. Biochem., 2017, 43(1), 223-236.
[] [PMID: 28854419]
Bohl, C.E.; Gao, W.; Miller, D.D.; Bell, C.E.; Dalton, J.T. Structural basis for antagonism and resistance of bicalutamide in prostate cancer. Proc. Natl. Acad. Sci. USA, 2005, 102(17), 6201-6206.
[] [PMID: 15833816]
Saravanan, K.; Elancheran, R.; Divakar, S.; Anand, S.A.; Ramanathan, M.; Kotoky, J.; Lokanath, N.K.; Kabilan, S. Design, synthesis and biological evaluation of 2-(4-phenylthiazol-2-yl) isoindoline-1,3-dione derivatives as anti-prostate cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(5), 1199-1204.
[] [PMID: 28162857]
Hodgson, M.C.; Shen, H.C.; Hollenberg, A.N.; Balk, S.P. Structural basis for nuclear receptor corepressor recruitment by antagonist-liganded androgen receptor. Mol. Cancer Ther., 2008, 7(10), 3187-3194.
[] [PMID: 18852122]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 09 April, 2020
Page: [84 - 93]
Pages: 10
DOI: 10.2174/1871520619666191121095720
Price: $65

Article Metrics

PDF: 26
PRC: 1