Effectiveness of Stem Cell Therapy in the Treatment of Ovarian Disorders and Female Infertility: A Systematic Review

Author(s): Shahin Ahmadian, Mahdi Mahdipour*, Mohammad Pazhang, Sepideh Sheshpari, Halimeh Mobarak, Alberto Miranda Bedate, Reza Rahbarghazi, Mohammad Nouri

Journal Name: Current Stem Cell Research & Therapy

Volume 15 , Issue 2 , 2020

Become EABM
Become Reviewer

Abstract:

Background: Infertility is a major problem worldwide. Various strategies are being used to develop better treatments for infertility and The most trending strategy is the stem cell therapy. In this study, the literature on stem cell therapy for ovarian disorders is summarized with analysis of current developments.

Objective: Different published studies on stem cell-based therapy for the treatment of various types of ovarian insufficiency and disorders such as Premature Ovarian Insufficiency (POI) in the affected female population in animal or human clinical studies are systematically reviewed.

Methods: We monitored five databases, including PubMed, Cochrane, Embase, Scopus, and ProQuest. A comprehensive online search was done using the criteria targeting the application of stem cells in animal models for menopause. Two independent reviewers carefully evaluated titles and abstracts of studies. The stem cell type, source, dosage, route of administration were highlighted in various POI animals models. Non-relevant and review articles were excluded.

Outcomes: 648 published studies were identified during the initial comprehensive search process from which 41 were selected according to designed criteria. Based on our analysis, stem cells could accelerate ovarian tissues rejuvenation, regulate systemic sex-related hormones levels and eventually increase fertility rate.

Conclusion: The evidence suggests that stem cell-based therapies could be considered as an alternative modality to deal with women undergoing POI.

Keywords: Stem cell therapy, ovarian tissue, transplantation, infertility, ovarian disorder, premature ovarian insufficiency.

[1]
Sudha G, Reddy KSN. Causes of female infertility : A cross- sectional study. Int J Latest Res Sci Technol 2013; 2: 119-23.
[2]
Deepak K, Harlev A. Recurrent pregnancy loss and infertility : A time for change. Austin J Obstet Gynecol 2018; 5: 1-10.
[3]
Pasi AL, Hanchate MS. Infertility and domestic violence: Cause, consequence and management in Indian scenario. Biomed Res 2011; 22: 255-8.
[4]
Olooto W, Amballi A, Banjo T, et al. A review of Female Infertility; important etiological factors and management. J Microbiol Biotechnol Res 2012; 2: 379-85.
[5]
Anwar S, Anwar A. Infertility: A review on causes. Treatment and Management Women’s Heal Gynecol 2016; 2: 1-5.
[6]
Fazeli Z, Abedindo A, Omrani MD, Ghaderian SMH. Mesenchymal Stem Cells (MSCs) therapy for recovery of fertility: A systematic review. Stem Cell Rev Rep 2018; 14(1): 1-12.
[http://dx.doi.org/10.1007/s12015-017-9765-x] [PMID: 28884412]
[7]
Mohamed SA, Shalaby SM, Abdelaziz M, et al. Human mesenchymal stem cells partially reverse infertility in chemotherapy-induced ovarian failure. Reprod Sci 2018; 25(1): 51-63.
[http://dx.doi.org/10.1177/1933719117699705] [PMID: 28460567]
[8]
Riad Omar F, Afifi Amin NM, Elsherif HA, et al. Role of adipose-derived stem cells in restoring ovarian structure of adult albino rats with chemotherapy-induced ovarian failure: A histological and immunohistochemical study. J Carcinog Mutagen 2016; 7: 1-10.
[http://dx.doi.org/10.4172/2157-2518.1000254]
[9]
Gabr H, Rateb MA, El Sissy MH, Ahmed Seddiek H, Ali Abdelhameed Gouda S. The effect of bone marrow-derived mesenchymal stem cells on chemotherapy induced ovarian failure in albino rats. Microsc Res Tech 2016; 79(10): 938-47.
[http://dx.doi.org/10.1002/jemt.22725] [PMID: 27453009]
[10]
Lai D, Wang F, Yao X, Zhang Q, Wu X, Xiang C. Human endometrial mesenchymal stem cells restore ovarian function through improving the renewal of germline stem cells in a mouse model of premature ovarian failure. J Transl Med 2015; 13: 155.
[http://dx.doi.org/10.1186/s12967-015-0516-y] [PMID: 25964118]
[11]
Wang Z, Wang Y, Yang T, Li J, Yang X. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice. Stem Cell Res Ther 2017; 8(1): 11.
[http://dx.doi.org/10.1186/s13287-016-0458-1] [PMID: 28114977]
[12]
Wang S, Yu L, Sun M, et al. The therapeutic potential of umbilical cord mesenchymal stem cells in mice premature ovarian failure. BioMed Res Int 2013; 2013 690491
[http://dx.doi.org/10.1155/2013/690491] [PMID: 23998127]
[13]
Xiong J, Lu Z, Wu M, et al. Intraovarian transplantation of female germline stem cells rescue ovarian function in chemotherapy-injured ovaries. PLoS One 2015; 10(10) e0139824
[http://dx.doi.org/10.1371/journal.pone.0139824] [PMID: 26431320]
[14]
Dan S, Haibo L, Hong L. Pathogenesis and stem cell therapy for premature ovarian failure. OA Stem Cells 2014; pp. 1-8.
[15]
Lai D, Wang F, Chen Y, Wang L, Wang Y, Cheng W. Human amniotic fluid stem cells have a potential to recover ovarian function in mice with chemotherapy-induced sterility. BMC Dev Biol 2013; 13: 34.
[http://dx.doi.org/10.1186/1471-213X-13-34] [PMID: 24006896]
[16]
Kozub MM, Prokopiuk VY, Skibina KP, Prokopiuk OV, Kozub NI. Comparison of various tissue and cell therapy approaches when restoring ovarian, hepatic and kidney’s function after chemotherapy-induced ovarian failure. Exp Oncol 2017; 39(3): 181-5.
[http://dx.doi.org/10.31768/2312-8852.2017.39(3):181-185] [PMID: 28967642]
[17]
Ahmadian S, Sheshpari S, Mahdipour M, et al. Toxic effects of VCD on kidneys and liver tissues: A histopathological and biochemical study. BMC Res Notes 2019; 12(1): 446.
[http://dx.doi.org/10.1186/s13104-019-4490-y] [PMID: 31331386]
[18]
Bao R, Xu P, Wang Y, et al. Bone marrow derived mesenchymal stem cells transplantation rescues premature ovarian insufficiency induced by chemotherapy. Gynecol Endocrinol 2018; 34(4): 320-6.
[http://dx.doi.org/10.1080/09513590.2017.1393661] [PMID: 29073798]
[19]
Zhu S-F, Hu H-B, Xu H-Y, et al. Human umbilical cord mesenchymal stem cell transplantation restores damaged ovaries. J Cell Mol Med 2015; 19(9): 2108-17.
[http://dx.doi.org/10.1111/jcmm.12571] [PMID: 25922900]
[20]
Liu J, Zhang H, Zhang Y, et al. Homing and restorative effects of bone marrow-derived mesenchymal stem cells on cisplatin injured ovaries in rats. Mol Cells 2014; 37(12): 865-72.
[http://dx.doi.org/10.14348/molcells.2014.0145] [PMID: 25410907]
[21]
Su J, Ding L, Cheng J, et al. Transplantation of adipose-derived stem cells combined with collagen scaffolds restores ovarian function in a rat model of premature ovarian insufficiency. Hum Reprod 2016; 31(5): 1075-86.
[http://dx.doi.org/10.1093/humrep/dew041] [PMID: 26965432]
[22]
Kumar S, Singh N. Stem cells: A new paradigm. 2006. Indian J Hum Genet 2006; 12(1): 4-10.
[http://dx.doi.org/10.4103/0971-6866.25295]
[23]
Chagastelles PC, Nardi NB. Biology of stem cells: an overview. Kidney Int Suppl (2011) 2011; 1(3): 63-7.
[http://dx.doi.org/10.1038/kisup.2011.15] [PMID: 25028627]
[24]
KS Mike C. Live cell therapy: Historical aspects, mechanisms of action, safety and success stories. J Stem Cell Res Ther 2019; 5(2): 38-42.
[25]
Fu X, He Y, Xie C, Liu W. Bone marrow mesenchymal stem cell transplantation improves ovarian function and structure in rats with chemotherapy-induced ovarian damage. Cytotherapy 2008; 10(4): 353-63.
[http://dx.doi.org/10.1080/14653240802035926] [PMID: 18574768]
[26]
Liu T, Huang Y, Guo L, Cheng W, Zou G. CD44+/CD105+ human amniotic fluid mesenchymal stem cells survive and proliferate in the ovary long-term in a mouse model of chemotherapy-induced premature ovarian failure. Int J Med Sci 2012; 9(7): 592-602.
[http://dx.doi.org/10.7150/ijms.4841] [PMID: 23028242]
[27]
Mohamed SA, Shalaby S, Brakta S, Elam L, Elsharoud A, Al-Hendy A. Umbilical cord blood mesenchymal stem cells as an infertility treatment for chemotherapy induced premature ovarian insufficiency. Biomedicines 2019; 7(1): 1-13.
[http://dx.doi.org/10.3390/biomedicines7010007] [PMID: 30669278]
[28]
Nombela-Arrieta C, Ritz J, Silberstein LE. The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 2011; 12(2): 126-31.
[http://dx.doi.org/10.1038/nrm3049] [PMID: 21253000]
[29]
Shyam H, Singh SK, Kant R, Saxena SK. Mesenchymal stem cells in regenerative medicine: A new paradigm for degenerative bone diseases. Regen Med 2017; 12(2): 111-4.
[http://dx.doi.org/10.2217/rme-2016-0162] [PMID: 28244826]
[30]
Bifari F, Lisi V, Mimiola E, Pasini A, Krampera M. Immune modulation by mesenchymal stem cells. Transfus Med Hemother 2008; 35(3): 194-204.
[http://dx.doi.org/10.1159/000128968] [PMID: 21547117]
[31]
Fibbe WE, Nauta AJ, Roelofs H. Modulation of immune responses by mesenchymal stem cells. Ann N Y Acad Sci 2007; 1106: 272-8.
[http://dx.doi.org/10.1196/annals.1392.025] [PMID: 17442776]
[32]
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res Ther 2018; 9(1): 63.
[http://dx.doi.org/10.1186/s13287-018-0791-7] [PMID: 29523213]
[33]
Abd-Allah SH, Shalaby SM, Pasha HF, et al. Mechanistic action of mesenchymal stem cell injection in the treatment of chemically induced ovarian failure in rabbits. Cytotherapy 2013; 15(1): 64-75.
[http://dx.doi.org/10.1016/j.jcyt.2012.08.001] [PMID: 23260087]
[34]
Mobarak H, Heidarpour M, Lolicato F, Nouri M, Rahbarghazi R, Mahdipour M. Physiological impact of extracellular vesicles on female reproductive system; highlights to possible restorative effects on female age-related fertility. Biofactors 2019; 45(3): 293-303.
[http://dx.doi.org/10.1002/biof.1497] [PMID: 30788863]
[35]
Rezabakhsh A, Cheraghi O, Nourazarian A, et al. Type 2 diabetes inhibited human mesenchymal stem cells angiogenic response by over-activity of the autophagic pathway. J Cell Biochem 2017; 118(6): 1518-30.
[http://dx.doi.org/10.1002/jcb.25814] [PMID: 27918077]
[36]
Rahbarghazi R, Nassiri SM, Ahmadi SH, et al. Dynamic induction of pro-angiogenic milieu after transplantation of marrow-derived mesenchymal stem cells in experimental myocardial infarction. Int J Cardiol 2014; 173(3): 453-66.
[http://dx.doi.org/10.1016/j.ijcard.2014.03.008] [PMID: 24679689]
[37]
Grady ST, Watts AE, Thompson JA, Penedo MCT, Konganti K, Hinrichs K. Effect of intra-ovarian injection of mesenchymal stem cells in aged mares. J Assist Reprod Genet 2019; 36(3): 543-56.
[http://dx.doi.org/10.1007/s10815-018-1371-6] [PMID: 30470961]
[38]
Takehara Y, Yabuuchi A, Ezoe K, et al. The restorative effects of adipose-derived mesenchymal stem cells on damaged ovarian function. Lab Invest 2013; 93(2): 181-93.
[http://dx.doi.org/10.1038/labinvest.2012.167] [PMID: 23212100]
[39]
Ajayi BO, Adedara IA, Ajani OS, Oyeyemi MO, Farombi EO. [6]-Gingerol modulates spermatotoxicity associated with ulcerative colitis and benzo[a]pyrene exposure in BALB/c mice. J Basic Clin Physiol Pharmacol 2018; 29(3): 247-56.
[http://dx.doi.org/10.1515/jbcpp-2017-0140] [PMID: 29902912]
[40]
Ling L, Feng X, Wei T, et al. Human amnion-derived mesenchymal stem cell (hAD-MSC) transplantation improves ovarian function in rats with premature ovarian insufficiency (POI) at least partly through a paracrine mechanism. Stem Cell Res Ther 2019; 10(1): 46.
[http://dx.doi.org/10.1186/s13287-019-1136-x] [PMID: 30683144]
[41]
Ferreira JR, Teixeira GQ, Santos SG, Barbosa MA, Almeida-Porada G, Gonçalves RM. Mesenchymal stromal cell secretome: Influencing therapeutic potential by cellular pre-conditioning. Front Immunol 2018; 9: 2837.
[http://dx.doi.org/10.3389/fimmu.2018.02837] [PMID: 30564236]
[42]
Lu H, Wang F, Mei H, Wang S, Cheng L. Human adipose mesenchymal stem cells show more efficient angiogenesis promotion on endothelial colony-forming cells than umbilical cord and endometrium. Stem Cells Int 2018. 20187537589
[http://dx.doi.org/10.1155/2018/7537589] [PMID: 30651736]
[43]
Matluobi D, Araghi A, Maragheh BFA, et al. Carvacrol promotes angiogenic paracrine potential and endothelial differentiation of human mesenchymal stem cells at low concentrations. Microvasc Res 2018; 115: 20-7.
[http://dx.doi.org/10.1016/j.mvr.2017.08.003] [PMID: 28830763]
[44]
Zhou Y, Yamamoto Y, Xiao Z, et al. The Immunomodulatory Functions of Mesenchymal Stromal/Stem Cells Mediated via Paracrine Activity. J Clin Med 2019; 8(7): 1025.
[45]
Wang M, Yuan Q, Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int 2018. 20183057624
[http://dx.doi.org/10.1155/2018/3057624] [PMID: 30013600]
[46]
Keyhanmanesh R, Rahbarghazi R, Aslani MR, Hassanpour M, Ahmadi M. Systemic delivery of mesenchymal stem cells condition media in repeated doses acts as magic bullets in restoring IFN-γ/IL-4 balance in asthmatic rats. Life Sci 2018; 212: 30-6.
[http://dx.doi.org/10.1016/j.lfs.2018.09.049] [PMID: 30268855]
[47]
Rahbarghazi R, Nassiri SM, Khazraiinia P, et al. Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells Dev 2013; 22(6): 855-65.
[http://dx.doi.org/10.1089/scd.2012.0377] [PMID: 23072248]
[48]
Harrell CR, Fellabaum C, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Molecular mechanisms responsible for therapeutic potential of mesenchymal stem cell-derived secretome. Cells 2019; 8(5): 467.
[http://dx.doi.org/10.3390/cells8050467] [PMID: 31100966]
[49]
Lee Y-M, Kim T-H, Lee J-H, et al. Overexpression of Oct4 in porcine ovarian stem/stromal cells enhances differentiation of oocyte-like cells in vitro and ovarian follicular formation in vivo. J Ovarian Res 2016; 9: 24.
[http://dx.doi.org/10.1186/s13048-016-0233-z] [PMID: 27067537]
[50]
Zhang Q, Bu S, Sun J, et al. Paracrine effects of human amniotic epithelial cells protect against chemotherapy-induced ovarian damage. Stem Cell Res Ther 2017; 8(1): 270.
[http://dx.doi.org/10.1186/s13287-017-0721-0] [PMID: 29179771]
[51]
Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151: 264-9.
[52]
Kilic S, Pinarli F, Ozogul C, Tasdemir N, Naz Sarac G, Delibasi T. Protection from cyclophosphamide-induced ovarian damage with bone marrow-derived mesenchymal stem cells during puberty. Gynecol Endocrinol 2014; 30(2): 135-40.
[http://dx.doi.org/10.3109/09513590.2013.860127] [PMID: 24308768]
[53]
Mohamed SA, Shalaby SM, Brakta S, et al. Umbilical cord blood mesenchymal stem cells as an infertility treatment for chemotherapy induced premature ovarian failure. Fertil Steril 2016. 106e128
[http://dx.doi.org/10.1016/j.fertnstert.2016.07.382]
[54]
Lai D, Wang F, Dong Z, Zhang Q. Skin-derived mesenchymal stem cells help restore function to ovaries in a premature ovarian failure mouse model. PLoS One 2014; 9(5) e98749
[http://dx.doi.org/10.1371/journal.pone.0098749] [PMID: 24879098]
[55]
Song D, Zhong Y, Qian C, et al. Human Umbilical Cord Mesenchymal Stem Cells Therapy in Cyclophosphamide-Induced Premature Ovarian Failure Rat Model. BioMed Res Int 2016. 20162517514
[http://dx.doi.org/10.1155/2016/2517514] [PMID: 27047962]
[56]
Gan L, Duan H, Xu Q, et al. Human amniotic mesenchymal stromal cell transplantation improves endometrial regeneration in rodent models of intrauterine adhesions. Cytotherapy 2017; 19(5): 603-16.
[http://dx.doi.org/10.1016/j.jcyt.2017.02.003] [PMID: 28285950]
[57]
Fouad H, Sabry D, Elsetohy K, Fathy N. Therapeutic efficacy of amniotic membrane stem cells and adipose tissue stem cells in rats with chemically induced ovarian failure. J Adv Res 2016; 7(2): 233-41.
[http://dx.doi.org/10.1016/j.jare.2015.05.002] [PMID: 26966564]
[58]
Liu T, Huang Y, Zhang J, et al. Transplantation of human menstrual blood stem cells to treat premature ovarian failure in mouse model. Stem Cells Dev 2014; 23(13): 1548-57.
[http://dx.doi.org/10.1089/scd.2013.0371] [PMID: 24593672]
[59]
Herraiz S, Buigues A, Díaz-García C, et al. Fertility rescue and ovarian follicle growth promotion by bone marrow stem cell infusion. Fertil Steril 2018; 109(5): 908-918.e2.
[http://dx.doi.org/10.1016/j.fertnstert.2018.01.004] [PMID: 29576341]
[60]
Ding C, Zou Q, Wang F, et al. Human amniotic mesenchymal stem cells improve ovarian function in natural aging through secreting hepatocyte growth factor and epidermal growth factor. Stem Cell Res Ther 2018; 9(1): 55.
[http://dx.doi.org/10.1186/s13287-018-0781-9] [PMID: 29523193]
[61]
Li J, Yu Q, Huang H, et al. Human chorionic plate-derived mesenchymal stem cells transplantation restores ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. Stem Cell Res Ther 2018; 9(1): 81.
[http://dx.doi.org/10.1186/s13287-018-0819-z] [PMID: 29615109]
[62]
Wang F, Wang L, Yao X, Lai D, Guo L. Human amniotic epithelial cells can differentiate into granulosa cells and restore folliculogenesis in a mouse model of chemotherapy-induced premature ovarian failure. Stem Cell Res Ther 2013; 4(5): 124.
[http://dx.doi.org/10.1186/scrt335] [PMID: 24406076]
[63]
Yao X, Guo Y, Wang Q, et al. The Paracrine Effect of Transplanted Human Amniotic Epithelial Cells on Ovarian Function Improvement in a Mouse Model of Chemotherapy-Induced Primary Ovarian Insufficiency. Stem Cells Int 2016. 20164148923
[http://dx.doi.org/10.1155/2016/4148923] [PMID: 26664408]
[64]
Zhang H, Luo Q, Lu X, et al. Effects of hPMSCs on granulosa cell apoptosis and AMH expression and their role in the restoration of ovary function in premature ovarian failure mice. Stem Cell Res Ther 2018; 9(1): 20.
[http://dx.doi.org/10.1186/s13287-017-0745-5] [PMID: 29386068]
[65]
Yin N, Wang Y, Lu X, et al. hPMSC transplantation restoring ovarian function in premature ovarian failure mice is associated with change of Th17/Tc17 and Th17/Treg cell ratios through the PI3K/Akt signal pathway. Stem Cell Res Ther 2018; 9(1): 37.
[http://dx.doi.org/10.1186/s13287-018-0772-x] [PMID: 29444704]
[66]
Afifi NM, Reyad ON. Role of mesenchymal stem cell therapy in restoring ovarian function in a rat model of chemotherapy-induced ovarian failure: A histological and immunohistochemical study. Egypt J Histol 2013; 36: 114-26.
[http://dx.doi.org/10.1097/01.EHX.0000423979.18253.10]
[67]
Mohamed SA, Shalaby SM, Brakta S, et al. Umbilical cord blood mesenchymal stem cells therapy restores ovarian functions in a preclinical model of chemotherapy induced premature ovarian failure. Reprod Sci 2016; 23: 265A.
[68]
Mohamed SA, Shalaby SM, Brakta S, et al. Human bone marrow mesenchymal stem cells therapy restores ovarian functions and reverses infertility in a preclinical model of chemotherapy induced premature ovarian failure. Fertil Steril 2015; 104: e3-4.
[http://dx.doi.org/10.1016/j.fertnstert.2015.07.010]
[69]
Badawy A, Sobh MA, Ahdy M, Abdelhafez MS. Bone marrow mesenchymal stem cell repair of cyclophosphamide-induced ovarian insufficiency in a mouse model. Int J Womens Health 2017; 9: 441-7.
[http://dx.doi.org/10.2147/IJWH.S134074] [PMID: 28670143]
[70]
Onal O, Abban Mete G, Çil N, et al. The effect of adipose tissue derived mesenchymal stem cells on PTEN/AKT/ FOXO3A signaling pathway cyclophosphamide induced ovarian toxicides in rats. FEBS Open Bio 2018; 8: 156.
[71]
Zhang Q, Xu M, Yao X, Li T, Wang Q, Lai D. Human amniotic epithelial cells inhibit granulosa cell apoptosis induced by chemotherapy and restore the fertility. Stem Cell Res Ther 2015; 6: 152.
[http://dx.doi.org/10.1186/s13287-015-0148-4] [PMID: 26303743]
[72]
Elfayomy AK, Almasry SM, El-Tarhouny SA, Eldomiaty MA. Human umbilical cord blood-mesenchymal stem cells transplantation renovates the ovarian surface epithelium in a rat model of premature ovarian failure: Possible direct and indirect effects. Tissue Cell 2016; 48(4): 370-82.
[http://dx.doi.org/10.1016/j.tice.2016.05.001] [PMID: 27233913]
[73]
Ding C, Li H, Wang Y, et al. Different therapeutic effects of cells derived from human amniotic membrane on premature ovarian aging depend on distinct cellular biological characteristics. Stem Cell Res Ther 2017; 8(1): 173.
[http://dx.doi.org/10.1186/s13287-017-0613-3] [PMID: 28750654]
[74]
Li J, Mao Q, He J, She H, Zhang Z, Yin C. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther 2017; 8(1): 55.
[http://dx.doi.org/10.1186/s13287-017-0514-5] [PMID: 28279229]
[75]
Lukomska B, Stanaszek L, Zuba-Surma E, Legosz P, Sarzynska S, Drela K. Challenges and controversies in human mesenchymal stem cell therapy. Stem Cells Int 2019. 20199628536
[http://dx.doi.org/10.1155/2019/9628536] [PMID: 31093291]
[76]
Neirinckx V, Agirman G, Coste C, et al. Adult bone marrow mesenchymal and neural crest stem cells are chemoattractive and accelerate motor recovery in a mouse model of spinal cord injury. Stem Cell Res Ther 2015; 6: 211.
[http://dx.doi.org/10.1186/s13287-015-0202-2] [PMID: 26530515]
[77]
Kean TJ, Lin P, Caplan AI, Dennis JE. MSCs: Delivery routes and engraftment, cell-targeting strategies, and immune modulation. Stem Cells Int 2013. 2013732742
[http://dx.doi.org/10.1155/2013/732742] [PMID: 24000286]
[78]
Li L, Chen X, Wang WE, Zeng C. How to improve the survival of transplanted mesenchymal stem cell in ischemic heart? Stem Cells Int 2016; 2016 9682757
[http://dx.doi.org/10.1155/2016/9682757] [PMID: 26681958]
[79]
Hu C, Li L. Preconditioning influences mesenchymal stem cell properties in vitro and in vivo. J Cell Mol Med 2018; 22(3): 1428-42.
[http://dx.doi.org/10.1111/jcmm.13492] [PMID: 29392844]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 2
Year: 2020
Page: [173 - 186]
Pages: 14
DOI: 10.2174/1574888X14666191119122159
Price: $65

Article Metrics

PDF: 24
HTML: 2
EPUB: 1
PRC: 1