Hierarchical Extension Based on the Boolean Matrix for LncRNA-Disease Association Prediction

Author(s): Lin Tang, Yu Liang, Xin Jin, Lin Liu*, Wei Zhou*

Journal Name: Current Molecular Medicine

Volume 20 , Issue 6 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer


Background: Accumulating experimental studies demonstrated that long non-coding RNAs (LncRNAs) play crucial roles in the occurrence and development progress of various complex human diseases. Nonetheless, only a small portion of LncRNA–disease associations have been experimentally verified at present. Automatically predicting LncRNA–disease associations based on computational models can save the huge cost of wet-lab experiments.

Methods and Result: To develop effective computational models to integrate various heterogeneous biological data for the identification of potential disease-LncRNA, we propose a hierarchical extension based on the Boolean matrix for LncRNA-disease association prediction model (HEBLDA). HEBLDA discovers the intrinsic hierarchical correlation based on the property of the Boolean matrix from various relational sources. Then, HEBLDA integrates these hierarchical associated matrices by fusion weights. Finally, HEBLDA uses the hierarchical associated matrix to reconstruct the LncRNA– disease association matrix by hierarchical extending. HEBLDA is able to work for potential diseases or LncRNA without known association data. In 5-fold cross-validation experiments, HEBLDA obtained an area under the receiver operating characteristic curve (AUC) of 0.8913, improving previous classical methods. Besides, case studies show that HEBLDA can accurately predict candidate disease for several LncRNAs.

Conclusion: Based on its ability to discover the more-richer correlated structure of various data sources, we can anticipate that HEBLDA is a potential method that can obtain more comprehensive association prediction in a broad field.

Keywords: LncRNA, disease, association prediction, Boolean matrix, hierarchical extensión, associated matrix.

Gupta RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464(7291): 1071-6.
[http://dx.doi.org/10.1038/nature08975] [PMID: 20393566]
Peng WX, Koirala P, Mo YY. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 2017; 36(41): 5661-7.
[http://dx.doi.org/10.1038/onc.2017.184] [PMID: 28604750]
Fan Y, Shen B, Tan M, et al. Long non-coding RNA UCA1 increases chemoresistance of bladder cancer cells by regulating Wnt signaling. FEBS J 2014; 281(7): 1750-8.
[http://dx.doi.org/10.1111/febs.12737] [PMID: 24495014]
Bu D, Yu K, Sun S, et al. NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res 2012; 40(Database issue): D210-5.
[http://dx.doi.org/10.1093/nar/gkr1175] [PMID: 22135294]
Volders PJ, Helsens K, Wang X, et al. LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res 2013; 41(Database issue): D246-51.
[http://dx.doi.org/10.1093/nar/gks915] [PMID: 23042674]
Amaral PP, Clark MB, Gascoigne DK, et al. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res 2010; 39: D146-51.
Spizzo R, Almeida MI, Colombatti A, Calin GA. Long non-coding RNAs and cancer: a new frontier of translational research. Oncogene 2012; 31(43): 4577-87.
[http://dx.doi.org/10.1038/onc.2011.621] [PMID: 22266873]
Wang LW, Jiao F, Cui JJ, et al. Long Non-Coding RNA: An Emerging Paradigm of Pancreatic Cancer. Curr Mol Med 2016; 16(8): 702-9.
[PMID: 27573194]
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2017; 18(4): 558-76.
[PMID: 27345524]
Chen X, Yan GY. Novel human lncRNA-disease association inference based on lncRNA expression profiles. Bioinformatics 2013; 29(20): 2617-24.
[http://dx.doi.org/10.1093/bioinformatics/btt426] [PMID: 24002109]
Sun J, Shi H, Wang Z, et al. Inferring novel lncRNA-disease associations based on a random walk model of a lncRNA functional similarity network. Mol Biosyst 2014; 10(8): 2074-81.
[http://dx.doi.org/10.1039/C3MB70608G] [PMID: 24850297]
Ping P, Wang L, Kuang L, Ye S, Iqbal MFB, Pei T. A novel method for lncRNA-disease association prediction based on an lncRNA-disease association network. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(2): 688-93.
[http://dx.doi.org/10.1109/TCBB.2018.2827373] [PMID: 29993639]
Zhou M, Wang X, Li J, et al. Prioritizing candidate disease-related long non-coding RNAs by walking on the heterogeneous lncRNA and disease network. Mol Biosyst 2015; 11(3): 760-9.
[http://dx.doi.org/10.1039/C4MB00511B] [PMID: 25502053]
Lu C, Yang M, Luo F, et al. Prediction of lncRNA-disease associations based on inductive matrix completion. Bioinformatics 2018; 34(19): 3357-64.
[http://dx.doi.org/10.1093/bioinformatics/bty327] [PMID: 29718113]
Zhao T, Xu J, Liu L, et al. Identification of cancer-related lncRNAs through integrating genome, regulome and transcriptome features. Mol Biosyst 2015; 11(1): 126-36.
[http://dx.doi.org/10.1039/C4MB00478G] [PMID: 25354589]
Chen X, You ZH, Yan GY, Gong DW. IRWRLDA: improved random walk with restart for lncRNA-disease association prediction. Oncotarget 2016; 7(36): 57919-31.
[http://dx.doi.org/10.18632/oncotarget.11141] [PMID: 27517318]
Chen X. KATZLDA: KATZ measure for the lncRNA-disease association prediction. Sci Rep 2015; 5: 16840.
[http://dx.doi.org/10.1038/srep16840] [PMID: 26577439]
Lan W, Li M, Zhao K, et al. LDAP: a web server for lncRNA-disease association prediction. Bioinformatics 2017; 33(3): 458-60.
[PMID: 28172495]
Fu G, Wang J, Domeniconi C, Yu G. Matrix factorization-based data fusion for the prediction of lncRNA-disease associations. Bioinformatics 2018; 34(9): 1529-37.
[http://dx.doi.org/10.1093/bioinformatics/btx794] [PMID: 29228285]
Sun Y, Ye S, Sun Y, et al. Improved algorithms for exact and approximate boolean matrix decomposition. IEEE International Conference on Data Science and Advanced Analytics (DSAA). 1-10.
Lin Liu, Lin Tang, Tang Mingjing, Wei Zhou. The framework of protein function prediction based on boolean matrix decomposition. J Comput Res Develop 2019; 56(5): 1020-1033.
Osicka P, Trnecka M. Boolean Matrix Decomposition by Formal Concept Sampling. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.
Chen G, Wang Z, Wang D, et al. LncRNADisease: a database for long-non-coding RNA-associated diseases. Nucleic Acids Res 2013; 41(Database issue): D983-6.
[PMID: 23175614]
Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res 2014; 42(Database issue): D92-7.
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
Jiang Q, Wang J, Wu X, et al. LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res 2015; 43(Database issue): D193-6.
[http://dx.doi.org/10.1093/nar/gku1173] [PMID: 25399422]
Ning S, Zhang J, Wang P, et al. Lnc2Cancer: a manually curated database of experimentally supported lncRNAs associated with various human cancers. Nucleic Acids Res 2016; 44(D1): D980-5.
[http://dx.doi.org/10.1093/nar/gkv1094] [PMID: 26481356]
Wang H, Huang H, Ding C, Nie F. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization. J Comput Biol 2013; 20(4): 344-58.
[http://dx.doi.org/10.1089/cmb.2012.0273] [PMID: 23509857]
Zhang M, Wu WB, Wang ZW, Wang XH. lncRNA NEAT1 is closely related with progression of breast cancer via promoting proliferation and EMT. Eur Rev Med Pharmacol Sci 2017; 21(5): 1020-6.
[PMID: 28338194]
Ning L, Li Z, Wei D, Chen H, Yang C. LncRNA, NEAT1 is a prognosis biomarker and regulates cancer progression via epithelial-mesenchymal transition in clear cell renal cell carcinoma. Cancer Biomark 2017; 19(1): 75-83.
[http://dx.doi.org/10.3233/CBM-160376] [PMID: 28269753]
Dong L, Ni J, Hu W, Yu C, Li H. Upregulation of long non-coding RNA PlncRNA-1 promotes metastasis and induces epithelial-mesenchymal transition in hepatocellular carcinoma. Cell Physiol Biochem 2016; 38(2): 836-46.
[http://dx.doi.org/10.1159/000443038] [PMID: 26906068]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 22 June, 2020
Page: [452 - 460]
Pages: 9
DOI: 10.2174/1566524019666191119104212
Price: $65

Article Metrics

PDF: 17