Circulating miRNAs in Successful and Unsuccessful Aging. A Mini-review

Author(s): Giuseppe Cammarata, Giovanni Duro*, Tiziana Di Chiara, Alessia Lo Curto, Simona Taverna, Giuseppina Candore

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 39 , 2019

Become EABM
Become Reviewer

Abstract:

Aging is a multifactorial process that affects the organisms at genetic, molecular and cellular levels. This process modifies several tissues with a negative impact on cells physiology, tissues and organs functionality, altering their regeneration capacity. The chronic low-grade inflammation typical of aging, defined as inflammaging, is a common biological factor responsible for the decline and beginning of the disease in age. A murine parabiosis model that combines the vascular system of old and young animals, suggests that soluble factors released by young individuals may improve the regenerative potential of old tissue. Therefore, circulating factors have a key role in the induction of aging phenotype. Moreover, lifestyle can influence the physiological status of multiple organs, via epigenetic mechanisms. Recently, microRNAs are considered potential sensors of aging.

Keywords: Circulating miRNAs, aging, exosome, inflammation mediators, age-related diseases, miR-21-5p, miR-126.

[1]
Williams J, Smith F, Kumar S, Vijayan M, Reddy PH. Are microRNAs true sensors of ageing and cellular senescence? Ageing Res Rev 2017; 35: 350-63.
[http://dx.doi.org/10.1016/j.arr.2016.11.008] [PMID: 27903442]
[2]
Watson CN, Belli A, Di Pietro V. Small non-coding RNAs: new class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front Genet 2019; 10: 364.
[http://dx.doi.org/10.3389/fgene.2019.00364] [PMID: 31080456]
[3]
Gomez-Verjan JC, Vazquez-Martinez ER, Rivero-Segura NA, et al. The RNA world of human ageing. Hum Genet 2018; 137(11-12): 865-79.
[http://dx.doi.org/10.1007/s00439-018-1955-3]
[4]
Xu D, Tahara H. The role of exosomes and microRNAs in senescence and aging. Adv Drug Deliv Rev 2013; 65(3): 368-75.
[http://dx.doi.org/10.1016/j.addr.2012.07.010] [PMID: 22820533]
[5]
Bellizzi D, Guarasci F, Iannone F, et al. Epigenetics and Ageing. Cham: Springer International Publishing 2019; pp. 99-133.
[6]
Cevenini E, Monti D, Franceschi C. Inflamm-ageing. Curr Opin Clin Nutr Metab Care 2013; 16(1): 14-20.
[http://dx.doi.org/10.1097/MCO.0b013e32835ada13] [PMID: 23132168]
[7]
Fiannaca A, La Rosa M, La Paglia L, et al. NRC: non-coding RNA classifier based on structural features. BioData Min 2017; 10(1): 27.
[8]
Zhang F, Wang D. The pattern of microRNA binding site distribution. Genes 2017; 8(11)pii: E296
[http://dx.doi.org/10.3390/genes8110296]
[9]
Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases - complex signatures for multifactorial diseases? Mol Cell Endocrinol 2016; 432: 83-95.
[http://dx.doi.org/10.1016/j.mce.2015.10.015] [PMID: 26525415]
[10]
Accardi G, Caruso C. From cellular senescence to age-associated diseases: miRNAs as tools and targets for healthy ageing. University Press 2017; pp. 27-37.
[11]
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9(6): 654-9.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[12]
Taverna S, Giallombardo M, Pucci M, et al. Curcumin inhibits in vitro and in vivo chronic myelogenous leukemia cells growth: a possible role for exosomal disposal of miR-21. Oncotarget 2015; 6(26): 21918-33.
[http://dx.doi.org/10.18632/oncotarget.4204] [PMID: 26116834]
[13]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30: 255-89.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[14]
Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci 2018; 75(2): 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[15]
Pucci M, Reclusa Asiáin P, Duréndez Sáez E, et al. Extracellular vesicles as miRNA nano-shuttles: dual role in tumor progression. Target Oncol 2018; 13(2): 175-87.
[http://dx.doi.org/10.1007/s11523-018-0551-8] [PMID: 29374391]
[16]
Fanale D, Taverna S, Russo A, et al. Circular RNA in exosomes Circular RNAs. Singapore: Springer 2018; pp. 109-17.
[http://dx.doi.org/10.1007/978-981-13-1426-1_9]
[17]
Machida T, Tomofuji T, Ekuni D, et al. MicroRNAs in salivary exosome as potential biomarkers of aging. Int J Mol Sci 2015; 16(9): 21294-309.
[http://dx.doi.org/10.3390/ijms160921294] [PMID: 26370963]
[18]
Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 2017; 455: 131-47.
[http://dx.doi.org/10.1016/j.mce.2016.12.021] [PMID: 28062199]
[19]
Gombar S, Jung HJ, Dong F, et al. Comprehensive microRNA profiling in B-cells of human centenarians by massively parallel sequencing. BMC Genomics 2012; 13.1: 353.
[20]
Dellago H, Bobbili MR, Grillari J. MicroRNA-17-5p: At the crossroads of cancer and aging - a mini-review. Gerontology 2017; 63(1): 20-8.
[http://dx.doi.org/10.1159/000447773] [PMID: 27577994]
[21]
Olivieri F, Spazzafumo L, Santini G, et al. Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev 2012; 133(11-12): 675-85.
[http://dx.doi.org/10.1016/j.mad.2012.09.004] [PMID: 23041385]
[22]
Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: a hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol 2014; 56: 154-63.
[http://dx.doi.org/10.1016/j.exger.2014.03.002] [PMID: 24607549]
[23]
Smith-Vikos T, Liu Z, Parsons C, et al. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany NY) 2016; 8(11): 2971-87.
[http://dx.doi.org/10.18632/aging.101106] [PMID: 27824314]
[24]
Micó V, Berninches L, Tapia J, et al. Nutrimiraging: micromanaging nutrient sensing pathways through nutrition to promote healthy aging. Int J Mol Sci 2017; 18(5)pii: E915
[25]
Atzmon G, Schechter C, Greiner W, Davidson D, Rennert G, Barzilai N. Clinical phenotype of families with longevity. J Am Geriatr Soc 2004; 52(2): 274-7.
[http://dx.doi.org/10.1111/j.1532-5415.2004.52068.x] [PMID: 14728640]
[26]
Jung HJ, Suh Y. Circulating miRNAs in ageing and ageing-related diseases. J Genet Genomics 2014; 41(9): 465-72.
[http://dx.doi.org/10.1016/j.jgg.2014.07.003] [PMID: 25269672]
[27]
Miao C, Zhang G, Xie Z, Chang J. MicroRNAs in the pathogenesis of type 2 diabetes: new research progress and future direction. Can J Physiol Pharmacol 2018; 96(2): 103-12.
[http://dx.doi.org/10.1139/cjpp-2017-0452] [PMID: 28898588]
[28]
Karolina DS, Tavintharan S, Armugam A, et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab 2012; 97(12): E2271-6.
[http://dx.doi.org/10.1210/jc.2012-1996] [PMID: 23032062]
[29]
Kong L, Zhu J, Han W, et al. Significance of serum microRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol 2011; 48(1): 61-9.
[http://dx.doi.org/10.1007/s00592-010-0226-0] [PMID: 20857148]
[30]
Zhou SS, Jin JP, Wang JQ, et al. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39(7): 1073-84.
[http://dx.doi.org/10.1038/aps.2018.30] [PMID: 29877320]
[31]
Sygitowicz G, Tomaniak M, Błaszczyk O, Kołtowski Ł, Filipiak KJ, Sitkiewicz D. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: preliminary results. Arch Cardiovasc Dis 2015; 108(12): 634-42.
[http://dx.doi.org/10.1016/j.acvd.2015.07.003] [PMID: 26498537]
[32]
Wang R, Li N, Zhang Y, Ran Y, Pu J. Circulating microRNAs are promising novel biomarkers of acute myocardial infarction. Intern Med 2011; 50(17): 1789-95.
[http://dx.doi.org/10.2169/internalmedicine.50.5129] [PMID: 21881276]
[33]
Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 2010; 39(1): 133-44.
[http://dx.doi.org/10.1016/j.molcel.2010.06.010] [PMID: 20603081]
[34]
E S. Costa MC, Kurc S, Drożdż A, Cortez-Dias N, Enguita FJ. The circulating non-coding RNA landscape for biomarker research: lessons and prospects from cardiovascular diseases. Acta Pharmacol Sin 2018; 39(7): 1085-99.
[http://dx.doi.org/10.1038/aps.2018.35] [PMID: 29877319]
[35]
Basavaraju M, de Lencastre A. Alzheimer’s disease: presence and role of microRNAs. Biomol Concepts 2016; 7(4): 241-52.
[http://dx.doi.org/10.1515/bmc-2016-0014] [PMID: 27505094]
[36]
Alexandrov PN, Dua P, Hill JM, Bhattacharjee S, Zhao Y, Lukiw WJ. microRNA (miRNA) speciation in Alzheimer’s disease (AD) cerebrospinal fluid (CSF) and extracellular fluid (ECF). Int J Biochem Mol Biol 2012; 3(4): 365-73.
[PMID: 23301201]
[37]
Moradifard S, Hoseinbeyki M, Ganji SM, Minuchehr Z. Analysis of microRNA and gene expression profiles in Alzheimer’s disease: a meta-analysis approach. Sci Rep 2018; 8(1): 4767.
[http://dx.doi.org/10.1038/s41598-018-20959-0] [PMID: 29555910]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 39
Year: 2019
Page: [4150 - 4153]
Pages: 4
DOI: 10.2174/1381612825666191119091644
Price: $65

Article Metrics

PDF: 30
HTML: 4