Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Adult Neurogenesis in Epileptogenesis: An Update for Preclinical Finding and Potential Clinical Translation

Author(s): Liying Chen, Yi Wang and Zhong Chen*

Volume 18, Issue 6, 2020

Page: [464 - 484] Pages: 21

DOI: 10.2174/1570159X17666191118142314

Price: $65

Abstract

Epileptogenesis refers to the process in which a normal brain becomes epileptic, and is characterized by hypersynchronous spontaneous recurrent seizures involving a complex epileptogenic network. Current available pharmacological treatment of epilepsy is generally symptomatic in controlling seizures but is not disease-modifying in epileptogenesis. Cumulative evidence suggests that adult neurogenesis, specifically in the subgranular zone of the hippocampal dentate gyrus, is crucial in epileptogenesis. In this review, we describe the pathological changes that occur in adult neurogenesis in the epileptic brain and how adult neurogenesis is involved in epileptogenesis through different interventions. This is followed by a discussion of some of the molecular signaling pathways involved in regulating adult neurogenesis, which could be potential druggable targets for epileptogenesis. Finally, we provide perspectives on some possible research directions for future studies.

Keywords: Epileptogenesis, adult neurogenesis, drug target, optogenetic, chemogenetic, neural circuit.

Graphical Abstract
[1]
Devinsky, O.; Vezzani, A.; O’Brien, T.J.; Jette, N.; Scheffer, I.E.; de Curtis, M.; Perucca, P. Epilepsy. Nat. Rev. Dis. Primers, 2018, 4, 18024.
[http://dx.doi.org/10.1038/nrdp.2018.24] [PMID: 29722352]
[2]
Thijs, R.D.; Surges, R.; O’Brien, T.J.; Sander, J.W. Epilepsy in adults. Lancet, 2019, 393(10172), 689-701.
[http://dx.doi.org/10.1016/S0140-6736(18)32596-0] [PMID: 30686584]
[3]
Wang, Y.; Chen, Z. An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol. Ther., 2019, 201, 77-93.
[http://dx.doi.org/10.1016/j.pharmthera.2019.05.010] [PMID: 31128154]
[4]
Altman, J. Are new neurons formed in the brains of adult mammals? Science, 1962, 135(3509), 1127-1128.
[http://dx.doi.org/10.1126/science.135.3509.1127] [PMID: 13860748]
[5]
Eriksson, P.S.; Perfilieva, E.; Björk-Eriksson, T.; Alborn, A.M.; Nordborg, C.; Peterson, D.A.; Gage, F.H. Neurogenesis in the adult human hippocampus. Nat. Med., 1998, 4(11), 1313-1317.
[http://dx.doi.org/10.1038/3305] [PMID: 9809557]
[6]
Gould, E.; Tanapat, P.; McEwen, B.S.; Flügge, G.; Fuchs, E. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc. Natl. Acad. Sci. USA, 1998, 95(6), 3168-3171.
[http://dx.doi.org/10.1073/pnas.95.6.3168] [PMID: 9501234]
[7]
Gross, C.G. Neurogenesis in the adult brain: death of a dogma. Nat. Rev. Neurosci., 2000, 1(1), 67-73.
[http://dx.doi.org/10.1038/35036235] [PMID: 11252770]
[8]
Bergmann, O.; Spalding, K.L.; Frisén, J. Adult neurogenesis in humans. Cold Spring Harb. Perspect. Biol., 2015, 7(7)a018994
[http://dx.doi.org/10.1101/cshperspect.a018994] [PMID: 26134318]
[9]
Ming, G.L.; Song, H. Adult neurogenesis in the mammalian central nervous system. Annu. Rev. Neurosci., 2005, 28, 223-250.
[http://dx.doi.org/10.1146/annurev.neuro.28.051804.101459] [PMID: 16022595]
[10]
Cameron, H.A.; McKay, R.D. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J. Comp. Neurol., 2001, 435(4), 406-417.
[http://dx.doi.org/10.1002/cne.1040] [PMID: 11406822]
[11]
Chen, L.; Gong, S.; Shan, L.D.; Xu, W.P.; Zhang, Y.J.; Guo, S.Y.; Hisamitsu, T.; Yin, Q.Z.; Jiang, X.H. Effects of exercise on neurogenesis in the dentate gyrus and ability of learning and memory after hippocampus lesion in adult rats. Neurosci. Bull., 2006, 22(1), 1-6.
[PMID: 17684532]
[12]
Sahay, A.; Scobie, K.N.; Hill, A.S.; O’Carroll, C.M.; Kheirbek, M.A.; Burghardt, N.S.; Fenton, A.A.; Dranovsky, A.; Hen, R. Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature, 2011, 472(7344), 466-470.
[http://dx.doi.org/10.1038/nature09817] [PMID: 21460835]
[13]
Huckleberry, K.A.; Shue, F.; Copeland, T.; Chitwood, R.A.; Yin, W.; Drew, M.R. Dorsal and ventral hippocampal adult-born neurons contribute to context fear memory. Neuropsychopharmacology, 2018, 43(12), 2487-2496.
[http://dx.doi.org/10.1038/s41386-018-0109-6] [PMID: 29941977]
[14]
Aimone, J.B.; Wiles, J.; Gage, F.H. Potential role for adult neurogenesis in the encoding of time in new memories. Nat. Neurosci., 2006, 9(6), 723-727.
[http://dx.doi.org/10.1038/nn1707] [PMID: 16732202]
[15]
Becker, S.; Wojtowicz, J.M. A model of hippocampal neurogenesis in memory and mood disorders. Trends Cogn. Sci. (Regul. Ed.), 2007, 11(2), 70-76.
[http://dx.doi.org/10.1016/j.tics.2006.10.013] [PMID: 17174137]
[16]
Chambers, R.A.; Potenza, M.N.; Hoffman, R.E.; Miranker, W. Simulated apoptosis/neurogenesis regulates learning and memory capabilities of adaptive neural networks. Neuropsychopharmacology, 2004, 29(4), 747-758.
[http://dx.doi.org/10.1038/sj.npp.1300358] [PMID: 14702022]
[17]
Ko, H.G.; Jang, D.J.; Son, J.; Kwak, C.; Choi, J.H.; Ji, Y.H.; Lee, Y.S.; Son, H.; Kaang, B.K. Effect of ablated hippocampal neurogenesis on the formation and extinction of contextual fear memory. Mol. Brain, 2009, 2, 1.
[http://dx.doi.org/10.1186/1756-6606-2-1] [PMID: 19138433]
[18]
Anacker, C.; Hen, R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat. Rev. Neurosci., 2017, 18(6), 335-346.
[http://dx.doi.org/10.1038/nrn.2017.45] [PMID: 28469276]
[19]
Deng, W.; Aimone, J.B.; Gage, F.H. New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat. Rev. Neurosci., 2010, 11(5), 339-350.
[http://dx.doi.org/10.1038/nrn2822] [PMID: 20354534]
[20]
Gould, E.; Tanapat, P. Stress and hippocampal neurogenesis. Biol. Psychiatry, 1999, 46(11), 1472-1479.
[http://dx.doi.org/10.1016/S0006-3223(99)00247-4] [PMID: 10599477]
[21]
Malberg, J.E.; Eisch, A.J.; Nestler, E.J.; Duman, R.S. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J. Neurosci., 2000, 20(24), 9104-9110.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-09104.2000] [PMID: 11124987]
[22]
Santarelli, L.; Saxe, M.; Gross, C.; Surget, A.; Battaglia, F.; Dulawa, S.; Weisstaub, N.; Lee, J.; Duman, R.; Arancio, O.; Belzung, C.; Hen, R. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science, 2003, 301(5634), 805-809.
[http://dx.doi.org/10.1126/science.1083328] [PMID: 12907793]
[23]
Duan, X.; Chang, J.H.; Ge, S.; Faulkner, R.L.; Kim, J.Y.; Kitabatake, Y.; Liu, X.B.; Yang, C.H.; Jordan, J.D.; Ma, D.K.; Liu, C.Y.; Ganesan, S.; Cheng, H.J.; Ming, G.L.; Lu, B.; Song, H. Disrupted-In-Schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell, 2007, 130(6), 1146-1158.
[http://dx.doi.org/10.1016/j.cell.2007.07.010] [PMID: 17825401]
[24]
Snyder, J.S.; Soumier, A.; Brewer, M.; Pickel, J.; Cameron, H.A. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature, 2011, 476(7361), 458-461.
[http://dx.doi.org/10.1038/nature10287] [PMID: 21814201]
[25]
Miller, B.R.; Hen, R. The current state of the neurogenic theory of depression and anxiety. Curr. Opin. Neurobiol., 2015, 30, 51-58.
[http://dx.doi.org/10.1016/j.conb.2014.08.012] [PMID: 25240202]
[26]
Winner, B.; Winkler, J. Adult neurogenesis in neurodegenerative diseases. Cold Spring Harb. Perspect. Biol., 2015, 7(4)a021287
[http://dx.doi.org/10.1101/cshperspect.a021287] [PMID: 25833845]
[27]
Pitkänen, A.; Sutula, T.P. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol., 2002, 1(3), 173-181.
[http://dx.doi.org/10.1016/S1474-4422(02)00073-X] [PMID: 12849486]
[28]
Parent, J.M.; Yu, T.W.; Leibowitz, R.T.; Geschwind, D.H.; Sloviter, R.S.; Lowenstein, D.H. Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J. Neurosci., 1997, 17(10), 3727-3738.
[http://dx.doi.org/10.1523/JNEUROSCI.17-10-03727.1997] [PMID: 9133393]
[29]
Gray, W.P.; Sundstrom, L.E. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res., 1998, 790(1-2), 52-59.
[http://dx.doi.org/10.1016/S0006-8993(98)00030-4] [PMID: 9593820]
[30]
Jessberger, S.; Römer, B.; Babu, H.; Kempermann, G. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp. Neurol., 2005, 196(2), 342-351.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.010] [PMID: 16168988]
[31]
Parent, J.M.; Janumpalli, S.; McNamara, J.O.; Lowenstein, D.H. Increased dentate granule cell neurogenesis following amygdala kindling in the adult rat. Neurosci. Lett., 1998, 247(1), 9-12.
[http://dx.doi.org/10.1016/S0304-3940(98)00269-9] [PMID: 9637397]
[32]
Scott, B.W.; Wang, S.; Burnham, W.M.; De Boni, U.; Wojtowicz, J.M. Kindling-induced neurogenesis in the dentate gyrus of the rat. Neurosci. Lett., 1998, 248(2), 73-76.
[http://dx.doi.org/10.1016/S0304-3940(98)00355-3] [PMID: 9654345]
[33]
Madsen, T.M.; Treschow, A.; Bengzon, J.; Bolwig, T.G.; Lindvall, O.; Tingström, A. Increased neurogenesis in a model of electroconvulsive therapy. Biol. Psychiatry, 2000, 47(12), 1043-1049.
[http://dx.doi.org/10.1016/S0006-3223(00)00228-6] [PMID: 10862803]
[34]
Parent, J.M.; Valentin, V.V.; Lowenstein, D.H. Prolonged seizures increase proliferating neuroblasts in the adult rat subventricular zone-olfactory bulb pathway. J. Neurosci., 2002, 22(8), 3174-3188.
[http://dx.doi.org/10.1523/JNEUROSCI.22-08-03174.2002] [PMID: 11943819]
[35]
Blümcke, I.; Schewe, J.C.; Normann, S.; Brüstle, O.; Schramm, J.; Elger, C.E.; Wiestler, O.D. Increase of nestin-immunoreactive neural precursor cells in the dentate gyrus of pediatric patients with early-onset temporal lobe epilepsy. Hippocampus, 2001, 11(3), 311-321.
[http://dx.doi.org/10.1002/hipo.1045] [PMID: 11769312]
[36]
Thom, M.; Martinian, L.; Williams, G.; Stoeber, K.; Sisodiya, S.M. Cell proliferation and granule cell dispersion in human hippocampal sclerosis. J. Neuropathol. Exp. Neurol., 2005, 64(3), 194-201.
[http://dx.doi.org/10.1093/jnen/64.3.194] [PMID: 15804050]
[37]
Hattiangady, B.; Rao, M.S.; Shetty, A.K. Chronic temporal lobe epilepsy is dentate neurogenesis in the adult associated with severely declined hippocampus. Neurobiol. Dis., 2004, 17, 473-490.
[http://dx.doi.org/10.1016/j.nbd.2004.08.008] [PMID: 15571983]
[38]
Heinrich, C.; Nitta, N.; Flubacher, A.; Müller, M.; Fahrner, A.; Kirsch, M.; Freiman, T.; Suzuki, F.; Depaulis, A.; Frotscher, M.; Haas, C.A. Reelin deficiency and displacement of mature neurons, but not neurogenesis, underlie the formation of granule cell dispersion in the epileptic hippocampus. J. Neurosci., 2006, 26(17), 4701-4713.
[http://dx.doi.org/10.1523/JNEUROSCI.5516-05.2006] [PMID: 16641251]
[39]
Sierra, A.; Martín-Suárez, S.; Valcárcel-Martín, R.; Pascual-Brazo, J.; Aelvoet, S.A.; Abiega, O.; Deudero, J.J.; Brewster, A.L.; Bernales, I.; Anderson, A.E.; Baekelandt, V.; Maletić-Savatić, M.; Encinas, J.M. Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell, 2015, 16(5), 488-503.
[http://dx.doi.org/10.1016/j.stem.2015.04.003] [PMID: 25957904]
[40]
Kralic, J.E.; Ledergerber, D.A.; Fritschy, J.M. Disruption of the neurogenic potential of the dentate gyrus in a mouse model of temporal lobe epilepsy with focal seizures. Eur. J. Neurosci., 2005, 22(8), 1916-1927.
[http://dx.doi.org/10.1111/j.1460-9568.2005.04386.x] [PMID: 16262631]
[41]
Mohapel, P.; Ekdahl, C.T.; Lindvall, O. Status epilepticus severity influences the long-term outcome of neurogenesis in the adult dentate gyrus. Neurobiol. Dis., 2004, 15(2), 196-205.
[http://dx.doi.org/10.1016/j.nbd.2003.11.010] [PMID: 15006689]
[42]
Ekdahl, C.T.; Zhu, C.; Bonde, S.; Bahr, B.A.; Blomgren, K.; Lindvall, O. Death mechanisms in status epilepticus-generated neurons and effects of additional seizures on their survival. Neurobiol. Dis., 2003, 14(3), 513-523.
[http://dx.doi.org/10.1016/j.nbd.2003.08.022] [PMID: 14678767]
[43]
Uemori, T.; Toda, K.; Seki, T. Seizure severity-dependent selective vulnerability of the granule cell layer and aberrant neurogenesis in the rat hippocampus. Hippocampus, 2017, 27(10), 1054-1068.
[http://dx.doi.org/10.1002/hipo.22752] [PMID: 28608989]
[44]
Wasterlain, C.G. Developmental brain damage after chemically induced epileptic seizures. Eur. Neurol., 1975, 13(6), 495-498.
[http://dx.doi.org/10.1159/000114705] [PMID: 1193096]
[45]
Xiu-Yu, S.; Ruo-Peng, S.; Ji-Wen, W. Consequences of pilocarpine-induced recurrent seizures in neonatal rats. Brain Dev., 2007, 29(3), 157-163.
[http://dx.doi.org/10.1016/j.braindev.2006.08.009] [PMID: 17008043]
[46]
Liu, H.; Kaur, J.; Dashtipour, K.; Kinyamu, R.; Ribak, C.E.; Friedman, L.K. Suppression of hippocampal neurogenesis is associated with developmental stage, number of perinatal seizure episodes, and glucocorticosteroid level. Exp. Neurol., 2003, 184(1), 196-213.
[http://dx.doi.org/10.1016/S0014-4886(03)00207-3] [PMID: 14637092]
[47]
Shi, X.Y.; Wang, J.W.; Lei, G.F.; Sun, R.P. Morphological and behavioral consequences of recurrent seizures in neonatal rats are associated with glucocorticoid levels. Neurosci. Bull., 2007, 23(2), 83-91.
[http://dx.doi.org/10.1007/s12264-007-0012-3] [PMID: 17592530]
[48]
Shapiro, L.A.; Ribak, C.E.; Jessberger, S. Structural changes for adult-born dentate granule cells after status epilepticus. Epilepsia, 2008, 49(Suppl. 5), 13-18.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01633.x] [PMID: 18522596]
[49]
Kokaia, M. Seizure-induced neurogenesis in the adult brain. Eur. J. Neurosci., 2011, 33(6), 1133-1138.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07612.x] [PMID: 21395857]
[50]
Jessberger, S.; Parent, J.M. Epilepsy and adult neurogenesis. Cold Spring Harb. Perspect. Biol., 2015, 7(12), 7.
[PMID: 26552418]
[51]
Overstreet-Wadiche, L.S.; Bromberg, D.A.; Bensen, A.L.; Westbrook, G.L. Seizures accelerate functional integration of adult-generated granule cells. J. Neurosci., 2006, 26(15), 4095-4103.
[http://dx.doi.org/10.1523/JNEUROSCI.5508-05.2006] [PMID: 16611826]
[52]
Ribak, C.E.; Tran, P.H.; Spigelman, I.; Okazaki, M.M.; Nadler, J.V. Status epilepticus-induced hilar basal dendrites on rodent granule cells contribute to recurrent excitatory circuitry. J. Comp. Neurol., 2000, 428(2), 240-253.
[http://dx.doi.org/10.1002/1096-9861(20001211)428:2<240:AID-CNE4>3.0.CO;2-Q] [PMID: 11064364]
[53]
Shapiro, L.A.; Korn, M.J.; Ribak, C.E. Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience, 2005, 136(3), 823-831.
[http://dx.doi.org/10.1016/j.neuroscience.2005.03.059] [PMID: 16344154]
[54]
Kron, M.M.; Zhang, H.; Parent, J.M. The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity. J. Neurosci., 2010, 30(6), 2051-2059.
[http://dx.doi.org/10.1523/JNEUROSCI.5655-09.2010] [PMID: 20147533]
[55]
Hirtz, M.; Fuchs, H.; Chi, L. Influence of substrate treatment on self-organized pattern formation by langmuir-blodgett transfer. J. Phys. Chem. B, 2008, 112(3), 824-827.
[http://dx.doi.org/10.1021/jp0767664] [PMID: 18154286]
[56]
Walter, C.; Murphy, B.L.; Pun, R.Y.; Spieles-Engemann, A.L.; Danzer, S.C. Pilocarpine-induced seizures cause selective time-dependent changes to adult-generated hippocampal dentate granule cells. J. Neurosci., 2007, 27(28), 7541-7552.
[http://dx.doi.org/10.1523/JNEUROSCI.0431-07.2007] [PMID: 17626215]
[57]
Jessberger, S.; Zhao, C.; Toni, N.; Clemenson, G.D., Jr; Li, Y.; Gage, F.H. Seizure-associated, aberrant neurogenesis in adult rats characterized with retrovirus-mediated cell labeling. J. Neurosci., 2007, 27(35), 9400-9407.
[http://dx.doi.org/10.1523/JNEUROSCI.2002-07.2007] [PMID: 17728453]
[58]
Austin, J.E.; Buckmaster, P.S. Recurrent excitation of granule cells with basal dendrites and low interneuron density and inhibitory postsynaptic current frequency in the dentate gyrus of macaque monkeys. J. Comp. Neurol., 2004, 476(3), 205-218.
[http://dx.doi.org/10.1002/cne.20182] [PMID: 15269966]
[59]
Shapiro, L.A.; Ribak, C.E. Newly born dentate granule neurons after pilocarpine-induced epilepsy have hilar basal dendrites with immature synapses. Epilepsy Res., 2006, 69(1), 53-66.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.12.003] [PMID: 16480853]
[60]
Parent, J.M.; Elliott, R.C.; Pleasure, S.J.; Barbaro, N.M.; Lowenstein, D.H. Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann. Neurol., 2006, 59(1), 81-91.
[http://dx.doi.org/10.1002/ana.20699] [PMID: 16261566]
[61]
Scharfman, H.E.; Goodman, J.H.; Sollas, A.L. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J. Neurosci., 2000, 20(16), 6144-6158.
[http://dx.doi.org/10.1523/JNEUROSCI.20-16-06144.2000] [PMID: 10934264]
[62]
Zhan, R.Z.; Timofeeva, O.; Nadler, J.V. High ratio of synaptic excitation to synaptic inhibition in hilar ectopic granule cells of pilocarpine-treated rats. J. Neurophysiol., 2010, 104(6), 3293-3304.
[http://dx.doi.org/10.1152/jn.00663.2010] [PMID: 20881195]
[63]
Du, X.; Zhang, H.; Parent, J.M. Rabies tracing of birthdated dentate granule cells in rat temporal lobe epilepsy. Ann. Neurol., 2017, 81(6), 790-803.
[http://dx.doi.org/10.1002/ana.24946] [PMID: 28470680]
[64]
Zhou, Q.G.; Nemes, A.D.; Lee, D.; Ro, E.J.; Zhang, J.; Nowacki, A.S.; Dymecki, S.M.; Najm, I.M.; Suh, H. Chemogenetic silencing of hippocampal neurons suppresses epileptic neural circuits. J. Clin. Invest., 2019, 129(1), 310-323.
[http://dx.doi.org/10.1172/JCI95731] [PMID: 30507615]
[65]
Jakubs, K.; Nanobashvili, A.; Bonde, S.; Ekdahl, C.T.; Kokaia, Z.; Kokaia, M.; Lindvall, O. Environment matters: synaptic properties of neurons born in the epileptic adult brain develop to reduce excitability. Neuron, 2006, 52(6), 1047-1059.
[http://dx.doi.org/10.1016/j.neuron.2006.11.004] [PMID: 17178407]
[66]
Raedt, R.; Boon, P.; Persson, A.; Alborn, A.M.; Boterberg, T.; Van Dycke, A.; Linder, B.; De Smedt, T.; Wadman, W.J.; Ben-Menachem, E.; Eriksson, P.S. Radiation of the rat brain suppresses seizure-induced neurogenesis and transiently enhances excitability during kindling acquisition. Epilepsia, 2007, 48(10), 1952-1963.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01146.x] [PMID: 17555527]
[67]
Pekcec, A.; Lüpke, M.; Baumann, R.; Seifert, H.; Potschka, H. Modulation of neurogenesis by targeted hippocampal irradiation fails to affect kindling progression. Hippocampus, 2011, 21(8), 866-876.
[PMID: 20865736]
[68]
Zhu, K.; Yuan, B.; Hu, M.; Feng, G.F.; Liu, Y.; Liu, J.X. Reduced abnormal integration of adult-generated granule cells does not attenuate spontaneous recurrent seizures in mice. Epilepsy Res., 2017, 133, 58-66.
[http://dx.doi.org/10.1016/j.eplepsyres.2017.04.004] [PMID: 28431266]
[69]
Jung, K.H.; Chu, K.; Kim, M.; Jeong, S.W.; Song, Y.M.; Lee, S.T.; Kim, J.Y.; Lee, S.K.; Roh, J.K. Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur. J. Neurosci., 2004, 19(12), 3219-3226.
[http://dx.doi.org/10.1111/j.0953-816X.2004.03412.x] [PMID: 15217378]
[70]
Jung, K.H.; Chu, K.; Lee, S.T.; Kim, J.; Sinn, D.I.; Kim, J.M.; Park, D.K.; Lee, J.J.; Kim, S.U.; Kim, M.; Lee, S.K.; Roh, J.K. Cyclooxygenase-2 inhibitor, celecoxib, inhibits the altered hippocampal neurogenesis with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neurobiol. Dis., 2006, 23(2), 237-246.
[http://dx.doi.org/10.1016/j.nbd.2006.02.016] [PMID: 16806953]
[71]
Pun, R.Y.; Rolle, I.J.; Lasarge, C.L.; Hosford, B.E.; Rosen, J.M.; Uhl, J.D.; Schmeltzer, S.N.; Faulkner, C.; Bronson, S.L.; Murphy, B.L.; Richards, D.A.; Holland, K.D.; Danzer, S.C. Excessive activation of mTOR in postnatally generated granule cells is sufficient to cause epilepsy. Neuron, 2012, 75(6), 1022-1034.
[http://dx.doi.org/10.1016/j.neuron.2012.08.002] [PMID: 22998871]
[72]
Cho, K.O.; Lybrand, Z.R.; Ito, N.; Brulet, R.; Tafacory, F.; Zhang, L.; Good, L.; Ure, K.; Kernie, S.G.; Birnbaum, S.G.; Scharfman, H.E.; Eisch, A.J.; Hsieh, J. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat. Commun., 2015, 6, 6606.
[http://dx.doi.org/10.1038/ncomms7606] [PMID: 25808087]
[73]
Hosford, B.E.; Liska, J.P.; Danzer, S.C. Ablation of newly generated hippocampal granule cells has disease-modifying effects in epilepsy. J. Neurosci., 2016, 36(43), 11013-11023.
[http://dx.doi.org/10.1523/JNEUROSCI.1371-16.2016] [PMID: 27798182]
[74]
Varma, P.; Brulet, R.; Zhang, L.; Hsieh, J. Targeting seizure-induced neurogenesis in a clinically-relevant time-period leads to transient but not persistent seizure reduction. J. Neurosci., 2019, 39(35), 7019-7028.
[http://dx.doi.org/10.1523/JNEUROSCI.0920-19.2019] [PMID: 31308098]
[75]
Roth, B.L. DREADDs for Neuroscientists. Neuron, 2016, 89(4), 683-694.
[http://dx.doi.org/10.1016/j.neuron.2016.01.040] [PMID: 26889809]
[76]
Iyengar, S.S.; LaFrancois, J.J.; Friedman, D.; Drew, L.J.; Denny, C.A.; Burghardt, N.S.; Wu, M.V.; Hsieh, J.; Hen, R.; Scharfman, H.E. Suppression of adult neurogenesis increases the acute effects of kainic acid. Exp. Neurol., 2015, 264, 135-149.
[http://dx.doi.org/10.1016/j.expneurol.2014.11.009] [PMID: 25476494]
[77]
Brulet, R.; Zhu, J.; Aktar, M.; Hsieh, J.; Cho, K.O. Mice with conditional NeuroD1 knockout display reduced aberrant hippocampal neurogenesis but no change in epileptic seizures. Exp. Neurol., 2017, 293, 190-198.
[http://dx.doi.org/10.1016/j.expneurol.2017.04.005] [PMID: 28427858]
[78]
Vossler, D.G.; Weingarten, M.; Gidal, B.E. American epilepsy society treatments committee. Summary of antiepileptic drugs available in the United States of America: working toward a world without epilepsy. Epilepsy Curr., 2018, 18(4)(Suppl. 1), 1-26.
[http://dx.doi.org/10.5698/1535-7597.18.4s1.1] [PMID: 30233275]
[79]
Bartolomei, F.; Gastaldi, M.; Massacrier, A.; Planells, R.; Nicolas, S.; Cau, P. Changes in the mRNAs encoding subtypes I, II and III sodium channel alpha subunits following kainate-induced seizures in rat brain. J. Neurocytol., 1997, 26(10), 667-678.
[http://dx.doi.org/10.1023/A:1018549928277] [PMID: 9368880]
[80]
Vreugdenhil, M.; Faas, G.C.; Wadman, W.J. Sodium currents in isolated rat CA1 neurons after kindling epileptogenesis. Neuroscience, 1998, 86(1), 99-107.
[http://dx.doi.org/10.1016/S0306-4522(98)00041-4] [PMID: 9692746]
[81]
Gastaldi, M.; Robaglia-Schlupp, A.; Massacrier, A.; Planells, R.; Cau, P. mRNA coding for voltage-gated sodium channel beta2 subunit in rat central nervous system: cellular distribution and changes following kainate-induced seizures. Neurosci. Lett., 1998, 249(1), 53-56.
[http://dx.doi.org/10.1016/S0304-3940(98)00394-2] [PMID: 9672387]
[82]
Cooper, E.C. Potassium Channels (including KCNQ) and Epilepsy; Jasper's Basic Mechanisms of the Epilepsies, 2012.
[http://dx.doi.org/10.1093/med/9780199746545.003.0005]
[83]
Köhling, R.; Wolfart, J. Potassium Channels in Epilepsy. Cold Spring Harb. Perspect. Med., 2016, 6(5), 6.
[http://dx.doi.org/10.1101/cshperspect.a022871] [PMID: 27141079]
[84]
Coulter, D.A.; Huguenard, J.R.; Prince, D.A. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann. Neurol., 1989, 25(6), 582-593.
[http://dx.doi.org/10.1002/ana.410250610] [PMID: 2545161]
[85]
Wei, F.; Yan, L.M.; Su, T.; He, N.; Lin, Z.J.; Wang, J.; Shi, Y.W.; Yi, Y.H.; Liao, W.P. ion channel genes and epilepsy: functional alteration, pathogenic potential, and mechanism of epilepsy. Neurosci. Bull., 2017, 33(4), 455-477.
[http://dx.doi.org/10.1007/s12264-017-0134-1] [PMID: 28488083]
[86]
Zhang, S.; Zhang, Z.; Shen, Y.; Zhu, Y.; Du, K.; Guo, J.; Ji, Y.; Tao, J. scn9a epileptic encephalopathy mutations display a gain-of-function phenotype and distinct sensitivity to oxcarbazepine. Neurosci. Bull., 2019, 36(1), 11-24.
[http://dx.doi.org/10.1007/s12264-019-00413-5] [PMID: 31372899]
[87]
Kanda, T.; Kurokawa, M.; Tamura, S.; Nakamura, J.; Ishii, A.; Kuwana, Y.; Serikawa, T.; Yamada, J.; Ishihara, K.; Sasa, M. Topiramate reduces abnormally high extracellular levels of glutamate and aspartate in the hippocampus of spontaneously epileptic rats (SER). Life Sci., 1996, 59(19), 1607-1616.
[http://dx.doi.org/10.1016/0024-3205(96)00492-4] [PMID: 8913326]
[88]
Shank, R.P.; Gardocki, J.F.; Streeter, A.J.; Maryanoff, B.E. An overview of the preclinical aspects of topiramate: pharmacology, pharmacokinetics, and mechanism of action. Epilepsia, 2000, 41(Suppl. 1), S3-S9.
[http://dx.doi.org/10.1111/j.1528-1157.2000.tb02163.x] [PMID: 10768292]
[89]
Gryder, D.S.; Rogawski, M.A. Selective antagonism of GluR5 kainate-receptor-mediated synaptic currents by topiramate in rat basolateral amygdala neurons. J. Neurosci., 2003, 23(18), 7069-7074.
[http://dx.doi.org/10.1523/JNEUROSCI.23-18-07069.2003] [PMID: 12904467]
[90]
Kim, H.J.; Kim, I.K.; Song, W.; Lee, J.; Park, S. The synergic effect of regular exercise and resveratrol on kainate-induced oxidative stress and seizure activity in mice. Neurochem. Res., 2013, 38(1), 117-122.
[http://dx.doi.org/10.1007/s11064-012-0897-8] [PMID: 23054073]
[91]
Hanada, T.; Hashizume, Y.; Tokuhara, N.; Takenaka, O.; Kohmura, N.; Ogasawara, A.; Hatakeyama, S.; Ohgoh, M.; Ueno, M.; Nishizawa, Y. Perampanel: a novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia, 2011, 52(7), 1331-1340.
[http://dx.doi.org/10.1111/j.1528-1167.2011.03109.x] [PMID: 21635236]
[92]
Li, Z.; You, Z.; Li, M.; Pang, L.; Cheng, J.; Wang, L. protective effect of resveratrol on the brain in a rat model of epilepsy. Neurosci. Bull., 2017, 33(3), 273-280.
[http://dx.doi.org/10.1007/s12264-017-0097-2] [PMID: 28161868]
[93]
Xu, X.X.; Luo, J.H. Mutations of N-Methyl-D-Aspartate receptor subunits in epilepsy. Neurosci. Bull., 2018, 34(3), 549-565.
[http://dx.doi.org/10.1007/s12264-017-0191-5] [PMID: 29124671]
[94]
Xu, X.X.; Liu, X.R.; Fan, C.Y.; Lai, J.X.; Shi, Y.W.; Yang, W.; Su, T.; Xu, J.Y.; Luo, J.H.; Liao, W.P. functional investigation of a grin2a variant associated with rolandic epilepsy. Neurosci. Bull., 2018, 34(2), 237-246.
[http://dx.doi.org/10.1007/s12264-017-0182-6] [PMID: 28936771]
[95]
Gale, K. GABA in epilepsy: the pharmacologic basis. Epilepsia, 1989, 30(Suppl. 3), S1-S11.
[http://dx.doi.org/10.1111/j.1528-1157.1989.tb05825.x] [PMID: 2548836]
[96]
Stringer, J.L.; Lothman, E.W. Pharmacological evidence indicating a role of GABAergic systems in termination of limbic seizures. Epilepsy Res., 1990, 7(3), 197-204.
[http://dx.doi.org/10.1016/0920-1211(90)90015-N] [PMID: 1705225]
[97]
De Biase, D.; Barra, D.; Bossa, F.; Pucci, P.; John, R.A. Chemistry of the inactivation of 4-aminobutyrate aminotransferase by the antiepileptic drug vigabatrin. J. Biol. Chem., 1991, 266(30), 20056-20061.
[PMID: 1939068]
[98]
Rudolph, U.; Crestani, F.; Benke, D.; Brünig, I.; Benson, J.A.; Fritschy, J.M.; Martin, J.R.; Bluethmann, H.; Möhler, H. Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature, 1999, 401(6755), 796-800.
[http://dx.doi.org/10.1038/44579] [PMID: 10548105]
[99]
Cossart, R.; Bernard, C.; Ben-Ari, Y. Multiple facets of GABAergic neurons and synapses: multiple fates of GABA signalling in epilepsies. Trends Neurosci., 2005, 28(2), 108-115.
[http://dx.doi.org/10.1016/j.tins.2004.11.011] [PMID: 15667934]
[100]
Chang, Y.Y.; Gong, X.W.; Gong, H.Q.; Liang, P.J.; Zhang, P.M.; Lu, Q.C. gabaa receptor activity suppresses the transition from inter-ictal to ictal epileptiform discharges in juvenile mouse hippocampus. Neurosci. Bull., 2018, 34(6), 1007-1016.
[http://dx.doi.org/10.1007/s12264-018-0273-z] [PMID: 30128691]
[101]
Yu, X.; Yang, L.; Li, J.; Li, W.; Li, D.; Wang, R.; Wu, K.; Chen, W.; Zhang, Y.; Qiu, Z.; Zhou, W. De Novo and inherited setd1a variants in early-onset epilepsy. Neurosci. Bull., 2019, 35(6), 1045-1057.
[http://dx.doi.org/10.1007/s12264-019-00400-w] [PMID: 31197650]
[102]
Kwan, P.; Brodie, M.J. Early identification of refractory epilepsy. N. Engl. J. Med., 2000, 342(5), 314-319.
[http://dx.doi.org/10.1056/NEJM200002033420503] [PMID: 10660394]
[103]
Löscher, W.; Klitgaard, H.; Twyman, R.E.; Schmidt, D. New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Discov., 2013, 12(10), 757-776.
[http://dx.doi.org/10.1038/nrd4126] [PMID: 24052047]
[104]
Stephen, L.J.; Wishart, A.; Brodie, M.J. Psychiatric side effects and antiepileptic drugs: Observations from prospective audits. Epilepsy Behav., 2017, 71(Pt A), 73-78.
[http://dx.doi.org/10.1016/j.yebeh.2017.04.003 ] [PMID: 28551500]
[105]
Perucca, P.; Gilliam, F.G. Adverse effects of antiepileptic drugs. Lancet Neurol., 2012, 11(9), 792-802.
[http://dx.doi.org/10.1016/S1474-4422(12)70153-9] [PMID: 22832500]
[106]
Keezer, M.R.; Sisodiya, S.M.; Sander, J.W. Comorbidities of epilepsy: current concepts and future perspectives. Lancet Neurol., 2016, 15(1), 106-115.
[http://dx.doi.org/10.1016/S1474-4422(15)00225-2] [PMID: 26549780]
[107]
Adachi, K.; Mirzadeh, Z.; Sakaguchi, M.; Yamashita, T.; Nikolcheva, T.; Gotoh, Y.; Peltz, G.; Gong, L.; Kawase, T.; Alvarez-Buylla, A.; Okano, H.; Sawamoto, K. Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells, 2007, 25(11), 2827-2836.
[http://dx.doi.org/10.1634/stemcells.2007-0177] [PMID: 17673525]
[108]
Gao, X.; Arlotta, P.; Macklis, J.D.; Chen, J. Conditional knock-out of beta-catenin in postnatal-born dentate gyrus granule neurons results in dendritic malformation. J. Neurosci., 2007, 27(52), 14317-14325.
[http://dx.doi.org/10.1523/JNEUROSCI.3206-07.2007] [PMID: 18160639]
[109]
Gao, Z.; Ure, K.; Ables, J.L.; Lagace, D.C.; Nave, K.A.; Goebbels, S.; Eisch, A.J.; Hsieh, J. Neurod1 is essential for the survival and maturation of adult-born neurons. Nat. Neurosci., 2009, 12(9), 1090-1092.
[http://dx.doi.org/10.1038/nn.2385] [PMID: 19701197]
[110]
Kuwabara, T.; Hsieh, J.; Muotri, A.; Yeo, G.; Warashina, M.; Lie, D.C.; Moore, L.; Nakashima, K.; Asashima, M.; Gage, F.H. Wnt-mediated activation of NeuroD1 and retro-elements during adult neurogenesis. Nat. Neurosci., 2009, 12(9), 1097-1105.
[http://dx.doi.org/10.1038/nn.2360] [PMID: 19701198]
[111]
Mao, Y.; Ge, X.; Frank, C.L.; Madison, J.M.; Koehler, A.N.; Doud, M.K.; Tassa, C.; Berry, E.M.; Soda, T.; Singh, K.K.; Biechele, T.; Petryshen, T.L.; Moon, R.T.; Haggarty, S.J.; Tsai, L.H. Disrupted in schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3beta/beta-catenin signaling. Cell, 2009, 136(6), 1017-1031.
[http://dx.doi.org/10.1016/j.cell.2008.12.044] [PMID: 19303846]
[112]
Qu, Q.; Sun, G.; Li, W.; Yang, S.; Ye, P.; Zhao, C. Orphan nuclear receptor TLX activates Wnt/beta-catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nat. Cell Biol., 2010, 12(1), 31-40,.
[113]
Lie, D.C.; Colamarino, S.A.; Song, H.J.; Désiré, L.; Mira, H.; Consiglio, A.; Lein, E.S.; Jessberger, S.; Lansford, H.; Dearie, A.R.; Gage, F.H. Wnt signalling regulates adult hippocampal neurogenesis. Nature, 2005, 437(7063), 1370-1375.
[http://dx.doi.org/10.1038/nature04108] [PMID: 16251967]
[114]
Hitoshi, S.; Alexson, T.; Tropepe, V.; Donoviel, D.; Elia, A.J.; Nye, J.S.; Conlon, R.A.; Mak, T.W.; Bernstein, A.; van der Kooy, D. Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev., 2002, 16(7), 846-858.
[http://dx.doi.org/10.1101/gad.975202] [PMID: 11937492]
[115]
Chojnacki, A.; Shimazaki, T.; Gregg, C.; Weinmaster, G.; Weiss, S. Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J. Neurosci., 2003, 23(5), 1730-1741.
[http://dx.doi.org/10.1523/JNEUROSCI.23-05-01730.2003] [PMID: 12629177]
[116]
Breunig, J.J.; Silbereis, J.; Vaccarino, F.M.; Sestan, N.; Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl. Acad. Sci. USA, 2007, 104(51), 20558-20563.
[http://dx.doi.org/10.1073/pnas.0710156104] [PMID: 18077357]
[117]
Wang, X.; Mao, X.; Xie, L.; Greenberg, D.A.; Jin, K. Involvement of Notch1 signaling in neurogenesis in the subventricular zone of normal and ischemic rat brain in vivo. J. Cereb. Blood Flow Metab., 2009, 29(10), 1644-1654.
[http://dx.doi.org/10.1038/jcbfm.2009.83] [PMID: 19536070]
[118]
Imayoshi, I.; Sakamoto, M.; Yamaguchi, M.; Mori, K.; Kageyama, R. Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J. Neurosci., 2010, 30(9), 3489-3498.
[http://dx.doi.org/10.1523/JNEUROSCI.4987-09.2010] [PMID: 20203209]
[119]
Lai, K.; Kaspar, B.K.; Gage, F.H.; Schaffer, D.V. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat. Neurosci., 2003, 6(1), 21-27.
[http://dx.doi.org/10.1038/nn983] [PMID: 12469128]
[120]
Machold, R.; Hayashi, S.; Rutlin, M.; Muzumdar, M.D.; Nery, S.; Corbin, J.G.; Gritli-Linde, A.; Dellovade, T.; Porter, J.A.; Rubin, L.L.; Dudek, H.; McMahon, A.P.; Fishell, G. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron, 2003, 39(6), 937-950.
[http://dx.doi.org/10.1016/S0896-6273(03)00561-0] [PMID: 12971894]
[121]
Han, Y.G.; Spassky, N.; Romaguera-Ros, M.; Garcia-Verdugo, J.M.; Aguilar, A.; Schneider-Maunoury, S.; Alvarez-Buylla, A. Hedgehog signaling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci., 2008, 11(3), 277-284.
[http://dx.doi.org/10.1038/nn2059] [PMID: 18297065]
[122]
Lim, D.A.; Tramontin, A.D.; Trevejo, J.M.; Herrera, D.G.; García-Verdugo, J.M.; Alvarez-Buylla, A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron, 2000, 28(3), 713-726.
[http://dx.doi.org/10.1016/S0896-6273(00)00148-3] [PMID: 11163261]
[123]
Bonaguidi, M.A.; Peng, C.Y.; McGuire, T.; Falciglia, G.; Gobeske, K.T.; Czeisler, C.; Kessler, J.A. Noggin expands neural stem cells in the adult hippocampus. J. Neurosci., 2008, 28(37), 9194-9204.
[http://dx.doi.org/10.1523/JNEUROSCI.3314-07.2008] [PMID: 18784300]
[124]
Pencea, V.; Bingaman, K.D.; Wiegand, S.J.; Luskin, M.B. Infusion of brain-derived neurotrophic factor into the lateral ventricle of the adult rat leads to new neurons in the parenchyma of the striatum, septum, thalamus, and hypothalamus. J. Neurosci., 2001, 21(17), 6706-6717.
[http://dx.doi.org/10.1523/JNEUROSCI.21-17-06706.2001] [PMID: 11517260]
[125]
Fasen, K.; Beck, H.; Elger, C.E.; Lie, A.A. Differential regulation of cadherins and catenins during axonal reorganization in the adult rat CNS. J. Neuropathol. Exp. Neurol., 2002, 61(10), 903-913.
[http://dx.doi.org/10.1093/jnen/61.10.903] [PMID: 12387456]
[126]
Katoh-Semba, R.; Asano, T.; Ueda, H.; Morishita, R.; Takeuchi, I.K.; Inaguma, Y.; Kato, K. Riluzole enhances expression of brain-derived neurotrophic factor with consequent proliferation of granule precursor cells in the rat hippocampus. FASEB J., 2002, 16(10), 1328-1330.
[http://dx.doi.org/10.1096/fj.02-0143fje] [PMID: 12154010]
[127]
Shetty, A.K.; Zaman, V.; Shetty, G.A. Hippocampal neurotrophin levels in a kainate model of temporal lobe epilepsy: a lack of correlation between brain-derived neurotrophic factor content and progression of aberrant dentate mossy fiber sprouting. J. Neurochem., 2003, 87(1), 147-159.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01979.x] [PMID: 12969262]
[128]
Scharfman, H.; Goodman, J.; Macleod, A.; Phani, S.; Antonelli, C.; Croll, S. Increased neurogenesis and the ectopic granule cells after intrahippocampal BDNF infusion in adult rats. Exp. Neurol., 2005, 192(2), 348-356.
[http://dx.doi.org/10.1016/j.expneurol.2004.11.016] [PMID: 15755552]
[129]
Jin, K.; Zhu, Y.; Sun, Y.; Mao, X.O.; Xie, L.; Greenberg, D.A. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2002, 99(18), 11946-11950.
[http://dx.doi.org/10.1073/pnas.182296499] [PMID: 12181492]
[130]
Cameron, H.A.; McEwen, B.S.; Gould, E. Regulation of adult neurogenesis by excitatory input and NMDA receptor activation in the dentate gyrus. J. Neurosci., 1995, 15(6), 4687-4692.
[http://dx.doi.org/10.1523/JNEUROSCI.15-06-04687.1995] [PMID: 7790933]
[131]
Bolteus, A.J.; Bordey, A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci., 2004, 24(35), 7623-7631.
[http://dx.doi.org/10.1523/JNEUROSCI.1999-04.2004] [PMID: 15342728]
[132]
Liu, X.; Wang, Q.; Haydar, T.F.; Bordey, A. Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat. Neurosci., 2005, 8(9), 1179-1187.
[http://dx.doi.org/10.1038/nn1522] [PMID: 16116450]
[133]
Ben-Hur, T.; Ben-Menachem, O.; Furer, V.; Einstein, O.; Mizrachi-Kol, R.; Grigoriadis, N. Effects of proinflammatory cytokines on the growth, fate, and motility of multipotential neural precursor cells. Mol. Cell. Neurosci., 2003, 24(3), 623-631.
[http://dx.doi.org/10.1016/S1044-7431(03)00218-5] [PMID: 14664813]
[134]
Ekdahl, C.T.; Claasen, J.H.; Bonde, S.; Kokaia, Z.; Lindvall, O. Inflammation is detrimental for neurogenesis in adult brain. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13632-13637.
[http://dx.doi.org/10.1073/pnas.2234031100] [PMID: 14581618]
[135]
Monje, M.L.; Toda, H.; Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science, 2003, 302(5651), 1760-1765.
[http://dx.doi.org/10.1126/science.1088417] [PMID: 14615545]
[136]
Madsen, T.M.; Newton, S.S.; Eaton, M.E.; Russell, D.S.; Duman, R.S. Chronic electroconvulsive seizure up-regulates beta-catenin expression in rat hippocampus: role in adult neurogenesis. Biol. Psychiatry, 2003, 54(10), 1006-1014.
[http://dx.doi.org/10.1016/S0006-3223(03)00700-5] [PMID: 14625142]
[137]
Rubio, C.; Rosiles-Abonce, A.; Trejo-Solis, C.; Rubio-Osornio, M.; Mendoza, C.; Custodio, V.; Martinez-Lazcano, J.C.; Gonzalez, E.; Paz, C. Increase signaling of Wnt/β-catenin pathway and presence of apoptosis in cerebellum of kindled rats. CNS Neurol. Disord. Drug Targets, 2017, 16(7), 772-780.
[http://dx.doi.org/10.2174/1871527316666170117114513] [PMID: 28124605]
[138]
Qu, Z.; Su, F.; Qi, X.; Sun, J.; Wang, H.; Qiao, Z.; Zhao, H.; Zhu, Y. Wnt/β-catenin signalling pathway mediated aberrant hippocampal neurogenesis in kainic acid-induced epilepsy. Cell Biochem. Funct., 2017, 35(7), 472-476.
[http://dx.doi.org/10.1002/cbf.3306] [PMID: 29052243]
[139]
Huang, C.; Fu, X.H.; Zhou, D.; Li, J.M. the role of wnt/β-catenin signaling pathway in disrupted hippocampal neurogenesis of temporal lobe epilepsy: a potential therapeutic target? Neurochem. Res., 2015, 40(7), 1319-1332.
[http://dx.doi.org/10.1007/s11064-015-1614-1] [PMID: 26012365]
[140]
Campos, V.E.; Du, M.; Li, Y. Increased seizure susceptibility and cortical malformation in beta-catenin mutant mice. Biochem. Biophys. Res. Commun., 2004, 320(2), 606-614.
[http://dx.doi.org/10.1016/j.bbrc.2004.05.204] [PMID: 15219872]
[141]
Yang, J.; Zhang, X.; Wu, Y.; Zhao, B.; Liu, X.; Pan, Y.; Liu, Y.; Ding, Y.; Qiu, M.; Wang, Y.Z.; Zhao, G. Wnt/β-catenin signaling mediates the seizure-facilitating effect of postischemic reactive astrocytes after pentylenetetrazole-kindling. Glia, 2016, 64(6), 1083-1091.
[http://dx.doi.org/10.1002/glia.22984] [PMID: 27003605]
[142]
Linnarsson, S.; Willson, C.A.; Ernfors, P. Cell death in regenerating populations of neurons in BDNF mutant mice. Brain Res. Mol. Brain Res., 2000, 75(1), 61-69.
[http://dx.doi.org/10.1016/S0169-328X(99)00295-8] [PMID: 10648888]
[143]
Li, Y.; Luikart, B.W.; Birnbaum, S.; Chen, J.; Kwon, C.H.; Kernie, S.G.; Bassel-Duby, R.; Parada, L.F. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron, 2008, 59(3), 399-412.
[http://dx.doi.org/10.1016/j.neuron.2008.06.023] [PMID: 18701066]
[144]
Bergami, M.; Rimondini, R.; Santi, S.; Blum, R.; Götz, M.; Canossa, M. Deletion of TrkB in adult progenitors alters newborn neuron integration into hippocampal circuits and increases anxiety-like behavior. Proc. Natl. Acad. Sci. USA, 2008, 105(40), 15570-15575.
[http://dx.doi.org/10.1073/pnas.0803702105] [PMID: 18832146]
[145]
Binder, D.K.; Croll, S.D.; Gall, C.M.; Scharfman, H.E. BDNF and epilepsy: too much of a good thing? Trends Neurosci., 2001, 24(1), 47-53.
[http://dx.doi.org/10.1016/S0166-2236(00)01682-9] [PMID: 11163887]
[146]
McNamara, J.O.; Scharfman, H.E. Temporal Lobe Epilepsy and the BDNF Receptor, TrkB; Jasper's Basic Mechanisms of the Epilepsies, 2012.
[http://dx.doi.org/10.1093/med/9780199746545.003.0039]
[147]
Scharfman, H.E.; Goodman, J.H.; Sollas, A.L.; Croll, S.D. Spontaneous limbic seizures after intrahippocampal infusion of brain-derived neurotrophic factor. Exp. Neurol., 2002, 174(2), 201-214.
[http://dx.doi.org/10.1006/exnr.2002.7869] [PMID: 11922662]
[148]
Heinrich, C.; Lähteinen, S.; Suzuki, F.; Anne-Marie, L.; Huber, S.; Häussler, U.; Haas, C.; Larmet, Y.; Castren, E.; Depaulis, A. Increase in BDNF-mediated TrkB signaling promotes epileptogenesis in a mouse model of mesial temporal lobe epilepsy. Neurobiol. Dis., 2011, 42(1), 35-47.
[http://dx.doi.org/10.1016/j.nbd.2011.01.001] [PMID: 21220014]
[149]
Liu, G.; Gu, B.; He, X.P.; Joshi, R.B.; Wackerle, H.D.; Rodriguiz, R.M.; Wetsel, W.C.; McNamara, J.O. Transient inhibition of TrkB kinase after status epilepticus prevents development of temporal lobe epilepsy. Neuron, 2013, 79(1), 31-38.
[http://dx.doi.org/10.1016/j.neuron.2013.04.027] [PMID: 23790754]
[150]
He, X.P.; Kotloski, R.; Nef, S.; Luikart, B.W.; Parada, L.F.; McNamara, J.O. Conditional deletion of TrkB but not BDNF prevents epileptogenesis in the kindling model. Neuron, 2004, 43(1), 31-42.
[http://dx.doi.org/10.1016/j.neuron.2004.06.019] [PMID: 15233915]
[151]
Tashiro, A.; Sandler, V.M.; Toni, N.; Zhao, C.; Gage, F.H. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature, 2006, 442(7105), 929-933.
[http://dx.doi.org/10.1038/nature05028] [PMID: 16906136]
[152]
Platel, J.C.; Dave, K.A.; Gordon, V.; Lacar, B.; Rubio, M.E.; Bordey, A. NMDA receptors activated by subventricular zone astrocytic glutamate are critical for neuroblast survival prior to entering a synaptic network. Neuron, 2010, 65(6), 859-872.
[http://dx.doi.org/10.1016/j.neuron.2010.03.009] [PMID: 20346761]
[153]
Bai, F.; Bergeron, M.; Nelson, D.L. Chronic AMPA receptor potentiator (LY451646) treatment increases cell proliferation in adult rat hippocampus. Neuropharmacology, 2003, 44(8), 1013-1021.
[http://dx.doi.org/10.1016/S0028-3908(03)00104-7] [PMID: 12763094]
[154]
Wang, Y.; Wang, Y.; Chen, Z. Double-edged GABAergic synaptic transmission in seizures: The importance of chloride plasticity. Brain Res., 2018, 1701, 126-136.
[http://dx.doi.org/10.1016/j.brainres.2018.09.008] [PMID: 30201259]
[155]
Wang, Y.; Xu, C.; Xu, Z.; Ji, C.; Liang, J.; Wang, Y.; Chen, B.; Wu, X.; Gao, F.; Wang, S.; Guo, Y.; Li, X.; Luo, J.; Duan, S.; Chen, Z. Depolarized GABAergic signaling in subicular microcircuits mediates generalized seizure in temporal lobe epilepsy. Neuron, 2017, 95(5), 1221.
[http://dx.doi.org/10.1016/j.neuron.2017.08.013] [PMID: 28858623]
[156]
Ge, S.; Goh, E.L.; Sailor, K.A.; Kitabatake, Y.; Ming, G.L.; Song, H. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 2006, 439(7076), 589-593.
[http://dx.doi.org/10.1038/nature04404] [PMID: 16341203]
[157]
Song, J.; Zhong, C.; Bonaguidi, M.A.; Sun, G.J.; Hsu, D.; Gu, Y.; Meletis, K.; Huang, Z.J.; Ge, S.; Enikolopov, G.; Deisseroth, K.; Luscher, B.; Christian, K.M.; Ming, G.L.; Song, H. Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 2012, 489(7414), 150-154.
[http://dx.doi.org/10.1038/nature11306] [PMID: 22842902]
[158]
Song, J.; Sun, J.; Moss, J.; Wen, Z.; Sun, G.J.; Hsu, D.; Zhong, C.; Davoudi, H.; Christian, K.M.; Toni, N.; Ming, G.L.; Song, H. Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat. Neurosci., 2013, 16(12), 1728-1730.
[http://dx.doi.org/10.1038/nn.3572] [PMID: 24212671]
[159]
Paz, J.T.; Huguenard, J.R. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat. Neurosci., 2015, 18(3), 351-359.
[http://dx.doi.org/10.1038/nn.3950] [PMID: 25710837]
[160]
Green, H.F.; Treacy, E.; Keohane, A.K.; Sullivan, A.M.; O’Keeffe, G.W.; Nolan, Y.M. A role for interleukin-1β in determining the lineage fate of embryonic rat hippocampal neural precursor cells. Mol. Cell. Neurosci., 2012, 49(3), 311-321.
[http://dx.doi.org/10.1016/j.mcn.2012.01.001] [PMID: 22270046]
[161]
Zonis, S.; Ljubimov, V.A.; Mahgerefteh, M.; Pechnick, R.N.; Wawrowsky, K.; Chesnokova, V. p21Cip restrains hippocampal neurogenesis and protects neuronal progenitors from apoptosis during acute systemic inflammation. Hippocampus, 2013, 23(12), 1383-1394.
[http://dx.doi.org/10.1002/hipo.22192] [PMID: 23966332]
[162]
Iosif, R.E.; Ekdahl, C.T.; Ahlenius, H.; Pronk, C.J.; Bonde, S.; Kokaia, Z.; Jacobsen, S.E.; Lindvall, O. Tumor necrosis factor receptor 1 is a negative regulator of progenitor proliferation in adult hippocampal neurogenesis. J. Neurosci., 2006, 26(38), 9703-9712.
[http://dx.doi.org/10.1523/JNEUROSCI.2723-06.2006] [PMID: 16988041]
[163]
Kohman, R.A.; Rhodes, J.S. Neurogenesis, inflammation and behavior. Brain Behav. Immun., 2013, 27(1), 22-32.
[http://dx.doi.org/10.1016/j.bbi.2012.09.003] [PMID: 22985767]
[164]
Borsini, A.; Zunszain, P.A.; Thuret, S.; Pariante, C.M. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci., 2015, 38(3), 145-157.
[http://dx.doi.org/10.1016/j.tins.2014.12.006] [PMID: 25579391]
[165]
Dey, A.; Kang, X.; Qiu, J.; Du, Y.; Jiang, J. Anti-Inflammatory Small Molecules To Treat Seizures and Epilepsy: From Bench to Bedside. Trends Pharmacol. Sci., 2016, 37(6), 463-484.
[http://dx.doi.org/10.1016/j.tips.2016.03.001] [PMID: 27062228]
[166]
Vezzani, A. Anti-inflammatory drugs in epilepsy: does it impact epileptogenesis? Expert Opin. Drug Saf., 2015, 14(4), 583-592.
[http://dx.doi.org/10.1517/14740338.2015.1010508] [PMID: 25645535]
[167]
Barker-Haliski, M.L.; Löscher, W.; White, H.S.; Galanopoulou, A.S. Neuroinflammation in epileptogenesis: Insights and translational perspectives from new models of epilepsy. Epilepsia, 2017, 58(Suppl. 3), 39-47.
[http://dx.doi.org/10.1111/epi.13785] [PMID: 28675559]
[168]
Rana, A.; Musto, A.E. The role of inflammation in the development of epilepsy. J. Neuroinflammation, 2018, 15(1), 144.
[http://dx.doi.org/10.1186/s12974-018-1192-7] [PMID: 29764485]
[169]
Vezzani, A.; French, J.; Bartfai, T.; Baram, T.Z. The role of inflammation in epilepsy. Nat. Rev. Neurol., 2011, 7(1), 31-40.
[http://dx.doi.org/10.1038/nrneurol.2010.178] [PMID: 21135885]
[170]
Feng, B.; Tang, Y.; Chen, B.; Xu, C.; Wang, Y.; Dai, Y.; Wu, D.; Zhu, J.; Wang, S.; Zhou, Y.; Shi, L.; Hu, W.; Zhang, X.; Chen, Z. Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci. Rep., 2016, 6, 21931.
[http://dx.doi.org/10.1038/srep21931] [PMID: 26902320]
[171]
Chen, B.; Feng, B.; Tang, Y.; You, Y.; Wang, Y.; Hou, W.; Hu, W.; Chen, Z. Blocking GluN2B subunits reverses the enhanced seizure susceptibility after prolonged febrile seizures with a wide therapeutic time-window. Exp. Neurol., 2016, 283(Pt A), 29-38.,
[http://dx.doi.org/10.1016/j.expneurol.2016.05.034] [PMID: 27240522]
[172]
Roseti, C.; van Vliet, E.A.; Cifelli, P.; Ruffolo, G.; Baayen, J.C.; Di Castro, M.A.; Bertollini, C.; Limatola, C.; Aronica, E.; Vezzani, A.; Palma, E. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol. Dis., 2015, 82, 311-320.
[http://dx.doi.org/10.1016/j.nbd.2015.07.003] [PMID: 26168875]
[173]
Gross, A.; Benninger, F.; Madar, R.; Illouz, T.; Griffioen, K.; Steiner, I.; Offen, D.; Okun, E. Toll-like receptor 3 deficiency decreases epileptogenesis in a pilocarpine model of SE-induced epilepsy in mice. Epilepsia, 2017, 58(4), 586-596.
[http://dx.doi.org/10.1111/epi.13688] [PMID: 28166388]
[174]
Iori, V.; Maroso, M.; Rizzi, M.; Iyer, A.M.; Vertemara, R.; Carli, M.; Agresti, A.; Antonelli, A.; Bianchi, M.E.; Aronica, E.; Ravizza, T.; Vezzani, A. Receptor for Advanced Glycation Endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol. Dis., 2013, 58, 102-114.
[http://dx.doi.org/10.1016/j.nbd.2013.03.006] [PMID: 23523633]
[175]
Zhao, J.; Wang, Y.; Xu, C.; Liu, K.; Wang, Y.; Chen, L.; Wu, X.; Gao, F.; Guo, Y.; Zhu, J.; Wang, S.; Nishibori, M.; Chen, Z. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav. Immun., 2017, 64, 308-319.
[http://dx.doi.org/10.1016/j.bbi.2017.02.002] [PMID: 28167116]
[176]
Maroso, M.; Balosso, S.; Ravizza, T.; Liu, J.; Aronica, E.; Iyer, A.M.; Rossetti, C.; Molteni, M.; Casalgrandi, M.; Manfredi, A.A.; Bianchi, M.E.; Vezzani, A. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat. Med., 2010, 16(4), 413-419.
[http://dx.doi.org/10.1038/nm.2127] [PMID: 20348922]
[177]
Zurolo, E.; Iyer, A.; Maroso, M.; Carbonell, C.; Anink, J.J.; Ravizza, T.; Fluiter, K.; Spliet, W.G.; van Rijen, P.C.; Vezzani, A.; Aronica, E. Activation of Toll-like receptor, RAGE and HMGB1 signalling in malformations of cortical development. Brain, 2011, 134(Pt 4), 1015-1032.
[http://dx.doi.org/10.1093/brain/awr032] [PMID: 21414994]
[178]
Cameron, M.C.; Zhan, R.Z.; Nadler, J.V. Morphologic integration of hilar ectopic granule cells into dentate gyrus circuitry in the pilocarpine model of temporal lobe epilepsy. J. Comp. Neurol., 2011, 519(11), 2175-2192.
[http://dx.doi.org/10.1002/cne.22623] [PMID: 21455997]
[179]
Kelly, T.; Beck, H. Functional properties of granule cells with hilar basal dendrites in the epileptic dentate gyrus. Epilepsia, 2017, 58(1), 160-171.
[http://dx.doi.org/10.1111/epi.13605] [PMID: 27888509]
[180]
Scharfman, H.E.; Sollas, A.E.; Berger, R.E.; Goodman, J.H.; Pierce, J.P. Perforant path activation of ectopic granule cells that are born after pilocarpine-induced seizures. Neuroscience, 2003, 121(4), 1017-1029.
[http://dx.doi.org/10.1016/S0306-4522(03)00481-0] [PMID: 14580952]
[181]
Hester, M.S.; Danzer, S.C. Accumulation of abnormal adult-generated hippocampal granule cells predicts seizure frequency and severity. J. Neurosci., 2013, 33(21), 8926-8936.
[http://dx.doi.org/10.1523/JNEUROSCI.5161-12.2013] [PMID: 23699504]
[182]
Clelland, C.D.; Choi, M.; Romberg, C.; Clemenson, G.D., Jr; Fragniere, A.; Tyers, P.; Jessberger, S.; Saksida, L.M.; Barker, R.A.; Gage, F.H.; Bussey, T.J. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science, 2009, 325(5937), 210-213.
[http://dx.doi.org/10.1126/science.1173215] [PMID: 19590004]
[183]
Aimone, J.B.; Deng, W.; Gage, F.H. Adult neurogenesis: integrating theories and separating functions. Trends Cogn. Sci. (Regul. Ed.), 2010, 14(7), 325-337.
[http://dx.doi.org/10.1016/j.tics.2010.04.003] [PMID: 20471301]
[184]
Gu, Y.; Arruda-Carvalho, M.; Wang, J.; Janoschka, S.R.; Josselyn, S.A.; Frankland, P.W.; Ge, S. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci., 2012, 15(12), 1700-1706.
[http://dx.doi.org/10.1038/nn.3260] [PMID: 23143513]
[185]
Nakashiba, T.; Cushman, J.D.; Pelkey, K.A.; Renaudineau, S.; Buhl, D.L.; McHugh, T.J.; Rodriguez Barrera, V.; Chittajallu, R.; Iwamoto, K.S.; McBain, C.J.; Fanselow, M.S.; Tonegawa, S. Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell, 2012, 149(1), 188-201.
[http://dx.doi.org/10.1016/j.cell.2012.01.046] [PMID: 22365813]
[186]
Elger, C.E.; Helmstaedter, C.; Kurthen, M. Chronic epilepsy and cognition. Lancet Neurol., 2004, 3(11), 663-672.
[http://dx.doi.org/10.1016/S1474-4422(04)00906-8] [PMID: 15488459]
[187]
Tellez-Zenteno, J.F.; Patten, S.B.; Jetté, N.; Williams, J.; Wiebe, S. Psychiatric comorbidity in epilepsy: a population-based analysis. Epilepsia, 2007, 48(12), 2336-2344.
[http://dx.doi.org/10.1111/j.1528-1167.2007.01222.x] [PMID: 17662062]
[188]
Jacobs, M.P.; Leblanc, G.G.; Brooks-Kayal, A.; Jensen, F.E.; Lowenstein, D.H.; Noebels, J.L.; Spencer, D.D.; Swann, J.W. Curing epilepsy: progress and future directions. Epilepsy Behav., 2009, 14(3), 438-445.
[http://dx.doi.org/10.1016/j.yebeh.2009.02.036] [PMID: 19341977]
[189]
Ji, C.; Zhu, L.; Chen, C.; Wang, S.; Zheng, L.; Li, H. volumetric changes in hippocampal subregions and memory performance in mesial temporal lobe epilepsy with hippocampal sclerosis. Neurosci. Bull., 2018, 34(2), 389-396.
[http://dx.doi.org/10.1007/s12264-017-0186-2] [PMID: 29094314]
[190]
Meador, K.J. Cognitive and memory effects of the new antiepileptic drugs. Epilepsy Res., 2006, 68(1), 63-67.
[http://dx.doi.org/10.1016/j.eplepsyres.2005.09.023] [PMID: 16377148]
[191]
Gomer, B.; Wagner, K.; Frings, L.; Saar, J.; Carius, A.; Härle, M.; Steinhoff, B.J.; Schulze-Bonhage, A. The influence of antiepileptic drugs on cognition: a comparison of levetiracetam with topiramate. Epilepsy Behav., 2007, 10(3), 486-494.
[http://dx.doi.org/10.1016/j.yebeh.2007.02.007] [PMID: 17409025]
[192]
Drapeau, E.; Mayo, W.; Aurousseau, C.; Le Moal, M.; Piazza, P.V.; Abrous, D.N. Spatial memory performances of aged rats in the water maze predict levels of hippocampal neurogenesis. Proc. Natl. Acad. Sci. USA, 2003, 100(24), 14385-14390.
[http://dx.doi.org/10.1073/pnas.2334169100] [PMID: 14614143]
[193]
Kempermann, G.; Kuhn, H.G.; Gage, F.H. More hippocampal neurons in adult mice living in an enriched environment. Nature, 1997, 386(6624), 493-495.
[http://dx.doi.org/10.1038/386493a0] [PMID: 9087407]
[194]
van Praag, H.; Kempermann, G.; Gage, F.H. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat. Neurosci., 1999, 2(3), 266-270.
[http://dx.doi.org/10.1038/6368] [PMID: 10195220]
[195]
Jessberger, S.; Nakashima, K.; Clemenson, G.D., Jr; Mejia, E.; Mathews, E.; Ure, K.; Ogawa, S.; Sinton, C.M.; Gage, F.H.; Hsieh, J. Epigenetic modulation of seizure-induced neurogenesis and cognitive decline. J. Neurosci., 2007, 27(22), 5967-5975.
[http://dx.doi.org/10.1523/JNEUROSCI.0110-07.2007] [PMID: 17537967]
[196]
McAfoose, J.; Baune, B.T. Evidence for a cytokine model of cognitive function. Neurosci. Biobehav. Rev., 2009, 33(3), 355-366.
[http://dx.doi.org/10.1016/j.neubiorev.2008.10.005] [PMID: 18996146]
[197]
Tao, A.F.; Xu, Z.H.; Chen, B.; Wang, Y.; Wu, X.H.; Zhang, J.; Tang, Y.S.; Xu, C.L.; Zhao, H.W.; Hu, W.W.; Shi, L.Y.; Zhang, S.H.; Chen, Z. The Pro-inflammatory cytokine interleukin-1β is a key regulatory factor for the postictal suppression in mice. CNS Neurosci. Ther., 2015, 21(8), 642-650.
[http://dx.doi.org/10.1111/cns.12416] [PMID: 26096304]
[198]
Ravizza, T.; Noé, F.; Zardoni, D.; Vaghi, V.; Sifringer, M.; Vezzani, A. Interleukin Converting Enzyme inhibition impairs kindling epileptogenesis in rats by blocking astrocytic IL-1beta production. Neurobiol. Dis., 2008, 31(3), 327-333.
[http://dx.doi.org/10.1016/j.nbd.2008.05.007] [PMID: 18632279]
[199]
DeSena, A.D.; Do, T.; Schulert, G.S. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J. Neuroinflammation, 2018, 15(1), 38.
[http://dx.doi.org/10.1186/s12974-018-1063-2] [PMID: 29426321]
[200]
Sahay, A.; Hen, R. Adult hippocampal neurogenesis in depression. Nat. Neurosci., 2007, 10(9), 1110-1115.
[http://dx.doi.org/10.1038/nn1969] [PMID: 17726477]
[201]
Anacker, C.; Luna, V.M.; Stevens, G.S.; Millette, A.; Shores, R.; Jimenez, J.C.; Chen, B.; Hen, R. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature, 2018, 559(7712), 98-102.
[http://dx.doi.org/10.1038/s41586-018-0262-4] [PMID: 29950730]
[202]
Mariani, J.; Coppola, G.; Zhang, P.; Abyzov, A.; Provini, L.; Tomasini, L.; Amenduni, M.; Szekely, A.; Palejev, D.; Wilson, M.; Gerstein, M.; Grigorenko, E.L.; Chawarska, K.; Pelphrey, K.A.; Howe, J.R.; Vaccarino, F.M. FOXG1-Dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell, 2015, 162(2), 375-390.
[http://dx.doi.org/10.1016/j.cell.2015.06.034] [PMID: 26186191]
[203]
Sypecka, J.; Sarnowska, A.; Domanska-Janik, K. Crucial role of the local micro-environment in fate decision of neonatal rat NG2 progenitors. Cell Prolif., 2009, 42(5), 661-671.
[http://dx.doi.org/10.1111/j.1365-2184.2009.00618.x] [PMID: 19614677]
[204]
Caiazzo, M.; Giannelli, S.; Valente, P.; Lignani, G.; Carissimo, A.; Sessa, A.; Colasante, G.; Bartolomeo, R.; Massimino, L.; Ferroni, S.; Settembre, C.; Benfenati, F.; Broccoli, V. Direct conversion of fibroblasts into functional astrocytes by defined transcription factors. Stem Cell Reports, 2015, 4(1), 25-36.
[http://dx.doi.org/10.1016/j.stemcr.2014.12.002] [PMID: 25556566]
[205]
Colasante, G.; Lignani, G.; Rubio, A.; Medrihan, L.; Yekhlef, L.; Sessa, A.; Massimino, L.; Giannelli, S.G.; Sacchetti, S.; Caiazzo, M.; Leo, D.; Alexopoulou, D.; Dell’Anno, M.T.; Ciabatti, E.; Orlando, M.; Studer, M.; Dahl, A.; Gainetdinov, R.R.; Taverna, S.; Benfenati, F.; Broccoli, V. Rapid conversion of fibroblasts into functional forebrain gabaergic interneurons by direct genetic reprogramming. Cell Stem Cell, 2015, 17(6), 719-734.
[http://dx.doi.org/10.1016/j.stem.2015.09.002] [PMID: 26526726]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy