Neuropharmacological and Neurogenetic Correlates of Opioid Use Disorder (OUD) As a Function of Ethnicity: Relevance to Precision Addiction Medicine

Author(s): Tomilowo Abijo, Kenneth Blum, Marjorie C. Gondré-Lewis*

Journal Name: Current Neuropharmacology

Volume 18 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Over 100 people die daily from opioid overdose and $78.5B per year is spent on treatment efforts, however, the real societal cost is multifold greater. Alternative strategies to eradicate/manage drug misuse and addiction need consideration. The perception of opioid addiction as a social/criminal problem has evolved to evidence-based considerations of them as clinical disorders with a genetic basis. We present evaluations of the genetics of addiction with ancestryspecific risk profiles for consideration.

Objective: Studies of gene variants associated with predisposition to substance use disorders (SUDs) are monolithic, and exclude many ethnic groups, especially Hispanics and African Americans. We evaluate gene polymorphisms that impact brain reward and predispose individuals to opioid addictions, with a focus on the disparity of research which includes individuals of African and Hispanic descent.

Methodology: PubMed and Google Scholar were searched for: Opioid Use Disorder (OUD), Genome- wide association studies (GWAS); genetic variants; polymorphisms, restriction fragment length polymorphisms (RFLP); genomics, epigenetics, race, ethnic group, ethnicity, ancestry, Caucasian/ White, African American/Black, Hispanic, Asian, addictive behaviors, reward deficiency syndrome (RDS), mutation, insertion/deletion, and promotor region.

Results: Many studies exclude non-White individuals. Studies that include diverse populations report ethnicity-specific frequencies of risk genes, with certain polymorphisms specifically associated with Caucasian and not African-American or Hispanic susceptibility to OUD or SUDs, and vice versa.

Conclusion: To adapt precision medicine-based addiction management in a blended society, we propose that ethnicity/ancestry-informed genetic variations must be analyzed to provide real precision- guided therapeutics with the intent to attenuate this uncontrollable fatal epidemic.

Keywords: Dopamine homeostasis, genetics, Precision Addiction Management (PAM), Reward Deficiency Syndrome (RDS), ethnic groups, gene guided therapy.

[1]
Blanco, C.; Volkow, N.D. Management of opioid use disorder in the USA: present status and future directions. Lancet, 2019, 393(10182), 1760-1772.
[http://dx.doi.org/10.1016/S0140-6736(18)33078-2] [PMID: 30878228]
[2]
Van Zee, A. The promotion and marketing of oxycontin: commercial triumph, public health tragedy. Am. J. Public Health, 2009, 99(2), 221-227.
[http://dx.doi.org/10.2105/AJPH.2007.131714] [PMID: 18799767]
[3]
Morone, N.E.; Weiner, D.K. Pain as the fifth vital sign: exposing the vital need for pain education. Clin. Ther., 2013, 35(11), 1728-1732.
[http://dx.doi.org/10.1016/j.clinthera.2013.10.001] [PMID: 24145043]
[4]
Noble, F.; Marie, N. Management of Opioid Addiction With Opioid Substitution Treatments: Beyond Methadone and Buprenorphine. Front. Psychiatry, 2019, 9, 742.
[http://dx.doi.org/10.3389/fpsyt.2018.00742] [PMID: 30713510]
[5]
Kakko, J.; Svanborg, K.D.; Kreek, M.J.; Heilig, M. 1-year retention and social function after buprenorphine-assisted relapse prevention treatment for heroin dependence in Sweden: a randomised, placebo-controlled trial. Lancet, 2003, 361(9358), 662-668.
[http://dx.doi.org/10.1016/S0140-6736(03)12600-1] [PMID: 12606177]
[6]
Sees, K.L.; Delucchi, K.L.; Masson, C.; Rosen, A.; Clark, H.W.; Robillard, H.; Banys, P.; Hall, S.M. Methadone maintenance vs 180-day psychosocially enriched detoxification for treatment of opioid dependence: a randomized controlled trial. JAMA, 2000, 283(10), 1303-1310.
[http://dx.doi.org/10.1001/jama.283.10.1303] [PMID: 10714729]
[7]
Lo Re, M.; Chaplin, M.; Aronow, B.; Modesto-Lowe, V. Buprenorphine Overdose in Young Children: An Underappreciated Risk. Clin. Pediatr. (Phila.), 2019, 58(6), 613-617.
[http://dx.doi.org/10.1177/0009922819829038] [PMID: 30740990]
[8]
Edenberg, H.J. The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res. Health, 2007, 30(1), 5-13.
[PMID: 17718394]
[9]
Scott, D.M.; Taylor, R.E. Health-related effects of genetic variations of alcohol-metabolizing enzymes in African Americans. Alcohol Res. Health, 2007, 30(1), 18-21.
[PMID: 17718396]
[10]
Adinoff, B. Neurobiologic processes in drug reward and addiction. Harv. Rev. Psychiatry, 2004, 12(6), 305-320.
[http://dx.doi.org/10.1080/10673220490910844] [PMID: 15764467]
[11]
Arias-Carrión, O.; Stamelou, M.; Murillo-Rodríguez, E.; Menéndez-González, M.; Pöppel, E. Dopaminergic reward system: a short integrative review. Int. Arch. Med., 2010, 3, 24.
[http://dx.doi.org/10.1186/1755-7682-3-24] [PMID: 20925949]
[12]
Blum, K.; Modestino, E.J.; Gondre-Lewis, M.; Chapman, E.J.; Neary, J.; Siwicki, D.; Baron, D.; Hauser, M.; Smith, D.E.; Roy, A.K.; Thanos, P.K.; Steinberg, B.; McLaughlin, T.; Fried, L.; Barh, D.; Dunston, G.A.; Badgaiyan, R.D. The Benefits of Genetic Addiction Risk Score GARS. Int J Genom Data Min 2018.
[13]
Kieffer, B.L. Opioids: first lessons from knockout mice. Trends Pharmacol. Sci., 1999, 20(1), 19-26.
[http://dx.doi.org/10.1016/S0165-6147(98)01279-6] [PMID: 10101958]
[14]
Terenius, L. Stereospecific interaction between narcotic analgesics and a synaptic plasm a membrane fraction of rat cerebral cortex. Acta Pharmacol. Toxicol. (Copenh.), 1973, 32(3), 317-320.
[PMID: 4801733]
[15]
Dhawan, B.N.; Cesselin, F.; Raghubir, R.; Reisine, T.; Bradley, P.B.; Portoghese, P.S.; Hamon, M. International Union of Pharmacology. XII. Classification of opioid receptors. Pharmacol. Rev., 1996, 48(4), 567-592.
[PMID: 8981566]
[16]
Hughes, J.; Smith, T.W.; Kosterlitz, H.W.; Fothergill, L.A.; Morgan, B.A.; Morris, H.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, 1975, 258(5536), 577-580.
[http://dx.doi.org/10.1038/258577a0] [PMID: 1207728]
[17]
Pert, C.B.; Snyder, S.H. Opiate receptor: demonstration in nervous tissue. Science, 1973, 179(4077), 1011-1014.
[http://dx.doi.org/10.1126/science.179.4077.1011] [PMID: 4687585]
[18]
Simon, E.J.; Hiller, J.M.; Edelman, I. Stereospecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc. Natl. Acad. Sci. USA, 1973, 70(7), 1947-1949.
[http://dx.doi.org/10.1073/pnas.70.7.1947] [PMID: 4516196]
[19]
Blum, K.; Briggs, A.H.; DeLallo, L. Clonidine enhancement of ethanol withdrawal in mice. Subst. Alcohol Actions Misuse, 1983, 4(1), 59-63.
[PMID: 6684796]
[20]
Blum, K. Alcohol and central nervous system peptides. Subst. Alcohol Actions Misuse, 1983, 4(2-3), 73-87.
[PMID: 6316574]
[21]
Chen, Y.; Mestek, A.; Liu, J.; Hurley, J.A.; Yu, L. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol. Pharmacol., 1993, 44(1), 8-12.
[PMID: 8393525]
[22]
Evans, C.J.; Keith, D.E., Jr; Morrison, H.; Magendzo, K.; Edwards, R.H. Cloning of a delta opioid receptor by functional expression. Science, 1992, 258(5090), 1952-1955.
[http://dx.doi.org/10.1126/science.1335167] [PMID: 1335167]
[23]
Kieffer, B.L.; Befort, K.; Gaveriaux-Ruff, C.; Hirth, C.G. The delta-opioid receptor: isolation of a cDNA by expression cloning and pharmacological characterization. Proc. Natl. Acad. Sci. USA, 1992, 89(24), 12048-12052.
[http://dx.doi.org/10.1073/pnas.89.24.12048] [PMID: 1334555]
[24]
Yasuda, K.; Raynor, K.; Kong, H.; Breder, C.D.; Takeda, J.; Reisine, T.; Bell, G.I. Cloning and functional comparison of kappa and delta opioid receptors from mouse brain. Proc. Natl. Acad. Sci. USA, 1993, 90(14), 6736-6740.
[http://dx.doi.org/10.1073/pnas.90.14.6736] [PMID: 8393575]
[25]
Charbogne, P.; Kieffer, B.L.; Befort, K. 15 years of genetic approaches in vivo for addiction research: Opioid receptor and peptide gene knockout in mouse models of drug abuse. Neuropharmacology 201476 Pt B, , 204-217.
[26]
Koob, G.F.; Volkow, N.D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry, 2016, 3(8), 760-773.
[http://dx.doi.org/10.1016/S2215-0366(16)00104-8] [PMID: 27475769]
[27]
Chen, Y.; Mestek, A.; Liu, J.; Yu, L. Molecular cloning of a rat kappa opioid receptor reveals sequence similarities to the mu and delta opioid receptors. Biochem. J., 1993, 295(Pt 3), 625-628.
[http://dx.doi.org/10.1042/bj2950625] [PMID: 8240267]
[28]
Childers, S.R. Opioid receptor-coupled second messenger systems. Life Sci., 1991, 48(21), 1991-2003.
[http://dx.doi.org/10.1016/0024-3205(91)90154-4] [PMID: 1851914]
[29]
Svingos, A.L.; Chavkin, C.; Colago, E.E.; Pickel, V.M. Major coexpression of kappa-opioid receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse, 2001, 42(3), 185-192.
[http://dx.doi.org/10.1002/syn.10005] [PMID: 11746715]
[30]
Waldhoer, M.; Bartlett, S.E.; Whistler, J.L. Opioid receptors. Annu. Rev. Biochem., 2004, 73, 953-990.
[http://dx.doi.org/10.1146/annurev.biochem.73.011303.073940] [PMID: 15189164]
[31]
Williams, J.T.; Ingram, S.L.; Henderson, G.; Chavkin, C.; von Zastrow, M.; Schulz, S.; Koch, T.; Evans, C.J.; Christie, M.J. Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance. Pharmacol. Rev., 2013, 65(1), 223-254.
[http://dx.doi.org/10.1124/pr.112.005942] [PMID: 23321159]
[32]
Chieng, B.; Williams, J.T. Increased opioid inhibition of GABA release in nucleus accumbens during morphine withdrawal. J. Neurosci., 1998, 18(17), 7033-7039.
[http://dx.doi.org/10.1523/JNEUROSCI.18-17-07033.1998] [PMID: 9712672]
[33]
Shoji, Y.; Delfs, J.; Williams, J.T. Presynaptic inhibition of GABA(B)-mediated synaptic potentials in the ventral tegmental area during morphine withdrawal. J. Neurosci., 1999, 19(6), 2347-2355.
[http://dx.doi.org/10.1523/JNEUROSCI.19-06-02347.1999] [PMID: 10066284]
[34]
Capogna, M.; Gähwiler, B.H.; Thompson, S.M. Mechanism of mu-opioid receptor-mediated presynaptic inhibition in the rat hippocampus in vitro. J. Physiol., 1993, 470, 539-558.
[http://dx.doi.org/10.1113/jphysiol.1993.sp019874] [PMID: 8308742]
[35]
Al-Hasani, R.; Bruchas, M.R. Molecular mechanisms of opioid receptor-dependent signaling and behavior. Anesthesiology, 2011, 115(6), 1363-1381.
[http://dx.doi.org/10.1097/ALN.0b013e318238bba6] [PMID: 22020140]
[36]
Contet, C.; Kieffer, B.L.; Befort, K. Mu opioid receptor: a gateway to drug addiction. Curr. Opin. Neurobiol., 2004, 14(3), 370-378.
[http://dx.doi.org/10.1016/j.conb.2004.05.005] [PMID: 15194118]
[37]
Johnson, S.W.; North, R.A. Opioids excite dopamine neurons by hyperpolarization of local interneurons. J. Neurosci., 1992, 12(2), 483-488.
[http://dx.doi.org/10.1523/JNEUROSCI.12-02-00483.1992] [PMID: 1346804]
[38]
Blum, K.; Sheridan, P.J.; Wood, R.C.; Braverman, E.R.; Chen, T.J.; Cull, J.G.; Comings, D.E. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J. R. Soc. Med., 1996, 89(7), 396-400.
[http://dx.doi.org/10.1177/014107689608900711] [PMID: 8774539]
[39]
Lalumiere, R.T. Optogenetic dissection of amygdala functioning. Front. Behav. Neurosci., 2014, 8, 107.
[http://dx.doi.org/10.3389/fnbeh.2014.00107] [PMID: 24723867]
[40]
Nieh, E.H.; Kim, S.Y.; Namburi, P.; Tye, K.M. Optogenetic dissection of neural circuits underlying emotional valence and motivated behaviors. Brain Res., 2013, 1511, 73-92.
[http://dx.doi.org/10.1016/j.brainres.2012.11.001] [PMID: 23142759]
[41]
Eichenbaum, H.; Yonelinas, A.P.; Ranganath, C. The medial temporal lobe and recognition memory. Annu. Rev. Neurosci., 2007, 30, 123-152.
[http://dx.doi.org/10.1146/annurev.neuro.30.051606.094328] [PMID: 17417939]
[42]
Yager, L.M.; Garcia, A.F.; Wunsch, A.M.; Ferguson, S.M. The ins and outs of the striatum: role in drug addiction. Neuroscience, 2015, 301, 529-541.
[http://dx.doi.org/10.1016/j.neuroscience.2015.06.033] [PMID: 26116518]
[43]
Christie, M.J. Cellular neuroadaptations to chronic opioids: tolerance, withdrawal and addiction. Br. J. Pharmacol., 2008, 154(2), 384-396.
[http://dx.doi.org/10.1038/bjp.2008.100] [PMID: 18414400]
[44]
Campbell, T.G. The best of a bad bunch: the ventromedial prefrontal cortex and dorsal anterior cingulate cortex in decision-making. J. Neurosci., 2007, 27(3), 447-448.
[http://dx.doi.org/10.1523/JNEUROSCI.4967-06.2007] [PMID: 17240549]
[45]
Mucha, R.F.; Herz, A. Motivational properties of kappa and mu opioid receptor agonists studied with place and taste preference conditioning. Psychopharmacology (Berl.), 1985, 86(3), 274-280.
[http://dx.doi.org/10.1007/BF00432213] [PMID: 2994144]
[46]
Pfeiffer, A.; Brantl, V.; Herz, A.; Emrich, H.M. Psychotomimesis mediated by kappa opiate receptors. Science, 1986, 233(4765), 774-776.
[http://dx.doi.org/10.1126/science.3016896] [PMID: 3016896]
[47]
Chefer, V.I.; Shippenberg, T.S. Augmentation of morphine-induced sensitization but reduction in morphine tolerance and reward in delta-opioid receptor knockout mice. Neuropsychopharmacology, 2009, 34(4), 887-898.
[http://dx.doi.org/10.1038/npp.2008.128] [PMID: 18704097]
[48]
Le Merrer, J.; Plaza-Zabala, A.; Del Boca, C.; Matifas, A.; Maldonado, R.; Kieffer, B.L. Deletion of the δ opioid receptor gene impairs place conditioning but preserves morphine reinforcement. Biol. Psychiatry, 2011, 69(7), 700-703.
[http://dx.doi.org/10.1016/j.biopsych.2010.10.021] [PMID: 21168121]
[49]
Blum, K.; Gaskill, H.; DeLallo, L.; Briggs, A.H.; Hall, W. Methionine enkephalin as a possible neuromodulator of regional cerebral blood flow. Experientia, 1985, 41(7), 932-933.
[http://dx.doi.org/10.1007/BF01970019] [PMID: 4007131]
[50]
Jones, C.M. Heroin use and heroin use risk behaviors among nonmedical users of prescription opioid pain relievers - United States, 2002-2004 and 2008-2010. Drug Alcohol Depend., 2013, 132(1-2), 95-100.
[http://dx.doi.org/10.1016/j.drugalcdep.2013.01.007] [PMID: 23410617]
[51]
Schiller, E.; Mechanic, O. Opioid overdose.StatPearls Treasure Island; Mechanic, O.J., Ed.; StatPearls Publishing LLC: FL, 2019.
[52]
Shipton, E.A.; Shipton, E.E.; Shipton, A.J. A Review of the Opioid Epidemic: What Do We Do About It? Pain Ther., 2018, 7(1), 23-36.
[http://dx.doi.org/10.1007/s40122-018-0096-7] [PMID: 29623667]
[53]
Häuser, W.; Schug, S.; Furlan, A.D. The opioid epidemic and national guidelines for opioid therapy for chronic noncancer pain: a perspective from different continents. Pain Rep., 2017, 2(3)e599
[http://dx.doi.org/10.1097/PR9.0000000000000599] [PMID: 29392214]
[54]
van Amsterdam, J.; van den Brink, W. The Misuse of Prescription Opioids: A Threat for Europe? Curr. Drug Abuse Rev., 2015, 8(1), 3-14.
[http://dx.doi.org/10.2174/187447370801150611184218] [PMID: 26084418]
[55]
Blum, K.; Gold, M.S. Neuro-chemical activation of brain reward meso-limbic circuitry is associated with relapse prevention and drug hunger: a hypothesis. Med. Hypotheses, 2011, 76(4), 576-584.
[http://dx.doi.org/10.1016/j.mehy.2011.01.005] [PMID: 21306831]
[56]
Ikemoto, S. Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci. Biobehav. Rev., 2010, 35(2), 129-150.
[http://dx.doi.org/10.1016/j.neubiorev.2010.02.001] [PMID: 20149820]
[57]
Limbic System “Review of Clinical and Functional Neuroscience. Dartmouth Medical School, 2016.
[http://dx.doi.org/www.dartmouth.edu/~rswenson/NeuroSci/chapter_9.html (Accessed July 3, 2019).]
[58]
Rajmohan, V.; Mohandas, E. The limbic system. Indian J. Psychiatry, 2007, 49(2), 132-139.
[http://dx.doi.org/10.4103/0019-5545.33264] [PMID: 20711399]
[59]
Nestler, E.J.; Hyman, S.E.; Holtzman, D.M.; Malenka, R.C. Molecular neuropharmacology: a foundation for clinical neuroscience, 3rd ed.; McGraw-Hill Medical, New York, 2009.
[60]
Blum, K.; Thanos, P.K.; Oscar-Berman, M.; Febo, M.; Baron, D.; Badgaiyan, R.D.; Gardner, E.; Demetrovics, Z.; Fahlke, C.; Haberstick, B.C.; Dushaj, K.; Gold, M.S. Dopamine in the Brain: Hypothesizing Surfeit or Deficit Links to Reward and Addiction. J. Reward Defic. Syndr., 2015, 1(3), 95-104.
[http://dx.doi.org/10.17756/jrds.2015-016] [PMID: 27398406]
[61]
Berridge, K.C.; Kringelbach, M.L. Pleasure systems in the brain. Neuron, 2015, 86(3), 646-664.
[http://dx.doi.org/10.1016/j.neuron.2015.02.018] [PMID: 25950633]
[62]
Jacobsen, C.F. Studies of cerebral function in primates. I. The functions of the frontal association areas in monkeys. Comparative Psychology Monographs 1936, 13, 1-60.
[63]
Sher, L. The role of endogenous opioids in the placebo effect in post-traumatic stress disorder. Forsch. Komplementarmed. Klass. Naturheilkd., 2004, 11(6), 354-359.
[PMID: 15604626]
[64]
Everitt, B.J.; Belin, D.; Economidou, D.; Pelloux, Y.; Dalley, J.W.; Robbins, T.W. Review. Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2008, 363(1507), 3125-3135.
[http://dx.doi.org/10.1098/rstb.2008.0089] [PMID: 18640910]
[65]
Baik, J.H. Dopamine signaling in reward-related behaviors. Front. Neural Circuits, 2013, 7, 152.
[http://dx.doi.org/10.3389/fncir.2013.00152] [PMID: 24130517]
[66]
Blum, K.; Kozlowski, G. Ethanol and Neuromodulator Interactions: A Cascade Model of Reward.Alcohol and Behavior; Ollat, H.; Parvez, S.; Parvez, H; V.S.P., Press, Ed.; Utrecht, 1990, pp. 131-149.
[67]
Corre, J.; van Zessen, R.; Loureiro, M.; Patriarchi, T.; Tian, L.; Pascoli, V.; Lüscher, C. Dopamine neurons projecting to medial shell of the nucleus accumbens drive heroin reinforcement. eLife, 2018, 7, 7.
[http://dx.doi.org/10.7554/eLife.39945] [PMID: 30373717]
[68]
Gilpin, N.W.; Koob, G.F. Neurobiology of alcohol dependence: focus on motivational mechanisms. Alcohol Res. Health, 2008, 31(3), 185-195.
[PMID: 19881886]
[69]
Salamone, J.D.; Correa, M. The mysterious motivational functions of mesolimbic dopamine. Neuron, 2012, 76(3), 470-485.
[http://dx.doi.org/10.1016/j.neuron.2012.10.021] [PMID: 23141060]
[70]
Park, B.Y.; Wilson, G.; Berger, J.; Christman, M.; Reina, B.; Bishop, F.; Klam, W.P.; Doan, A.P. Is Internet Pornography Causing Sexual Dysfunctions? A Review with Clinical Reports. Behav. Sci. (Basel), 2016, 6(3)E17
[http://dx.doi.org/10.3390/bs6030017] [PMID: 27527226]
[71]
Yau, Y.H.; Potenza, M.N. Gambling disorder and other behavioral addictions: recognition and treatment. Harv. Rev. Psychiatry, 2015, 23(2), 134-146.
[http://dx.doi.org/10.1097/HRP.0000000000000051] [PMID: 25747926]
[72]
Bavelier, D.; Green, C.S.; Han, D.H.; Renshaw, P.F.; Merzenich, M.M.; Gentile, D.A. Brains on video games. Nat. Rev. Neurosci., 2011, 12(12), 763-768.
[http://dx.doi.org/10.1038/nrn3135] [PMID: 22095065]
[73]
Chao, J.; Nestler, E.J. Molecular neurobiology of drug addiction. Annu. Rev. Med., 2004, 55, 113-132.
[http://dx.doi.org/10.1146/annurev.med.55.091902.103730] [PMID: 14746512]
[74]
Kalivas, P.W.; Volkow, N.D. The neural basis of addiction: a pathology of motivation and choice. Am. J. Psychiatry, 2005, 162(8), 1403-1413.
[http://dx.doi.org/10.1176/appi.ajp.162.8.1403] [PMID: 16055761]
[75]
Cameron, K.; Kolanos, R.; Vekariya, R.; De Felice, L.; Glennon, R.A.; Glennon, R.A. Mephedrone and methylenedioxypyrovalerone (MDPV), major constituents of “bath salts,” produce opposite effects at the human dopamine transporter. Psychopharmacology (Berl.), 2013, 227(3), 493-499.
[http://dx.doi.org/10.1007/s00213-013-2967-2] [PMID: 23371489]
[76]
Lacey, M.G.; Mercuri, N.B.; North, R.A. Actions of cocaine on rat dopaminergic neurones in vitro. Br. J. Pharmacol., 1990, 99(4), 731-735.
[http://dx.doi.org/10.1111/j.1476-5381.1990.tb12998.x] [PMID: 2361170]
[77]
Chiang, C.N.; Hawks, R.L. Pharmacokinetics of the combination tablet of buprenorphine and naloxone. Drug Alcohol Depend., 2003, 70(2)(Suppl.), S39-S47.
[http://dx.doi.org/10.1016/S0376-8716(03)00058-9] [PMID: 12738349]
[78]
Strain, E.C.; Moody, D.E.; Stoller, K.B.; Walsh, S.L.; Bigelow, G.E. Relative bioavailability of different buprenorphine formulations under chronic dosing conditions. Drug Alcohol Depend., 2004, 74(1), 37-43.
[http://dx.doi.org/10.1016/j.drugalcdep.2003.11.008] [PMID: 15072805]
[79]
Accurso, A.J.; Rastegar, D.A. The Effect of a Payer-Mandated Decrease in Buprenorphine Dose on Aberrant Drug Tests and Treatment Retention Among Patients with Opioid Dependence. J. Subst. Abuse Treat., 2016, 61, 74-79.
[http://dx.doi.org/10.1016/j.jsat.2015.09.004] [PMID: 26639639]
[80]
Wandel, C.; Witte, J.S.; Hall, J.M.; Stein, C.M.; Wood, A.J.; Wilkinson, G.R. CYP3A activity in African American and European American men: population differences and functional effect of the CYP3A4*1B5′-promoter region polymorphism. Clin. Pharmacol. Ther., 2000, 68(1), 82-91.
[http://dx.doi.org/10.1067/mcp.2000.108506] [PMID: 10945319]
[81]
Chapman, E.; Ettienne, E.; Clarke, M.; Dunston, G. Wide Pharmacogenetic Variations in Dosing of Buprenorphine in the Treatment of Opioid Addiction in African Americans 2nd International Conference on Addiction Medicine and Reward Deficiency Syndrome, Baltimore, MD2017.
[82]
Fernández-Santander, A.; Novillo, A.; Gaibar, M.; Romero-Lorca, A.; Moral, P.; Sánchez-Cuenca, D.; Amir, N.; Chaabani, H.; Harich, N.; Esteban, M.E. Cytochrome and sulfotransferase gene variation in north African populations. Pharmacogenomics, 2016, 17(13), 1415-1423.
[http://dx.doi.org/10.2217/pgs-2016-0016] [PMID: 27471773]
[83]
Wandel, C.; Kim, R.B.; Guengerich, F.P.; Wood, A.J. Mibefradil is a P-glycoprotein substrate and a potent inhibitor of both P-glycoprotein and CYP3A in vitro. Drug Metab. Dispos., 2000, 28(8), 895-898.
[PMID: 10901697]
[84]
McCance-Katz, E.F.; Rainey, P.M.; Smith, P.; Morse, G.D.; Friedland, G.; Boyarsky, B.; Gourevitch, M.; Jatlow, P. Drug interactions between opioids and antiretroviral medications: interaction between methadone, LAAM, and delavirdine. Am. J. Addict., 2006, 15(1), 23-34.
[http://dx.doi.org/10.1080/10550490500419029] [PMID: 16449090]
[85]
Fonseca, F.; Torrens, M. Pharmacogenetics of Methadone Response. Mol. Diagn. Ther., 2018, 22(1), 57-78.
[http://dx.doi.org/10.1007/s40291-017-0311-y] [PMID: 29168075]
[86]
Blum, K.; Noble, E.P.; Sheridan, P.J.; Montgomery, A.; Ritchie, T.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H.; Cohn, J.B. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA, 1990, 263(15), 2055-2060.
[http://dx.doi.org/10.1001/jama.1990.03440150063027] [PMID: 1969501]
[87]
Grandy, D.K.; Marchionni, M.A.; Makam, H.; Stofko, R.E.; Alfano, M.; Frothingham, L.; Fischer, J.B.; Burke-Howie, K.J.; Bunzow, J.R.; Server, A.C. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc. Natl. Acad. Sci. USA, 1989, 86(24), 9762-9766.
[http://dx.doi.org/10.1073/pnas.86.24.9762] [PMID: 2532362]
[88]
Grandy, D.K.; Litt, M.; Allen, L.; Bunzow, J.R.; Marchionni, M.; Makam, H.; Reed, L.; Magenis, R.E.; Civelli, O. The human dopamine D2 receptor gene is located on chromosome 11 at q22-q23 and identifies a TaqI RFLP. Am. J. Hum. Genet., 1989, 45(5), 778-785.
[PMID: 2573278]
[89]
Blum, K.; Noble, E.P.; Sheridan, P.J.; Montgomery, A.; Ritchie, T.; Ozkaragoz, T.; Fitch, R.J.; Wood, R.; Finley, O.; Sadlack, F. Genetic predisposition in alcoholism: association of the D2 dopamine receptor TaqI B1 RFLP with severe alcoholics. Alcohol, 1993, 10(1), 59-67.
[http://dx.doi.org/10.1016/0741-8329(93)90054-R] [PMID: 8095394]
[90]
Noble, E.P.; Blum, K. Alcoholism and the D2 dopamine receptor gene. JAMA, 1993, 270(13), 1547-1548.
[http://dx.doi.org/10.1001/jama.270.13.1547] [PMID: 8371464]
[91]
Blum, K.; Badgaiyan, R.D.; Dunston, G.M.; Baron, D.; Modestino, E.J.; McLaughlin, T.; Steinberg, B.; Gold, M.S.; Gondré-Lewis, M.C. The DRD2 Taq1A A1 Allele May Magnify the Risk of Alzheimer’s in Aging African-Americans. Mol. Neurobiol., 2018, 55(7), 5526-5536.
[http://dx.doi.org/10.1007/s12035-017-0758-1] [PMID: 28965318]
[92]
Meador-Woodruff, J.H.; Mansour, A.; Civelli, O.; Watson, S.J. Distribution of D2 dopamine receptor mRNA in the primate brain. Prog. Neuropsychopharmacol. Biol. Psychiatry, 1991, 15(6), 885-893.
[http://dx.doi.org/10.1016/0278-5846(91)90016-T] [PMID: 1837159]
[93]
Lee, S.A.; Suh, Y.; Lee, S.; Jeong, J.; Kim, S.J.; Kim, S.J.; Park, S.K. Functional expression of dopamine D2 receptor is regulated by tetraspanin 7-mediated postendocytic trafficking. FASEB J., 2017, 31(6), 2301-2313.
[http://dx.doi.org/10.1096/fj.201600755RR] [PMID: 28223337]
[94]
Clarke, T.K.; Weiss, A.R.; Ferarro, T.N.; Kampman, K.M.; Dackis, C.A.; Pettinati, H.M.; O’brien, C.P.; Oslin, D.W.; Lohoff, F.W.; Berrettini, W.H. The dopamine receptor D2 (DRD2) SNP rs1076560 is associated with opioid addiction. Ann. Hum. Genet., 2014, 78(1), 33-39.
[http://dx.doi.org/10.1111/ahg.12046] [PMID: 24359476]
[95]
Hou, Q.F.; Li, S.B. Potential association of DRD2 and DAT1 genetic variation with heroin dependence. Neurosci. Lett., 2009, 464(2), 127-130.
[http://dx.doi.org/10.1016/j.neulet.2009.08.004] [PMID: 19664686]
[96]
Vereczkei, A.; Demetrovics, Z.; Szekely, A.; Sarkozy, P.; Antal, P.; Szilagyi, A.; Sasvari-Szekely, M.; Barta, C. Multivariate analysis of dopaminergic gene variants as risk factors of heroin dependence. PLoS One, 2013, 8(6)e66592
[http://dx.doi.org/10.1371/journal.pone.0066592] [PMID: 23840506]
[97]
Persico, A.M.; Bird, G.; Gabbay, F.H.; Uhl, G.R. D2 dopamine receptor gene TaqI A1 and B1 restriction fragment length polymorphisms: enhanced frequencies in psychostimulant-preferring polysubstance abusers. Biol. Psychiatry, 1996, 40(8), 776-784.
[http://dx.doi.org/10.1016/0006-3223(95)00483-1] [PMID: 8894071]
[98]
Lawford, B.R.; Young, R.M.; Noble, E.P.; Sargent, J.; Rowell, J.; Shadforth, S.; Zhang, X.; Ritchie, T. The D(2) dopamine receptor A(1) allele and opioid dependence: association with heroin use and response to methadone treatment. Am. J. Med. Genet., 2000, 96(5), 592-598.
[http://dx.doi.org/10.1002/1096-8628(20001009)96:5<592:AID-AJMG3>3.0.CO;2-Y] [PMID: 11054765]
[99]
Levran, O.; Peles, E.; Randesi, M.; Correa da Rosa, J.; Ott, J.; Rotrosen, J.; Adelson, M.; Kreek, M.J. Dopaminergic pathway polymorphisms and heroin addiction: further support for association of CSNK1E variants. Pharmacogenomics, 2014, 15(16), 2001-2009.
[http://dx.doi.org/10.2217/pgs.14.145] [PMID: 25521358]
[100]
Kuo, S.C.; Yeh, Y.W.; Chen, C.Y.; Huang, C.C.; Chang, H.A.; Yen, C.H.; Ho, P.S.; Liang, C.S.; Chou, H.W.; Lu, R.B.; Huang, S.Y. DRD3 variation associates with early-onset heroin dependence, but not specific personality traits. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2014, 51, 1-8.
[http://dx.doi.org/10.1016/j.pnpbp.2013.12.018] [PMID: 24398431]
[101]
Van Tol, H.H.; Bunzow, J.R.; Guan, H.C.; Sunahara, R.K.; Seeman, P.; Niznik, H.B.; Civelli, O. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature, 1991, 350(6319), 610-614.
[http://dx.doi.org/10.1038/350610a0] [PMID: 1840645]
[102]
Szilagyi, A.; Boór, K.; Székely, A.; Gaszner, P.; Kalász, H.; Sasvári-Székely, M.; Barta, C. Combined effect of promoter polymorphisms in the dopamine D4 receptor and the serotonin transporter genes in heroin dependence. Neuropsychopharmacol. Hung., 2005, 7(1), 28-33.
[PMID: 16167465]
[103]
Ho, A.M.; Tang, N.L.; Cheung, B.K.; Stadlin, A. Dopamine receptor D4 gene -521C/T polymorphism is associated with opioid dependence through cold-pain responses. Ann. N. Y. Acad. Sci., 2008, 1139, 20-26.
[http://dx.doi.org/10.1196/annals.1432.054] [PMID: 18991844]
[104]
Lai, J.H.; Zhu, Y.S.; Huo, Z.H.; Sun, R.F.; Yu, B.; Wang, Y.P.; Chai, Z.Q.; Li, S.B. Association study of polymorphisms in the promoter region of DRD4 with schizophrenia, depression, and heroin addiction. Brain Res., 2010, 1359, 227-232.
[http://dx.doi.org/10.1016/j.brainres.2010.08.064] [PMID: 20801104]
[105]
Hutchison, K.E.; McGeary, J.; Smolen, A.; Bryan, A.; Swift, R.M. The DRD4 VNTR polymorphism moderates craving after alcohol consumption. Health Psychol., 2002, 21(2), 139-146.
[http://dx.doi.org/10.1037/0278-6133.21.2.139] [PMID: 11950104]
[106]
Van Tol, H.H.; Wu, C.M.; Guan, H.C.; Ohara, K.; Bunzow, J.R.; Civelli, O.; Kennedy, J.; Seeman, P.; Niznik, H.B.; Jovanovic, V. Multiple dopamine D4 receptor variants in the human population. Nature, 1992, 358(6382), 149-152.
[http://dx.doi.org/10.1038/358149a0] [PMID: 1319557]
[107]
Larsen, H.; van der Zwaluw, C.S.; Overbeek, G.; Granic, I.; Franke, B.; Engels, R.C. A variable-number-of-tandem-repeats polymorphism in the dopamine D4 receptor gene affects social adaptation of alcohol use: investigation of a gene-environment interaction. Psychol. Sci., 2010, 21(8), 1064-1068.
[http://dx.doi.org/10.1177/0956797610376654] [PMID: 20610847]
[108]
Creswell, K.G.; Sayette, M.A.; Manuck, S.B.; Ferrell, R.E.; Hill, S.Y.; Dimoff, J.D. DRD4 polymorphism moderates the effect of alcohol consumption on social bonding. PLoS One, 2012, 7(2)e28914
[http://dx.doi.org/10.1371/journal.pone.0028914] [PMID: 22347363]
[109]
Shao, C.; Li, Y.; Jiang, K.; Zhang, D.; Xu, Y.; Lin, L.; Wang, Q.; Zhao, M.; Jin, L. Dopamine D4 receptor polymorphism modulates cue-elicited heroin craving in Chinese. Psychopharmacology (Berl.), 2006, 186(2), 185-190.
[http://dx.doi.org/10.1007/s00213-006-0375-6] [PMID: 16703401]
[110]
Franke, P.; Nöthen, M.M.; Wang, T.; Knapp, M.; Lichtermann, D.; Neidt, H.; Sander, T.; Propping, P.; Maier, W. DRD4 exon III VNTR polymorphism-susceptibility factor for heroin dependence? Results of a case-control and a family-based association approach. Mol. Psychiatry, 2000, 5(1), 101-104.
[http://dx.doi.org/10.1038/sj.mp.4000583] [PMID: 10673776]
[111]
Li, T.; Zhu, Z.H.; Liu, X.; Hu, X.; Zhao, J.; Sham, P.C.; Collier, D.A. Association analysis of polymorphisms in the DRD4 gene and heroin abuse in Chinese subjects. Am. J. Med. Genet., 2000, 96(5), 616-621.
[http://dx.doi.org/10.1002/1096-8628(20001009)96:5<616:AID-AJMG6>3.0.CO;2-7] [PMID: 11054768]
[112]
Kotler, M.; Cohen, H.; Segman, R.; Gritsenko, I.; Nemanov, L.; Lerer, B.; Kramer, I.; Zer-Zion, M.; Kletz, I.; Ebstein, R.P. Excess dopamine D4 receptor (D4DR) exon III seven repeat allele in opioid-dependent subjects. Mol. Psychiatry, 1997, 2(3), 251-254.
[http://dx.doi.org/10.1038/sj.mp.4000248] [PMID: 9152990]
[113]
Li, T.; Xu, K.; Deng, H.; Cai, G.; Liu, J.; Liu, X.; Wang, R.; Xiang, X.; Zhao, J.; Murray, R.M.; Sham, P.C.; Collier, D.A. Association analysis of the dopamine D4 gene exon III VNTR and heroin abuse in Chinese subjects. Mol. Psychiatry, 1997, 2(5), 413-416.
[http://dx.doi.org/10.1038/sj.mp.4000310] [PMID: 9322237]
[114]
Chien, C.C.; Lin, C.H.; Chang, Y.Y.; Lung, F.W. Association of VNTR polymorphisms in the MAOA promoter and DRD4 exon 3 with heroin dependence in male Chinese addicts. World J. Biol. Psychiatry, 2010, 11(2 Pt 2), 409-416.
[http://dx.doi.org/10.3109/15622970903304459] [PMID: 20218801]
[115]
Bond, C.; LaForge, K.S.; Tian, M.; Melia, D.; Zhang, S.; Borg, L.; Gong, J.; Schluger, J.; Strong, J.A.; Leal, S.M.; Tischfield, J.A.; Kreek, M.J.; Yu, L. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9608-9613.
[http://dx.doi.org/10.1073/pnas.95.16.9608] [PMID: 9689128]
[116]
Chen, T.J.; Blum, K.; Mathews, D.; Fisher, L.; Schnautz, N.; Braverman, E.R.; Schoolfield, J.; Downs, B.W.; Comings, D.E. Are dopaminergic genes involved in a predisposition to pathological aggression? Hypothesizing the importance of “super normal controls” in psychiatricgenetic research of complex behavioral disorders. Med. Hypotheses, 2005, 65(4), 703-707.
[http://dx.doi.org/10.1016/j.mehy.2005.04.037] [PMID: 15964153]
[117]
Blum, K.; Gondré-Lewis, M.C.; Baron, D.; Thanos, P.K.; Braverman, E.R.; Neary, J.; Elman, I.; Badgaiyan, R.D. Introducing Precision Addiction Management of Reward Deficiency Syndrome, the Construct That Underpins All Addictive Behaviors. Front. Psychiatry, 2018, 9, 548.
[http://dx.doi.org/10.3389/fpsyt.2018.00548] [PMID: 30542299]
[118]
Hastie, B.A.; Riley, J.L., III; Kaplan, L.; Herrera, D.G.; Campbell, C.M.; Virtusio, K.; Mogil, J.S.; Wallace, M.R.; Fillingim, R.B. Ethnicity interacts with the OPRM1 gene in experimental pain sensitivity. Pain, 2012, 153(8), 1610-1619.
[http://dx.doi.org/10.1016/j.pain.2012.03.022] [PMID: 22717102]
[119]
Luo, X.; Kranzler, H.R.; Zhao, H.; Gelernter, J. Haplotypes at the OPRM1 locus are associated with susceptibility to substance dependence in European-Americans. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2003, 120B(1), 97-108.
[http://dx.doi.org/10.1002/ajmg.b.20034] [PMID: 12815747]
[120]
Crowley, J.J.; Oslin, D.W.; Patkar, A.A.; Gottheil, E.; DeMaria, P.A., Jr; O’Brien, C.P.; Berrettini, W.H.; Grice, D.E. A genetic association study of the mu opioid receptor and severe opioid dependence. Psychiatr. Genet., 2003, 13(3), 169-173.
[http://dx.doi.org/10.1097/00041444-200309000-00006] [PMID: 12960749]
[121]
Clarke, T.K.; Crist, R.C.; Kampman, K.M.; Dackis, C.A.; Pettinati, H.M.; O’Brien, C.P.; Oslin, D.W.; Ferraro, T.N.; Lohoff, F.W.; Berrettini, W.H. Low frequency genetic variants in the μ-opioid receptor (OPRM1) affect risk for addiction to heroin and cocaine. Neurosci. Lett., 2013, 542, 71-75.
[http://dx.doi.org/10.1016/j.neulet.2013.02.018] [PMID: 23454283]
[122]
Crist, R.C.; Ambrose-Lanci, L.M.; Vaswani, M.; Clarke, T.K.; Zeng, A.; Yuan, C.; Ferraro, T.N.; Hakonarson, H.; Kampman, K.M.; Dackis, C.A.; Pettinati, H.M.; O’Brien, C.P.; Oslin, D.W.; Doyle, G.A.; Lohoff, F.W.; Berrettini, W.H. Case-control association analysis of polymorphisms in the δ-opioid receptor, OPRD1, with cocaine and opioid addicted populations. Drug Alcohol Depend., 2013, 127(1-3), 122-128.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.06.023] [PMID: 22795689]
[123]
Szeto, C.Y.; Tang, N.L.; Lee, D.T.; Stadlin, A. Association between mu opioid receptor gene polymorphisms and Chinese heroin addicts. Neuroreport, 2001, 12(6), 1103-1106.
[http://dx.doi.org/10.1097/00001756-200105080-00011] [PMID: 11338173]
[124]
Shi, J.; Hui, L.; Xu, Y.; Wang, F.; Huang, W.; Hu, G. Sequence variations in the mu-opioid receptor gene (OPRM1) associated with human addiction to heroin. Hum. Mutat., 2002, 19(4), 459-460.
[http://dx.doi.org/10.1002/humu.9026] [PMID: 11933204]
[125]
Wachman, E.M.; Hayes, M.J.; Brown, M.S.; Paul, J.; Harvey-Wilkes, K.; Terrin, N.; Huggins, G.S.; Aranda, J.V.; Davis, J.M. Association of OPRM1 and COMT single-nucleotide polymorphisms with hospital length of stay and treatment of neonatal abstinence syndrome. JAMA, 2013, 309(17), 1821-1827.
[http://dx.doi.org/10.1001/jama.2013.3411] [PMID: 23632726]
[126]
Crist, R.C.; Doyle, G.A.; Nelson, E.C.; Degenhardt, L.; Martin, N.G.; Montgomery, G.W.; Saxon, A.J.; Ling, W.; Berrettini, W.H. A polymorphism in the OPRM1 3′-untranslated region is associated with methadone efficacy in treating opioid dependence. Pharmacogenomics J., 2018, 18(1), 173-179.
[http://dx.doi.org/10.1038/tpj.2016.89] [PMID: 27958381]
[127]
González, D.; Cañadas, M.; Aguilera, M.; Reyes, J.A.; Calleja, M.Á.; Plaza, A. OPRM1 gene polymorphisms in opioid addiction. 2013.
[128]
Haerian, B.S.; Haerian, M.S. OPRM1 rs1799971 polymorphism and opioid dependence: evidence from a meta-analysis. Pharmacogenomics, 2013, 14(7), 813-824.
[http://dx.doi.org/10.2217/pgs.13.57] [PMID: 23651028]
[129]
Zhang, H.; Kranzler, H.R.; Yang, B.Z.; Luo, X.; Gelernter, J. The OPRD1 and OPRK1 loci in alcohol or drug dependence: OPRD1 variation modulates substance dependence risk. Mol. Psychiatry, 2008, 13(5), 531-543.
[http://dx.doi.org/10.1038/sj.mp.4002035] [PMID: 17622222]
[130]
Levran, O.; Londono, D.; O’Hara, K.; Nielsen, D.A.; Peles, E.; Rotrosen, J.; Casadonte, P.; Linzy, S.; Randesi, M.; Ott, J.; Adelson, M.; Kreek, M.J. Genetic susceptibility to heroin addiction: a candidate gene association study. Genes Brain Behav., 2008, 7(7), 720-729.
[http://dx.doi.org/10.1111/j.1601-183X.2008.00410.x] [PMID: 18518925]
[131]
Nelson, E.C.; Lynskey, M.T.; Heath, A.C.; Wray, N.; Agrawal, A.; Shand, F.L.; Henders, A.K.; Wallace, L.; Todorov, A.A.; Schrage, A.J.; Madden, P.A.; Degenhardt, L.; Martin, N.G.; Montgomery, G.W. Association of OPRD1 polymorphisms with heroin dependence in a large case-control series. Addict. Biol., 2014, 19(1), 111-121.
[http://dx.doi.org/10.1111/j.1369-1600.2012.00445.x] [PMID: 22500942]
[132]
Levran, O.; Londono, D.; O’Hara, K.; Randesi, M.; Rotrosen, J.; Casadonte, P.; Linzy, S.; Ott, J.; Adelson, M.; Kreek, M.J. Heroin addiction in African Americans: a hypothesis-driven association study. Genes Brain Behav., 2009, 8(5), 531-540.
[http://dx.doi.org/10.1111/j.1601-183X.2009.00501.x] [PMID: 19500151]
[133]
Sharafshah, A.; Fazel, H.; Albonaim, A.; Omarmeli, V.; Rezaei, S.; Mirzajani, E.; Ajamian, F.; Keshavarz, P. Association of OPRD1 Gene Variants with Opioid Dependence in Addicted Male Individuals Undergoing Methadone Treatment in the North of Iran. J. Psychoactive Drugs, 2017, 49(3), 242-251.
[http://dx.doi.org/10.1080/02791072.2017.1290303] [PMID: 28632076]
[134]
Beer, B.; Erb, R.; Pavlic, M.; Ulmer, H.; Giacomuzzi, S.; Riemer, Y.; Oberacher, H. Association of polymorphisms in pharmacogenetic candidate genes (OPRD1, GAL, ABCB1, OPRM1) with opioid dependence in European population: a case-control study. PLoS One, 2013, 8(9)e75359
[http://dx.doi.org/10.1371/journal.pone.0075359] [PMID: 24086514]
[135]
Yuferov, V.; Fussell, D.; LaForge, K.S.; Nielsen, D.A.; Gordon, D.; Ho, A.; Leal, S.M.; Ott, J.; Kreek, M.J. Redefinition of the human kappa opioid receptor gene (OPRK1) structure and association of haplotypes with opiate addiction. Pharmacogenetics, 2004, 14(12), 793-804.
[http://dx.doi.org/10.1097/00008571-200412000-00002] [PMID: 15608558]
[136]
Jones, J.D.; Luba, R.R.; Vogelman, J.L.; Comer, S.D. Searching for evidence of genetic mediation of opioid withdrawal by opioid receptor gene polymorphisms. Am. J. Addict., 2016, 25(1), 41-48.
[http://dx.doi.org/10.1111/ajad.12316] [PMID: 26692286]
[137]
Nagaya, D.; Zahari, Z.; Saleem, M.; Yahaya, B.H.; Tan, S.C.; Yusoff, N.M. An analysis of genetic association in opioid dependence susceptibility. J. Clin. Pharm. Ther., 2018, 43(1), 80-86.
[http://dx.doi.org/10.1111/jcpt.12585] [PMID: 28656735]
[138]
Albonaim, A.; Fazel, H.; Sharafshah, A.; Omarmeli, V.; Rezaei, S.; Ajamian, F.; Keshavarz, P. Association of OPRK1 gene polymorphisms with opioid dependence in addicted men undergoing methadone treatment in an Iranian population. J. Addict. Dis., 2017, 36(4), 227-235.
[http://dx.doi.org/10.1080/10550887.2017.1361724] [PMID: 28786760]
[139]
Gerra, G.; Somaini, L.; Leonardi, C.; Cortese, E.; Maremmani, I.; Manfredini, M.; Donnini, C. Association between gene variants and response to buprenorphine maintenance treatment. Psychiatry Res., 2014, 215(1), 202-207.
[http://dx.doi.org/10.1016/j.psychres.2013.11.001] [PMID: 24274990]
[140]
Kumar, D.; Chakraborty, J.; Das, S. Epistatic effects between variants of kappa-opioid receptor gene and A118G of mu-opioid receptor gene increase susceptibility to addiction in Indian population. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 36(2), 225-230.
[http://dx.doi.org/10.1016/j.pnpbp.2011.10.018] [PMID: 22138325]
[141]
Poirier, K.; Viot, G.; Lombardi, L.; Jauny, C.; Billuart, P.; Bienvenu, T. Loss of Function of KCNC1 is associated with intellectual disability without seizures. Eur. J. Hum. Genet., 2017, 25(5), 560-564.
[http://dx.doi.org/10.1038/ejhg.2017.3] [PMID: 28145425]
[142]
Deutsch, C.; Chen, L.Q. Heterologous expression of specific K+ channels in T lymphocytes: functional consequences for volume regulation. Proc. Natl. Acad. Sci. USA, 1993, 90(21), 10036-10040.
[http://dx.doi.org/10.1073/pnas.90.21.10036] [PMID: 8234253]
[143]
Tiwari-Woodruff, S.; Beltran-Parrazal, L.; Charles, A.; Keck, T.; Vu, T.; Bronstein, J. K+ channel KV3.1 associates with OSP/claudin-11 and regulates oligodendrocyte development. Am. J. Physiol. Cell Physiol., 2006, 291(4), C687-C698.
[http://dx.doi.org/10.1152/ajpcell.00510.2005] [PMID: 16624990]
[144]
Schaarschmidt, G.; Wegner, F.; Schwarz, S.C.; Schmidt, H.; Schwarz, J. Characterization of voltage-gated potassium channels in human neural progenitor cells. PLoS One, 2009, 4(7)e6168
[http://dx.doi.org/10.1371/journal.pone.0006168] [PMID: 19584922]
[145]
Nascimento, F.A.; Andrade, D.M. Myoclonus epilepsy and ataxia due to potassium channel mutation (MEAK) is caused by heterozygous KCNC1 mutations. Epileptic Disord., 2016, 18(S2), 135-138.
[http://dx.doi.org/10.1684/epd.2016.0859] [PMID: 27629860]
[146]
Gelernter, J.; Kranzler, H.R.; Sherva, R.; Koesterer, R.; Almasy, L.; Zhao, H.; Farrer, L.A. Genome-wide association study of opioid dependence: multiple associations mapped to calcium and potassium pathways. Biol. Psychiatry, 2014, 76(1), 66-74.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.034] [PMID: 24143882]
[147]
Jones, K.R.; Reichardt, L.F. Molecular cloning of a human gene that is a member of the nerve growth factor family. Proc. Natl. Acad. Sci. USA, 1990, 87(20), 8060-8064.
[http://dx.doi.org/10.1073/pnas.87.20.8060] [PMID: 2236018]
[148]
Maisonpierre, P.C.; Le Beau, M.M.; Espinosa, R., III; Ip, N.Y.; Belluscio, L.; de la Monte, S.M.; Squinto, S.; Furth, M.E.; Yancopoulos, G.D. Human and rat brain-derived neurotrophic factor and neurotrophin-3: gene structures, distributions, and chromosomal localizations. Genomics, 1991, 10(3), 558-568.
[http://dx.doi.org/10.1016/0888-7543(91)90436-I] [PMID: 1889806]
[149]
Rutherford, L.C.; Nelson, S.B.; Turrigiano, G.G. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron, 1998, 21(3), 521-530.
[http://dx.doi.org/10.1016/S0896-6273(00)80563-2] [PMID: 9768839]
[150]
McAllister, A.K.; Katz, L.C.; Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci., 1999, 22, 295-318.
[http://dx.doi.org/10.1146/annurev.neuro.22.1.295] [PMID: 10202541]
[151]
Heberlein, A.; Dürsteler-MacFarland, K.M.; Lenz, B.; Frieling, H.; Grösch, M.; Bönsch, D.; Kornhuber, J.; Wiesbeck, G.A.; Bleich, S.; Hillemacher, T. Serum levels of BDNF are associated with craving in opiate-dependent patients. J. Psychopharmacol. (Oxford), 2011, 25(11), 1480-1484.
[http://dx.doi.org/10.1177/0269881111411332] [PMID: 21890593]
[152]
Jin, T.; Zhang, H.; Yang, Q.; Li, L.; Ouyang, Y.; Yang, M.; Wang, F.; Wang, Z.; Zhang, J.; Yuan, D. The relationship between polymorphisms of BDNFOS and BDNF genes and heroin addiction in the Han Chinese population. J. Gene Med., 2016, 18(10), 288-293.
[http://dx.doi.org/10.1002/jgm.2927] [PMID: 27647760]
[153]
Jia, W.; Shi, J.G.; Wu, B.; Ao, L.; Zhang, R.; Zhu, Y.S. Polymorphisms of brain-derived neurotrophic factor associated with heroin dependence. Neurosci. Lett., 2011, 495(3), 221-224.
[http://dx.doi.org/10.1016/j.neulet.2011.03.072] [PMID: 21458533]
[154]
Iamjan, S.A.; Thanoi, S.; Watiktinkorn, P.; Nudmamud-Thanoi, S.; Reynolds, G.P. BDNF (Val66Met) genetic polymorphism is associated with vulnerability for methamphetamine dependence. Pharmacogenomics, 2015, 16(14), 1541-1545.
[http://dx.doi.org/10.2217/pgs.15.96] [PMID: 26401760]
[155]
Su, H.; Tao, J.; Zhang, J.; Xie, Y.; Han, B.; Lu, Y.; Sun, H.; Wei, Y.; Wang, Y.; Zhang, Y.; Zou, S.; Wu, W.; Zhang, J.; Xu, K.; Zhang, X.; He, J. The analysis of BDNF gene polymorphism haplotypes and impulsivity in methamphetamine abusers. Compr. Psychiatry, 2015, 59, 62-67.
[http://dx.doi.org/10.1016/j.comppsych.2015.02.017] [PMID: 25764907]
[156]
de Cid, R.; Fonseca, F.; Gratacòs, M.; Gutierrez, F.; Martín-Santos, R.; Estivill, X.; Torrens, M. BDNF variability in opioid addicts and response to methadone treatment: preliminary findings. Genes Brain Behav., 2008, 7(5), 515-522.
[http://dx.doi.org/10.1111/j.1601-183X.2007.00386.x] [PMID: 18182069]
[157]
Li, C.Y.; Liu, Q.R.; Zhang, P.W.; Li, X.M.; Wei, L.; Uhl, G.R. OKCAM: an ontology-based, human-centered knowledgebase for cell adhesion molecules. Nucleic Acids Res., 2009, 37(Database issue), D251-D260.
[http://dx.doi.org/10.1093/nar/gkn568] [PMID: 18790807]
[158]
Aoto, J.; Martinelli, D.C.; Malenka, R.C.; Tabuchi, K.; Südhof, T.C. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell, 2013, 154(1), 75-88.
[http://dx.doi.org/10.1016/j.cell.2013.05.060] [PMID: 23827676]
[159]
Panagopoulos, V.N.; Trull, T.J.; Glowinski, A.L.; Lynskey, M.T.; Heath, A.C.; Agrawal, A.; Henders, A.K.; Wallace, L.; Todorov, A.A.; Madden, P.A.; Moore, E.; Degenhardt, L.; Martin, N.G.; Montgomery, G.W.; Nelson, E.C. Examining the association of NRXN3 SNPs with borderline personality disorder phenotypes in heroin dependent cases and socio-economically disadvantaged controls. Drug Alcohol Depend., 2013, 128(3), 187-193.
[http://dx.doi.org/10.1016/j.drugalcdep.2012.11.011] [PMID: 23245376]
[160]
Lachman, H.M.; Fann, C.S.; Bartzis, M.; Evgrafov, O.V.; Rosenthal, R.N.; Nunes, E.V.; Miner, C.; Santana, M.; Gaffney, J.; Riddick, A.; Hsu, C.L.; Knowles, J.A. Genomewide suggestive linkage of opioid dependence to chromosome 14q. Hum. Mol. Genet., 2007, 16(11), 1327-1334.
[http://dx.doi.org/10.1093/hmg/ddm081] [PMID: 17409192]
[161]
Blum, K.; Oscar-Berman, M.; Demetrovics, Z.; Barh, D.; Gold, M.S. Genetic Addiction Risk Score (GARS): molecular neurogenetic evidence for predisposition to Reward Deficiency Syndrome (RDS). Mol. Neurobiol., 2014, 50(3), 765-796.
[http://dx.doi.org/10.1007/s12035-014-8726-5] [PMID: 24878765]
[162]
Henker, R.A.; Lewis, A.; Dai, F.; Lariviere, W.R.; Meng, L.; Gruen, G.S.; Sereika, S.M.; Pape, H.; Tarkin, I.S.; Gowda, I.; Conley, Y.P. The associations between OPRM 1 and COMT genotypes and postoperative pain, opioid use, and opioid-induced sedation. Biol. Res. Nurs., 2013, 15(3), 309-317.
[http://dx.doi.org/10.1177/1099800411436171] [PMID: 22718527]
[163]
Li, T.; Du, J.; Yu, S.; Jiang, H.; Fu, Y.; Wang, D.; Sun, H.; Chen, H.; Zhao, M. Pathways to age of onset of heroin use: a structural model approach exploring the relationship of the COMT gene, impulsivity and childhood trauma. PLoS One, 2012, 7(11)e48735
[http://dx.doi.org/10.1371/journal.pone.0048735] [PMID: 23155402]
[164]
Rakvåg, T.T.; Klepstad, P.; Baar, C.; Kvam, T.M.; Dale, O.; Kaasa, S.; Krokan, H.E.; Skorpen, F. The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain, 2005, 116(1-2), 73-78.
[http://dx.doi.org/10.1016/j.pain.2005.03.032] [PMID: 15927391]
[165]
Wang, J.Y.; Fan, Q.Y.; He, J.H.; Zhu, S.G.; Huang, C.P.; Zhang, X.; Zhu, J.H. SLC6A4 Repeat and Single-Nucleotide Polymorphisms Are Associated With Depression and Rest Tremor in Parkinson’s Disease: An Exploratory Study. Front. Neurol., 2019, 10, 333.
[http://dx.doi.org/10.3389/fneur.2019.00333] [PMID: 31024427]
[166]
Saiz, P.A.; Garcia-Portilla, M.P.; Florez, G.; Arango, C.; Corcoran, P.; Morales, B.; Bascaran, M.T.; Alvarez, C.; San Narciso, G.; Carreño, E.; Alvarez, V.; Coto, E.; Bobes, J. Differential role of serotonergic polymorphisms in alcohol and heroin dependence. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2009, 33(4), 695-700.
[http://dx.doi.org/10.1016/j.pnpbp.2009.03.016] [PMID: 19328219]
[167]
Gerra, G.; Garofano, L.; Santoro, G.; Bosari, S.; Pellegrini, C.; Zaimovic, A.; Moi, G.; Bussandri, M.; Moi, A.; Brambilla, F.; Donnini, C. Association between low-activity serotonin transporter genotype and heroin dependence: behavioral and personality correlates. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2004, 126B(1), 37-42.
[http://dx.doi.org/10.1002/ajmg.b.20111] [PMID: 15048645]
[168]
Blum, K.; Chen, A.L.C.; Thanos, P.K.; Febo, M.; Demetrovics, Z.; Dushaj, K.; Kovoor, A.; Baron, D.; Smith, D.E.; Roy, A.K., III; Fried, L.; Chen, T.J.H.; Chapman, E., Sr; Modestino, E.J.; Steinberg, B.; Badgaiyan, R.D. Genetic addiction risk score (GARS) ™, a predictor of vulnerability to opioid dependence. Front. Biosci. (Elite Ed.), 2018, 10, 175-196.
[http://dx.doi.org/10.2741/e816] [PMID: 28930612]
[169]
Rajman, I.; Knapp, L.; Morgan, T.; Masimirembwa, C. African Genetic Diversity: Implications for Cytochrome P450-mediated Drug Metabolism and Drug Development. EBioMedicine, 2017, 17, 67-74.
[http://dx.doi.org/10.1016/j.ebiom.2017.02.017] [PMID: 28237373]
[170]
Walker, J.; Winhusen, T.; Storkson, J.M.; Lewis, D.; Pariza, M.W.; Somoza, E.; Somoza, V. Total antioxidant capacity is significantly lower in cocaine-dependent and methamphetamine-dependent patients relative to normal controls: results from a preliminary study. Hum. Psychopharmacol., 2014, 29(6), 537-543.
[http://dx.doi.org/10.1002/hup.2430] [PMID: 25087849]
[171]
Kong, H.; Jiang, C.Y.; Hu, L.; Teng, P.; Zhang, Y.; Pan, X.X.; Sun, X.D.; Liu, W.T. Morphine induces dysfunction of PINK1/Parkin-mediated mitophagy in spinal cord neurons implying involvement in antinociceptive tolerance. J. Mol. Cell Biol., 2019, 11(12), 1056-1068.
[http://dx.doi.org/10.1093/jmcb/mjz002] [PMID: 30698724]
[172]
Sharma, H.S.; Sjöquist, P.O.; Ali, S.F. Drugs of abuse-induced hyperthermia, blood-brain barrier dysfunction and neurotoxicity: neuroprotective effects of a new antioxidant compound H-290/51. Curr. Pharm. Des., 2007, 13(18), 1903-1923.
[http://dx.doi.org/10.2174/138161207780858375] [PMID: 17584116]
[173]
Abdel-Zaher, A.O.; Mostafa, M.G.; Farghaly, H.S.; Hamdy, M.M.; Abdel-Hady, R.H. Role of oxidative stress and inducible nitric oxide synthase in morphine-induced tolerance and dependence in mice. Effect of alpha-lipoic acid. Behav. Brain Res., 2013, 247, 17-26.
[http://dx.doi.org/10.1016/j.bbr.2013.02.034] [PMID: 23470902]
[174]
Feng, Y.M.; Jia, Y.F.; Su, L.Y.; Wang, D.; Lv, L.; Xu, L.; Yao, Y.G. Decreased mitochondrial DNA copy number in the hippocampus and peripheral blood during opiate addiction is mediated by autophagy and can be salvaged by melatonin. Autophagy, 2013, 9(9), 1395-1406.
[http://dx.doi.org/10.4161/auto.25468] [PMID: 23800874]
[175]
Rezaei, M.; Saadat, M. Association Between GSTP1 Ile105Val Genetic Polymorphism and Dependency to Heroin and Opium. Biochem. Genet., 2019, 57(2), 214-221.
[http://dx.doi.org/10.1007/s10528-018-9885-2] [PMID: 30121884]
[176]
Boroumand, F.; Mahmoudinasab, H.; Saadat, M. Association of the SOD2 (rs2758339 and rs5746136) polymorphisms with the risk of heroin dependency and the SOD2 expression levels. Gene, 2018, 649, 27-31.
[http://dx.doi.org/10.1016/j.gene.2018.01.074] [PMID: 29459008]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 7
Year: 2020
Published on: 28 July, 2020
Page: [578 - 595]
Pages: 18
DOI: 10.2174/1570159X17666191118125702
Price: $65

Article Metrics

PDF: 25
HTML: 3
EPUB: 1