Facile Preparation of Activated Carbon/Zinc Oxide Nanocomposite for Supercapacitor Application

Author(s): Nurul Infaza Talalah Ramli*, Hartini Ahmad Rafaie, Muhd Firdaus Kasim, Hanifa Binti Ibno

Journal Name: Recent Innovations in Chemical Engineering
Formerly: Recent Patents on Chemical Engineering

Volume 13 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Objective: An efficient and facile preparation route has been developed to prepare activated carbon (AC)/zinc oxide (ZnO) nanocomposite electrodes for the supercapacitor electrode.

Methods: The zinc oxide nanostructure was synthesized via the sol-gel method by using conventional hexamethylenetetramine (HMTA) reagent as the reducing agent.

Results: The physicochemical and electrochemical properties of the nanocomposites were characterized by X-ray diffraction analysis (XRD) and cyclic voltammetry (CV) analysis, respectively. 10 wt% of ZnO loading shows an optimum specific capacitance of 398 F/g at a scan rate of 50 mV/s. The optimum sample retained 96% of its initial specific capacitance upon 100 consecutive cycles.

Conclusion: The enhanced specific capacitance can be ascribed to the synergistic effect of the individual properties of AC and ZnO.

Keywords: Supercapacitor, activated carbon, zinc oxide, electrochemical, energy storage, X-ray.

Alresheedi B. A supercapacitors based on carbon nanotube fuzzy fabric structural composites 2012; 159.
Benadjemia M, Millière L, Reinert L, Benderdouche N, Duclaux L. Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process Technol 2011; 92(6): 1203-12.
Burgos M, Langlet M. Condensation and densification mechanism of sol-gel TiO2 layers at low temperature. J Sol-Gel Sci Technol 1999; 16(3): 267-76.
Chen Y-C, Wen C-Y, Wang C-M, Ho C-W, Lin S-Y, Chen Y-L. Characterization of transition-metal oxide deposition on carbon electrodes of a supercapacitor. Appl Sci (Basel) 2016; 6(12): 413.
Doloksaribu M, Triyana HK, Prihandoko B. The effect of concentration nanoparticles MnO2 doped in activated carbon as supercapacitor electrodes. Int J Appl Eng Res 2017; 12(19): 8625-31.
Fan H, Zhang H, Luo X, et al. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors. J Power Sources 2017; 357: 230-40.
Filippo E, Carlucci C, Capodilupo AL, et al. Enhanced photocatalytic activity of pure anatase Tio2 and Pt-Tio2 nanoparticles synthesized by green microwave assisted route 2- experimental section. Mater Res 2015; 18(3): 473-81.
Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001; 39(6): 937-50.
Gao Z, Wang F, Chang J, et al. Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochim Acta 2014; 133(1): 324-34.
Gao X, Liu X, Wu D, et al. Significant role of Al in ternary layered double hydroxides for enhancing electrochemical performance of flexible asymmetric supercapacitor Adv Funct Mater 2019.1903879.
Raj GSB, Asiri AM, Wu JJ, Anandan S. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J Alloys Compd 2015; 636(1): 234-40.
Hyeon J, Jong H, Kim H, Lee S, Lee Y. A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchin-like TiO2 as anode. Int J Hydrogen Energy 2016; 41(31): 13549-56.
Infaza N, Ramli T, Abdul S, Mamat S, Sulaiman Y, Krishnan S. Incorporation of iron oxide into CNT / GNF as a high-performance supercapacitor electrode. Mater Chem Phys 2018; 212(1): 318-24.
Khiew P, Ho M, Chiu W, Shamsudin R, Azmi M, Chia C. Synthesis and electrochemical characterization of iron oxide / activated carbon composite electrode for symmetrical supercapacitor. Int J Chem Mol Nucl Mater Metallurg Eng 2013; 7(8): 615-9.
Kim H, Cho M, Kim M, et al. A novel high energy hybrid supercapacitor with an anatase TiO2 - reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater 2013; 3(11): 1500-6.
Li LX, Li F. The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. Xinxing Tan Cailiao. N Carbon Mater 2011; 26(3): 224-8.
Li Z, Jin-yan S, Ji-yan Z, Ning W. high voltage super-capacitors for energy storage devices applications. 14th Symposium on Electromagnetic Launch Technol. 8-11.
Li Z, Zhou Z, Yun G, Shi K, Lv X, Yang B. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res Lett 2013; 8(1): 473.
[http://dx.doi.org/10.1186/1556-276X-8-473] [PMID: 24215772]
Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L. Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim Acta 2013; 114(2): 674-80.
Ramli NIT, Rashid SA, Mamat MS, Sulaiman Y, Zobir SA, Krishnan S. Incorporation of ZincOxide into carbon nanotube/graphite nanofiber as high performance supercapacitor electrode. Electrochim Acta 2017; 228(1): 259-67.
Selvakumar M, Bhat DK, Aggarwal AM, Iyer SP, Sravani G. Nano ZnO-activated carbon composite electrodes for supercapacitors. Physica B: Phys Condensed Matter 2010; 405(9): 2286-9.
Simon P, Gogotsi Y. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philos Trans Series A, Math, Phys. Eng Sci 1923; 2010(368): 3457-67.
Stobinski L, Lesiak B, Kövér L, et al. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd 2010; 501(1): 77-84.
Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S. Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 2007; 111(20): 7527-31.
Wang YG, Wang ZD, Xia YY. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 2005; 50(28): 5641-6.
Zhang Y, Sun X, Pan L, et al. Carbon nanotube - zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors. J Alloys Compd 2009; 480(2): 17-9.
Zhu YG, Wang Y, Shi Y, Wong JI, Yang HY. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014; 3(1): 46-54.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Page: [223 - 231]
Pages: 9
DOI: 10.2174/2405520412666191118111639
Price: $65

Article Metrics

PDF: 7