Facile Preparation of Activated Carbon/Zinc Oxide Nanocomposite for Supercapacitor Application

Author(s): Nurul Infaza Talalah Ramli*, Hartini Ahmad Rafaie, Muhd Firdaus Kasim, Hanifa Binti Ibno

Journal Name: Recent Innovations in Chemical Engineering
Formerly: Recent Patents on Chemical Engineering

Volume 13 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: An efficient and facile preparation route has been developed to prepare activated carbon (AC)/zinc oxide (ZnO) nanocomposite electrodes for the supercapacitor electrode.

Methods: The zinc oxide nanostructure was synthesized via the sol-gel method by using conventional hexamethylenetetramine (HMTA) reagent as the reducing agent.

Results: The physicochemical and electrochemical properties of the nanocomposites were characterized by X-ray diffraction analysis (XRD) and cyclic voltammetry (CV) analysis, respectively. 10 wt% of ZnO loading shows an optimum specific capacitance of 398 F/g at a scan rate of 50 mV/s. The optimum sample retained 96% of its initial specific capacitance upon 100 consecutive cycles.

Conclusion: The enhanced specific capacitance can be ascribed to the synergistic effect of the individual properties of AC and ZnO.

Keywords: Supercapacitor, activated carbon, zinc oxide, electrochemical, energy storage, X-ray.

[1]
Alresheedi B. A supercapacitors based on carbon nanotube fuzzy fabric structural composites 2012; 159.
[2]
Benadjemia M, Millière L, Reinert L, Benderdouche N, Duclaux L. Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process Technol 2011; 92(6): 1203-12.
[http://dx.doi.org/10.1016/j.fuproc.2011.01.014]
[3]
Burgos M, Langlet M. Condensation and densification mechanism of sol-gel TiO2 layers at low temperature. J Sol-Gel Sci Technol 1999; 16(3): 267-76.
[http://dx.doi.org/10.1023/A:1008773404931]
[4]
Chen Y-C, Wen C-Y, Wang C-M, Ho C-W, Lin S-Y, Chen Y-L. Characterization of transition-metal oxide deposition on carbon electrodes of a supercapacitor. Appl Sci (Basel) 2016; 6(12): 413.
[http://dx.doi.org/10.3390/app6120413]
[5]
Doloksaribu M, Triyana HK, Prihandoko B. The effect of concentration nanoparticles MnO2 doped in activated carbon as supercapacitor electrodes. Int J Appl Eng Res 2017; 12(19): 8625-31.
[6]
Fan H, Zhang H, Luo X, et al. Hydrothermal solid-gas route to TiO2 nanoparticles/nanotube arrays for high-performance supercapacitors. J Power Sources 2017; 357: 230-40.
[http://dx.doi.org/10.1016/j.jpowsour.2017.05.009]
[7]
Filippo E, Carlucci C, Capodilupo AL, et al. Enhanced photocatalytic activity of pure anatase Tio2 and Pt-Tio2 nanoparticles synthesized by green microwave assisted route 2- experimental section. Mater Res 2015; 18(3): 473-81.
[http://dx.doi.org/10.1590/1516-1439.301914]
[8]
Frackowiak E, Béguin F. Carbon materials for the electrochemical storage of energy in capacitors. Carbon 2001; 39(6): 937-50.
[http://dx.doi.org/10.1016/S0008-6223(00)00183-4]
[9]
Gao Z, Wang F, Chang J, et al. Chemically grafted graphene-polyaniline composite for application in supercapacitor. Electrochim Acta 2014; 133(1): 324-34.
[http://dx.doi.org/10.1016/j.electacta.2014.04.033]
[10]
Gao X, Liu X, Wu D, et al. Significant role of Al in ternary layered double hydroxides for enhancing electrochemical performance of flexible asymmetric supercapacitor Adv Funct Mater 2019.1903879.
[http://dx.doi.org/10.1002/adfm.201903879]
[11]
Raj GSB, Asiri AM, Wu JJ, Anandan S. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application. J Alloys Compd 2015; 636(1): 234-40.
[12]
Hyeon J, Jong H, Kim H, Lee S, Lee Y. A hybrid supercapacitor fabricated with an activated carbon as cathode and an urchin-like TiO2 as anode. Int J Hydrogen Energy 2016; 41(31): 13549-56.
[http://dx.doi.org/10.1016/j.ijhydene.2016.06.018]
[13]
Infaza N, Ramli T, Abdul S, Mamat S, Sulaiman Y, Krishnan S. Incorporation of iron oxide into CNT / GNF as a high-performance supercapacitor electrode. Mater Chem Phys 2018; 212(1): 318-24.
[14]
Khiew P, Ho M, Chiu W, Shamsudin R, Azmi M, Chia C. Synthesis and electrochemical characterization of iron oxide / activated carbon composite electrode for symmetrical supercapacitor. Int J Chem Mol Nucl Mater Metallurg Eng 2013; 7(8): 615-9.
[15]
Kim H, Cho M, Kim M, et al. A novel high energy hybrid supercapacitor with an anatase TiO2 - reduced graphene oxide anode and an activated carbon cathode. Adv Energy Mater 2013; 3(11): 1500-6.
[http://dx.doi.org/10.1002/aenm.201300467]
[16]
Li LX, Li F. The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes. Xinxing Tan Cailiao. N Carbon Mater 2011; 26(3): 224-8.
[http://dx.doi.org/10.1016/S1872-5805(11)60078-4]
[17]
Li Z, Jin-yan S, Ji-yan Z, Ning W. high voltage super-capacitors for energy storage devices applications. 14th Symposium on Electromagnetic Launch Technol. 8-11.
[18]
Li Z, Zhou Z, Yun G, Shi K, Lv X, Yang B. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites. Nanoscale Res Lett 2013; 8(1): 473.
[http://dx.doi.org/10.1186/1556-276X-8-473] [PMID: 24215772]
[19]
Qi T, Jiang J, Chen H, Wan H, Miao L, Zhang L. Synergistic effect of Fe3O4/reduced graphene oxide nanocomposites for supercapacitors with good cycling life. Electrochim Acta 2013; 114(2): 674-80.
[http://dx.doi.org/10.1016/j.electacta.2013.10.068]
[20]
Ramli NIT, Rashid SA, Mamat MS, Sulaiman Y, Zobir SA, Krishnan S. Incorporation of ZincOxide into carbon nanotube/graphite nanofiber as high performance supercapacitor electrode. Electrochim Acta 2017; 228(1): 259-67.
[http://dx.doi.org/10.1016/j.electacta.2017.01.068]
[21]
Selvakumar M, Bhat DK, Aggarwal AM, Iyer SP, Sravani G. Nano ZnO-activated carbon composite electrodes for supercapacitors. Physica B: Phys Condensed Matter 2010; 405(9): 2286-9.
[http://dx.doi.org/10.1016/j.physb.2010.02.028]
[22]
Simon P, Gogotsi Y. Charge storage mechanism in nanoporous carbons and its consequence for electrical double layer capacitors. Philos Trans Series A, Math, Phys. Eng Sci 1923; 2010(368): 3457-67.
[23]
Stobinski L, Lesiak B, Kövér L, et al. Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd 2010; 501(1): 77-84.
[http://dx.doi.org/10.1016/j.jallcom.2010.04.032]
[24]
Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S. Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 2007; 111(20): 7527-31.
[http://dx.doi.org/10.1021/jp067009t]
[25]
Wang YG, Wang ZD, Xia YY. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim Acta 2005; 50(28): 5641-6.
[http://dx.doi.org/10.1016/j.electacta.2005.03.042]
[26]
Zhang Y, Sun X, Pan L, et al. Carbon nanotube - zinc oxide electrode and gel polymer electrolyte for electrochemical supercapacitors. J Alloys Compd 2009; 480(2): 17-9.
[http://dx.doi.org/10.1016/j.jallcom.2009.01.114]
[27]
Zhu YG, Wang Y, Shi Y, Wong JI, Yang HY. CoO nanoflowers woven by CNT network for high energy density flexible micro-supercapacitor. Nano Energy 2014; 3(1): 46-54.
[http://dx.doi.org/10.1016/j.nanoen.2013.10.006]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 3
Year: 2020
Page: [223 - 231]
Pages: 9
DOI: 10.2174/2405520412666191118111639
Price: $65

Article Metrics

PDF: 7
HTML: 1