[3]
Kinger, M. Design, synthesis, and anti-influenza viral activities of 1,3-diarylprop-2-en-1-ones: A novel class of neuraminidase inhibitorsArch Pharm Res., 2014, 35(4), 633-635.
[4]
Du, R.; Cui, Q.; Rong, L. Competitive cooperation of hemagglutinin and neuraminidase during influenza a virus entry, 2019, 11(5), 458.
[14]
Hao, D.C.; Gu, X-J.; Xiao, P.G. Medicinal plants; Woodhead Publishing: Cambridge. 2015, 587-638.
[22]
Abedini, A.; Roumy, V.; Mahieux, S.; Biabiany, M.; Standaert, A.; Rivière, C.; Sahpaz, S.; Bailleul, F.; Neut, C.; Hennebelle, T. Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of Hyptis atrorubens poit. (lamiaceae). Evid. Based Complement. Alternat. Med., 2013, 604536(ePub ahead of Print)
[30]
Ma, L.; Tang, L.; Yi, Q. Salvianolic acids: potential source of natural drugs for the treatment of fibrosis disease and cancer. Front. Pharmacol., 2019, 10(97)
[34]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E.; Ogliaro, F.; Bearpark, M.J.; Heyd, J.; Brothers, E.N.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.P.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N.J.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, Ö.; Foresman, J.B.; Ortiz, J.V.; Cioslowski, J.; Fox, D.J. Gaussian 09; Gaussian, Inc.: Wallingford, CT, USA, 2009.
[39]
Case, D.; Cerutti, D.; Cheateham, T.; Darden, T.; Duke, R.; Giese, T.; Gohlke, H.; Goetz, A.; Greene, D.; Homeyer, N. AMBER16 Package; University of California: San Francisco, 2016.
[49]
Celej, M.S.; Montich, G.G.; Fidelio, G.D. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci., 2003, 12(7), 1496-1506.
[50]
Vasudevan, K.; Karuppasamy, R. Virtual screening for oseltamivir-resistant a (H5N1) influenza neuraminidase from traditional Chinese medicine database: A combined molecular docking with molecular dynamics approach. SpringerPlus, 2013, 2, 115.
[51]
Lin, D.; Yi, Y.-J.; Xiao, M.-W.; Chen, J.; Ye, J.; Hu, A.-X.; Lian, W.-W.; Liu, A.-L.; Du, G.-H. Design, synthesis and biological evaluation of honokiol derivatives as influenza neuraminidase inhibitors. J. Asian Nat. Prod. Res., 2019, 21(11), 1052-1067.
[52]
Sharma, G.; Vasanth Kumar, S.; Wahab, H.A. Molecular docking, synthesis, and biological evaluation of naphthoquinone as potential novel scaffold for H5N1 neuraminidase inhibition. J. Biomol. Struct. Dynam., 2018, 36(1), 233-242.
[53]
Naumov, P.; Yasuda, N.; Rabeh, W.M.; Bernstein, J. The elusive crystal structure of the neuraminidase inhibitor Tamiflu (oseltamivir phosphate): molecular details of action. Chem. Commun. (Cambridge, England), 2013, 49(19), 1948-1950.
[54]
Yen, H-L.; Hoffmann, E.; Taylor, G.; Scholtissek, C.; Monto, A.S.; Webster, R.G.; Govorkova, E.A. Importance of neuraminidase active-site residues to the neuraminidase inhibitor resistance of influenza viruses. J. Virol., 2006, 80(17), 8787-8795.
[55]
Rungrotmongkol, T.; Frecer, V.; De-Eknamkul, W.; Hannongbua, S.; Miertus, S. Design of oseltamivir analogs inhibiting neuraminidase of avian influenza virus H5N1. Antiv. Res., 2009, 82(1), 51-58.
[56]
Shahbaaz, M.; Amir, M.; Rahman, S.; Mustafa Hasan, G.; Dohare, R.; Bisetty, K.; Ahmad, F.; Kim, J.; Hassan, M.I. Structural insights into Rab21 GTPase activation mechanism by molecular dynamics simulations. Mol. Simul., 2018, 44(3), 179-189.
[57]
Cao, K.; Li, N.; Wang, H.; Cao, X.; He, J.; Zhang, B.; He, Q.-Y.; Zhang, G.; Sun, X. Two zinc-binding domains in the transporter AdcA from Streptococcus pyogenes facilitate high-affinity binding and fast transport of zinc. J. Biol. Chem., 2018, 293(16), 6075-6089.