Pharmacophore Modeling, Synthesis, Scaffold Hopping and Biological β- Hematin Inhibition Interaction Studies for Anti-malaria Compounds

Author(s): Neda Fayyazi, Somayeh Esmaeili, Salman Taheri, Frederico F. Ribeiro, Marcus T. Scotti, Luciana Scotti, Jahan B. Ghasemi*, Lotfollah Saghaei*, Afshin Fassihi

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 30 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Backgound: Exploring potent compounds is critical to generating multi-target drug discovery. Hematin crystallization is an important mechanism of malaria.

Methods: A series of chloroquine analogues were designed using a repositioning approach to develop new anticancer compounds. Protein-ligand interaction fingerprints and ADMET descriptors were used to assess docking performance in virtual screenings to design chloroquine hybrid β-hematin inhibitors. A PLS algorithm was applied to correlate the molecular descriptors to IC50 values. The modeling presented excellent predictive power with correlation coefficients for calibration and cross-validation of r2 = 0.93 and q2 = 0.72. Using the model, a series of 4-aminoquinlin hybrids were synthesized and evaluated for their biological activity as an external test series. These compounds were evaluated for cytotoxic cell lines and β-hematin inhibition.

Results: The target compounds exhibited high β-hematin inhibition activity and were 3-9 times more active than the positive control. Furthermore, all the compounds exhibited moderate to high cytotoxic activity. The most potent compound in the dataset was docked with hemoglobin and its pharmacophore features were generated. These features were used as input to the Pharmit server for screening of six databases.

Conclusion: The compound with the best score from ChEMBL was 2016904, previously reported as a VEGFR-2 inhibitor. The 11 compounds selected presented the best Gold scores with drug-like properties and can be used for drug development.

Keywords: Computer-aided drug design, Computational ADME/Tox, Database, Cancer, Cell lines, QSAR, Partial least square, β-hematin, Receptor.

[1]
Dong, X.; Zhou, X.; Jing, H.; Chen, J.; Liu, T.; Yang, B.; He, Q.; Hu, Y. Pharmacophore identification, virtual screening and biological evaluation of prenylated flavonoids derivatives as PKB/Akt1 inhibitors. Eur. J. Med. Chem., 2011, 46(12), 5949-5958.
[http://dx.doi.org/10.1016/j.ejmech.2011.10.006] [PMID: 22027102]
[2]
Grzybowski, B.A.; Ishchenko, A.V.; Shimada, J.; Shakhnovich, E.I. From knowledge-based potentials to combinatorial lead design in silico. Acc. Chem. Res., 2002, 35(5), 261-269.
[http://dx.doi.org/10.1021/ar970146b] [PMID: 12020163]
[3]
Srivastava, V.; Lee, H. Chloroquine-based hybrid molecules as promising novel chemotherapeutic agents. Eur. J. Pharmacol., 2015, 762, 472-486.
[http://dx.doi.org/10.1016/j.ejphar.2015.04.048] [PMID: 25959387]
[4]
Solomonov, I.; Osipova, M.; Feldman, Y.; Baehtz, C.; Kjaer, K.; Robinson, I.K.; Webster, G.T.; McNaughton, D.; Wood, B.R.; Weissbuch, I.; Leiserowitz, L. Crystal nucleation, growth, and morphology of the synthetic malaria pigment beta-hematin and the effect thereon by quinoline additives: the malaria pigment as a target of various antimalarial drugs. J. Am. Chem. Soc., 2007, 129(9), 2615-2627.
[http://dx.doi.org/10.1021/ja0674183] [PMID: 17290993]
[5]
de Villiers, K.A.; Marques, H.M.; Egan, T.J. The crystal structure of halofantrine-ferriprotoporphyrin IX and the mechanism of action of arylmethanol antimalarials. J. Inorg. Biochem., 2008, 102(8), 1660-1667.
[http://dx.doi.org/10.1016/j.jinorgbio.2008.04.001] [PMID: 18508124]
[6]
Hwang, K.; Hosseinzadeh, P.; Lu, Y. Biochemical and biophysical understanding of metal ion selectivity of DNAzymes. Inorg. Chim. Acta, 2016, 452, 12-24.
[http://dx.doi.org/10.1016/j.ica.2016.04.017] [PMID: 27695134]
[7]
Goyal, M.; Alam, A.; Bandyopadhyay, U. Redox regulation in malaria: current concepts and pharmacotherapeutic implications. Curr. Med. Chem., 2012, 19(10), 1475-1503.
[http://dx.doi.org/10.2174/092986712799828328] [PMID: 22360482]
[8]
a)Kumar, S.; Guha, M.; Choubey, V.; Maity, P.; Bandyopadhyay, U. Antimalarial drugs inhibiting hemozoin (β-hematin) formation: a mechanistic update. Life Sci., 2007, 80(9), 813-828.
[http://dx.doi.org/10.1016/j.lfs.2006.11.008] [PMID: 17157328]
b)Pudkalicka, P.; Mucka, O.; Jozkowicz, A. Heme oxygenase inhibition in cancers: possible tools and targets. Contemp. Oncol., 2018, 22(1A), 23-32.
[9]
Haldar, K.; Murphy, S.C.; Milner, D.A.; Taylor, T.E. Malaria: mechanisms of erythrocytic infection and pathological correlates of severe disease. Annu. Rev. Pathol., 2007, 2(1), 217-249.
[http://dx.doi.org/10.1146/annurev.pathol.2.010506.091913] [PMID: 18039099]
[10]
Kumar, S.; Bandyopadhyay, U. Free heme toxicity and its detoxification systems in human. Toxicol. Lett., 2005, 157(3), 175-188.
[http://dx.doi.org/10.1016/j.toxlet.2005.03.004] [PMID: 15917143]
[11]
Tsiftsoglou, A.S.; Tsamadou, A.I.; Papadopoulou, L.C. Heme as key regulator of major mammalian cellular functions: molecular, cellular, and pharmacological aspects. Pharmacol. Ther., 2006, 111(2), 327-345.
[http://dx.doi.org/10.1016/j.pharmthera.2005.10.017] [PMID: 16513178]
[12]
a)de Villiers, K.A.; Egan, T.J. Recent advances in the discovery of haem-targeting drugs for malaria and schistosomiasis. Molecules, 2009, 14(8), 2868-2887.
[http://dx.doi.org/10.3390/molecules14082868] [PMID: 19701131]
b)Ryter, SW.; Tyrrell, RM The heme synthesis and degradation path-ways: role in oxidant sensitivity In: Heme oxygenase has both pro- and anti-oxidant properties; Free Radic. Biol. Med; , 2000; 28, pp. 289-309.18.
c)Schmitt, T.H.; Frezzatti, W.A., Jr; Schreier, S. Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. Arch. Biochem. Biophys., 1993, 307(1), 96-103.
[http://dx.doi.org/10.1006/abbi.1993.1566] [PMID: 8239671]
[13]
Coronado, L.M.; Nadovich, C.T.; Spadafora, C. Malarial hemozoin: from target to tool. Biochim. Biophys. Acta, 2014, 1840(6), 2032-2041.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.009] [PMID: 24556123]
[14]
Ajioka, R.S.; Phillips, J.D.; Kushner, J.P. Biosynthesis of heme in mammals., Biochimica et Biophysica Acta (BBA) -. Mol. Cell Res., 2006, 1736, 723-736.
[15]
Furuyama, K.; Sassa, S. Interaction between succinyl CoA synthetase and the heme-biosynthetic enzyme ALAS-E is disrupted in sideroblastic anemia. J. Clin. Invest., 2000, 105(6), 757-764.
[http://dx.doi.org/10.1172/JCI6816] [PMID: 10727444]
[16]
Kirton, S.B.; Murray, C.W.; Verdonk, M.L.; Taylor, R.D. Prediction of binding modes for ligands in the cytochromes P450 and other heme-containing proteins. Proteins, 2005, 58(4), 836-844.
[http://dx.doi.org/10.1002/prot.20389] [PMID: 15651036]
[17]
Capper, M.J.; O’Neill, P.M.; Fisher, N.; Strange, R.W.; Moss, D.; Ward, S.A.; Berry, N.G.; Lawrenson, A.S.; Hasnain, S.S.; Biagini, G.A.; Antonyuk, S.V. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. Proc. Natl. Acad. Sci. USA, 2015, 112(3), 755-760.
[http://dx.doi.org/10.1073/pnas.1416611112] [PMID: 25564664]
[18]
Han, A-P.; Fleming, M.D.; Chen, J-J. Heme-regulated eIF2α kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and β-thalassemia. J. Clin. Invest., 2005, 115(6), 1562-1570.
[http://dx.doi.org/10.1172/JCI24141] [PMID: 15931390]
[19]
Rutherford, T.R.; Clegg, J.B.; Weatherall, D.J. K562 human leukaemic cells synthesise embryonic haemoglobin in response to haemin. Nature, 1979, 280(5718), 164-165.
[http://dx.doi.org/10.1038/280164a0] [PMID: 95354]
[20]
Shibahara, S.; Müller, R.M.; Taguchi, H.; Shibahara, S.; Muller, R.M.; Taguchi, H. Transcriptional control of rat heme oxygenase by heat shock. J. Biol. Chem., 1987, 262(27), 12889-12892.
[PMID: 3654594]
[21]
Ryckebusch, A.; Deprez-Poulain, R.; Maes, L.; Debreu-Fontaine, M.A.; Mouray, E.; Grellier, P.; Sergheraert, C. Synthesis and in vitro and in vivo antimalarial activity of N1-(7-chloro-4-quinolyl)-1,4-bis(3-aminopropyl)piperazine derivatives. J. Med. Chem., 2003, 46(4), 542-557.
[http://dx.doi.org/10.1021/jm020960r] [PMID: 12570376]
[22]
Tang, Q.; Duan, Y.; Xiong, H.; Chen, T.; Xiao, Z.; Wang, L.; Xiao, Y.; Huang, S.; Xiong, Y.; Zhu, W.; Gong, P.; Zheng, P. Synthesis and antiproliferative activity of 6,7-disubstituted-4-phenoxyquinoline derivatives bearing the 1,8-naphthyridin-2-one moiety. Eur. J. Med. Chem., 2018, 158, 201-213.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.066] [PMID: 30216852]
[23]
a)Andayi, W.A.; Egan, T.J.; Chibale, K. Kojic acid derived hydroxypyridinone-chloroquine hybrids: synthesis, crystal structure, antiplasmodial activity and β-haematin inhibition. Bioorg. Med. Chem. Lett., 2014, 24(15), 3263-3267.
[http://dx.doi.org/10.1016/j.bmcl.2014.06.012] [PMID: 24974345]
b)Andayi, W.A.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, Antiplasmodial Activity, and β-Hematin Inhibition of Hydroxypyridone-Chloroquine Hybrids. ACS Med. Chem. Lett., 2013, 4(7), 642-646.
[http://dx.doi.org/10.1021/ml4001084] [PMID: 24900724]
c)Vijayaraghavan, S.; Mahajan, S. Docking, synthesis and antimalarial activity of novel 4-anilinoquinoline derivatives. Bioorg. Med. Chem. Lett., 2017, 27(8), 1693-1697.
[http://dx.doi.org/10.1016/j.bmcl.2017.03.005] [PMID: 28318947]
[24]
a)Khan, A.Y.; Kumar, G.S. Probing the binding of anticancer drug topotecan with human hemoglobin: Structural and thermodynamic studies. J. Photochem. Photobiol., 2016, 163(2016), 185-193.
b)Liu, Y.; Liu, R. Spectroscope and molecular model identify the behavior of doxorubicin-SPION binding to bovine hemoglobin. Int. J. Biol. Macromol., 2015, 79, 564-569.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.05.043] [PMID: 26033525]
[25]
Bedi, R.K.; Patel, C.; Mishra, V.; Xiao, H.; Yada, R.Y.; Bhaumik, P. Understanding the structural basis of substrate recognition by Plasmodium falciparum plasmepsin V to aid in the design of potent inhibitors. Sci. Rep., 2016, 6, 31420.
[http://dx.doi.org/10.1038/srep31420] [PMID: 27531685]
[26]
Slater, A.F.G.; Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature, 1992, 355(6356), 167-169.
[http://dx.doi.org/10.1038/355167a0] [PMID: 1729651]
[27]
a)Hoffer, L.; Muller, C.; Roche, P.; Morelli, X. Chemistry-driven hit-to-lead optimization guided by structure-based approaches. Mol. Inform., 2018, 37(9-10) e1800059
[http://dx.doi.org/10.1002/minf.201800059] [PMID: 30051601]
b)Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432, 862-865.
[http://dx.doi.org/10.1038/nature03197]
[28]
Jain, S.; Chandra, V.; Jain, P.K.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2016. In Press
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[29]
a)Deng, X.Q.; Wang, H.Y.; Zhao, Y.L.; Xiang, M.L.; Jiang, P.D.; Cao, Z.X.; Zheng, Y.Z.; Luo, S.D.; Yu, L.T.; Wei, Y.Q.; Yang, S.Y. Pharmacophore modelling and virtual screening for identification of new Aurora-A kinase inhibitors. Chem. Biol. Drug Des., 2008, 71(6), 533-539.
[http://dx.doi.org/10.1111/j.1747-0285.2008.00663.x] [PMID: 18410307]
b)Makhouri, F.R.; Ghasemi, J.B. High-throughput docking and molecular dynamics simulations towards the identification of novel peptidomimetic inhibitors against CDC7. Mol. Inform., 2018, 37(11) e1800022
[http://dx.doi.org/10.1002/minf.201800022] [PMID: 29984527]
[30]
a)Kumar, A.; Zhang, K.Y. Advances in the development of shape similarity methods and their application in drug discovery. Front Chem., 6(2018), 315.
b)Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.
[http://dx.doi.org/10.1021/jm300687e] [PMID: 22716043]
[31]
a)Leardi, R. Application of Genetic Algorithm–PLS for feature selection in spectral data sets,journal of radiology. journal of radiology, (2000), 1.
b)Jasper, J.B.; Humbeck, L.; Brinkjost, T.; Koch, O. A novel interaction fingerprint derived from per atom score contributions: exhaustive evaluation of interaction fingerprint performance in docking based virtual screening. J. Cheminform., 2018, 10(1), 15.
[http://dx.doi.org/10.1186/s13321-018-0264-0] [PMID: 29549526]
[32]
Weissbuch, I.; Leiserowitz, L. Interplay between malaria, crystalline hemozoin formation, and antimalarial drug action and design. Chem. Rev., 2008, 108(11), 4899-4914.
[http://dx.doi.org/10.1021/cr078274t] [PMID: 19006402]
[33]
Product6, Pearson Adds ChemAxon's Suite of Chemistry Tools to Mastering Chemistry. 2012.
[34]
O’Boyle, N.M.; Banck, M.; Craig, A.J.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3, 33.
[http://dx.doi.org/10.1186/1758-2946-3-33]
[35]
Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation, 2007, 115(5), 654-657.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.594929] [PMID: 17283280]
[36]
Sunseri, J.; Koes, D.R. Pharmit: interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1)W442-448
[http://dx.doi.org/10.1093/nar/gkw287] [PMID: 27095195]
[37]
a)Ellis, B.L.; Duhme, A.K.; Hider, R.C.; Hossain, M.B.; Rizvi, S.; van der Helm, D. Synthesis, physicochemical properties, and biological evaluation of hydroxypyranones and hydroxypyridinones: novel bidentate ligands for cell-labeling. J. Med. Chem., 1996, 39(19), 3659-3670.
[http://dx.doi.org/10.1021/jm960220g] [PMID: 8809155]
b)Dehkordi, L.S.; Liu, Z.D.; Hider, R.C. Basic 3-hydroxypyridin-4-ones: potential antimalarial agents. Eur. J. Med. Chem., 2008, 43(5), 1035-1047.
[http://dx.doi.org/10.1016/j.ejmech.2007.07.011] [PMID: 17869385]
[38]
Saghaie, L.; Mirmohammad Sadeghi, M.; Nikazma, A. Synthesis, analysis and determination of partition coefficients of N-arylhydroxypyridinone derivatives as iron chelators. Res. Pharm. Sci., 2007, 1(1), 9.
[39]
Mosaddegh, M.; Irani, M.; Esmaeili, S. Inhibition Test of Heme Detoxification (ITHD) as an Approach for Detecting Antimalarial Agents in Medicinal Plants. Res. J. Pharmacogn., 2018, 5(1), 5-11.
[40]
Ncokazi, K.K.; Egan, T.J. A colorimetric high-throughput β-hematin inhibition screening assay for use in the search for antimalarial compounds. Anal. Biochem., 2005, 338(2), 306-319.
[http://dx.doi.org/10.1016/j.ab.2004.11.022] [PMID: 15745752]
[41]
O’Neill, P.M.; Park, B.K.; Shone, A.E.; Maggs, J.L.; Roberts, P.; Stocks, P.A.; Biagini, G.A.; Bray, P.G.; Gibbons, P.; Berry, N.; Winstanley, P.A.; Mukhtar, A.; Bonar-Law, R.; Hindley, S.; Bambal, R.B.; Davis, C.B.; Bates, M.; Hart, T.K.; Gresham, S.L.; Lawrence, R.M.; Brigandi, R.A.; Gomez-delas-Heras, F.M.; Gargallo, D.V.; Ward, S.A. Candidate selection and preclinical evaluation of N-tert-butyl isoquine (GSK369796), an affordable and effective 4-aminoquinoline antimalarial for the 21st century. J. Med. Chem., 2009, 52(5), 1408-1415.
[http://dx.doi.org/10.1021/jm8012618] [PMID: 19222165]
[42]
Zhoua, T.; Shaoa, L-L; Battahb, S. Design and synthesis of 5- aminolaevulinic Acid/3-hydroxypyridinone conjugates for photodynamic therapy: enhancement of protoporphyrin IX production and photo-toxicity in tumor cells. Med. Chem. Comm., 7(6)2016, , 1-3,1.
[http://dx.doi.org/10.1039/C6MD00040A]
[43]
Ramsay, R.R.; Popovic-Nikolic, M.R.; Nikolic, K.; Uliassi, E.; Bolognesi, M.L. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med., 2018, 7(1), 3.
[http://dx.doi.org/10.1186/s40169-017-0181-2] [PMID: 29340951]
[44]
Shoichet, B.K. Virtual screening of chemical libraries. Nature, 2004, 432(7019), 862-865.
[http://dx.doi.org/10.1038/nature03197] [PMID: 15602552]
[45]
Ma, X.H.; Wang, R.; Yang, S.Y.; Li, Z.R.; Xue, Y.; Wei, Y.C.; Low, B.C.; Chen, Y.Z. Evaluation of virtual screening performance of support vector machines trained by sparsely distributed active compounds. J. Chem. Inf. Model., 2008, 48(6), 1227-1237.
[http://dx.doi.org/10.1021/ci800022e] [PMID: 18533644]
[46]
Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect., 2003, 111(10), 1361-1375.
[http://dx.doi.org/10.1289/ehp.5758] [PMID: 12896860]
[47]
Gozalbes, R.; Simon, L.; Froloff, N.; Sartori, E.; Monteils, C.; Baudelle, R. Development and experimental validation of a docking strategy for the generation of kinase-targeted libraries. J. Med. Chem., 2008, 51(11), 3124-3132.
[http://dx.doi.org/10.1021/jm701367r] [PMID: 18479119]
[48]
Deanda, F.; Stewart, E.L.; Reno, M.J.; Drewry, D.H. Kinase-targeted library design through the application of the PharmPrint methodology. J. Chem. Inf. Model., 2008, 48(12), 2395-2403.
[http://dx.doi.org/10.1021/ci800276t] [PMID: 19053525]
[49]
Gundla, R.; Kazemi, R.; Sanam, R.; Muttineni, R.; Sarma, J.A.; Dayam, R.; Neamati, N. Discovery of novel small-molecule inhibitors of human epidermal growth factor receptor-2: combined ligand and target-based approach. J. Med. Chem., 2008, 51(12), 3367-3377.
[http://dx.doi.org/10.1021/jm7013875] [PMID: 18500794]
[50]
Alexander, T. Best practices for QSAR model development, validation, and exploitation, molecular informatics. Mol. Inform., 2010, 29, 476-488.
[http://dx.doi.org/10.1002/minf.201000061]
[51]
Dotolo, S.; Facchiano, A. Pharmacophore modeling, virtual computational screening and biological evaluation studies. Peer J. Preprints, 2017, 5(2017) e2721v1
[http://dx.doi.org/10.7287/peerj.preprints.2721v1]
[52]
Han, S.Y.; Choi, J.W.; Yang, J.; Chae, C.H.; Lee, J.; Jung, H.; Lee, K.; Ha, J.D.; Kim, H.R.; Cho, S.Y. Design and synthesis of 3-(4,5,6,7-tetrahydro-3H-imidazo[4,5-c]pyridin-2-yl)-1H-quinolin-2-ones as VEGFR-2 kinase inhibitors. Bioorg. Med. Chem. Lett., 2012, 22(8), 2837-2842.
[http://dx.doi.org/10.1016/j.bmcl.2012.02.073] [PMID: 22450128]
[53]
Acharya, B.N.; Kaushik, M.P. Pharmacophore-based predictive model generation for potent antimalarials targeting haem detoxification pathway. Med. Chem. Res., 2007, 16, 213-229.
[http://dx.doi.org/10.1007/s00044-007-9025-8]
[54]
L M., Coronado1.; C.T., Nadovich.; C., Spadafor. Malarial Hemozoin: From target to tool. Biochim. Biophys. Acta, 2014, 1840(6), 2032-2041.
[http://dx.doi.org/10.1016/j.bbagen.2014.02.009]
[55]
Ugale, V.G.; Patel, H.M.; Surana, S.J. Molecular modeling studies of quinoline derivatives as VEGFR-2 tyrosine kinase inhibitors using pharmacophore based 3D QSAR and docking approach. Arab. J. Chem., 2017, 10, S1980-S2003.
[http://dx.doi.org/10.1016/j.arabjc.2013.07.026]
[56]
Cheng, H.; Liu, H.; Bao, W.; Zou, G. Studies on the interaction between docetaxel and human hemoglobin by spectroscopic analysis and molecular docking. J. Photochem. Photobiol. B, 2011, 105(2), 126-132.
[http://dx.doi.org/10.1016/j.jphotobiol.2011.07.004] [PMID: 21924621]
[57]
L’abbate, F.P.; Müller, R.; Openshaw, R.; Combrinck, J.M.; de Villiers, K.A.; Hunter, R.; Egan, T.J. Hemozoin inhibiting 2-phenylbenzimidazoles active against malaria parasites. Eur. J. Med. Chem., 2019, 18, 30838-30839.
[PMID: 30296683]
[58]
Hameed, A.; Masood, S.; Hameed, A.; Ahmed, E.; Sharif, A.; Abdullah, M.I. Anti-malarial, cytotoxicity and molecular docking studies of quinolinyl chalcones as potential anti-malarial agent. J. Comput. Aided Mol. Des., 2019, 33(7), 677-688.
[http://dx.doi.org/10.1007/s10822-019-00210-2] [PMID: 31270655]
[59]
van de Waterbeemd, H.; Gifford, E. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov., 2003, 2(3), 192-204.
[http://dx.doi.org/10.1038/nrd1032] [PMID: 12612645]
[60]
Palm, K.; Stenberg, P.; Luthman, K.; Artursson, P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharm. Res., 1997, 14(5), 568-571.
[http://dx.doi.org/10.1023/A:1012188625088] [PMID: 9165525]
[61]
Li, R.; Su, X.; Chen, Z.; Huang, W.; Wang, Y.; Wang, K.; Lin, B.; Wang, J.; Cheng, M. Structure-based virtual screening and ADME/T-based profiling for low molecular weight chemical starting points as p21-activated kinase 4 inhibitors. RSC Advances, 2015, 5, 23202-23209.
[http://dx.doi.org/10.1039/C4RA16963H]
[62]
Shukla, A.; Sharma, P.; Prakash, O.; Singh, M.; Kalani, K.; Khan, F.; Bawankule, D.U.; Luqman, S.; Srivastava, S.K. QSAR and docking studies on capsazepine derivatives for immunomodulatory and anti-inflammatory activity. PLoS One, 2014, 9(7) e100797
[http://dx.doi.org/10.1371/journal.pone.0100797] [PMID: 25003344]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 30
Year: 2019
Page: [2743 - 2765]
Pages: 23
DOI: 10.2174/1568026619666191116160326
Price: $65

Article Metrics

PDF: 29
HTML: 4