Effects of Intermittent Hypoxia on Expression of Glucose Metabolism Genes in MCF7 Breast Cancer Cell Line

Author(s): Yazun Jarrar, Malek Zihlif*, Abdel Qader Al Bawab, Ahmad Sharab

Journal Name: Current Cancer Drug Targets

Volume 20 , Issue 3 , 2020

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Hypoxic condition induces molecular alterations which affect the survival rate and chemo-resistant phenotype of cancer cells.

Objective: The aim of this study is to investigate the influence of intermittent hypoxic conditions on the expression of glucose metabolism genes in breast cancer MCF7 cell line.

Methods: The gene expression was analyzed using a polymerase chain reaction-array method. In addition, the cell resistance, survival and migration rates were examined to assure the hypoxic influence on the cells.

Results: 30 hypoxic episodes induced the Warburg effect through significant (p-value < 0.05) upregulation of the expression of PCK2, PHKG1, ALDOC, G6PC, GYS2, ALDOB, HK3, PKLR, PGK2, PDK2, ACO1 and H6PD genes that are involved in glycolysis, were obtained. Furthermore, the expression of the major gluconeogenesis enzyme genes was significantly (ANOVA, p-value < 0.05) downregulated. These molecular alterations were associated with increased MCF7 cell division and migration rate. However, molecular and phenotypic changes induced after 30 episodes were normalized in MCF7 cells exposed to 60 hypoxic episodes.

Conclusion: It is concluded, from this study, that 30 intermitted hypoxic episodes increased the survival rate of MCF7 breast cancer cells and induced the Warburg effect through upregulation of the expression of genes involved in the glycolysis pathway. These results may increase our understanding of the molecular alterations of breast cancer cells under hypoxic conditions.

Keywords: Hypoxia, MCF7 cells, glycolysis, warburg, cell resistance, glycolysis pathway.

[1]
Farris, A.L.; Rindone, A.N.; Grayson, W.L. Oxygen delivering biomaterials for tissue engineering. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(20), 3422-3432.
[http://dx.doi.org/10.1039/C5TB02635K] [PMID: 27453782]
[2]
Eales, K.L.; Hollinshead, K.E.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis, 2016, 5e190
[http://dx.doi.org/10.1038/oncsis.2015.50] [PMID: 26807645]
[3]
Ziello, J.E.; Jovin, I.S.; Huang, Y. Hypoxia-inducible factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J. Biol. Med., 2007, 80(2), 51-60.
[PMID: 18160990]
[4]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.), 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[5]
McKeown, S.R. Defining normoxia, physoxia and hypoxia in tumours-implications for treatment response. Br. J. Radiol., 2014, 87(1035)20130676
[http://dx.doi.org/10.1259/bjr.20130676] [PMID: 24588669]
[6]
Leithner, K.; Wohlkoenig, C.; Stacher, E. Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model - role of tumor stroma cells. BMC Cancer, 2014, 14, 40.
[http://dx.doi.org/10.1186/1471-2407-14-40] [PMID: 24460801]
[7]
Höckel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst., 2001, 93(4), 266-276.
[http://dx.doi.org/10.1093/jnci/93.4.266] [PMID: 11181773]
[8]
Challapalli, A.; Carroll, L.; Aboagye, E.O. Molecular mechanisms of hypoxia in cancer. Clin. Transl. Imaging, 2017, 5(3), 225-253.
[http://dx.doi.org/10.1007/s40336-017-0231-1] [PMID: 28596947]
[9]
Loreti, E.; Valeri, M.C.; Novi, G.; Perata, P. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiol., 2018, 176(2), 1286-1298.
[http://dx.doi.org/10.1104/pp.17.01002] [PMID: 29084901]
[10]
Luoto, K.R.; Kumareswaran, R.; Bristow, R.G. Tumor hypoxia as a driving force in genetic instability. Genome Integr., 2013, 4(1), 5.
[http://dx.doi.org/10.1186/2041-9414-4-5] [PMID: 24152759]
[11]
Hielscher, A.; Gerecht, S. Hypoxia and free radicals: role in tumor progression and the use of engineering-based platforms to address these relationships. Free Radic. Biol. Med., 2015, 79, 281-291.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.09.015] [PMID: 25257256]
[12]
Hamdan, F.H.; Zihlif, M.A. Gene expression alterations in chronic hypoxic MCF7 breast cancer cell line. Genomics, 2014, 104(6 Pt B), 477-481.
[http://dx.doi.org/10.1016/j.ygeno.2014.10.010] [PMID: 25449175]
[13]
Flamant, L.; Roegiers, E.; Pierre, M.; Hayez, A.; Sterpin, C.; De Backer, O.; Arnould, T.; Poumay, Y.; Michiels, C. TMEM45A is essential for hypoxia-induced chemoresistance in breast and liver cancer cells. BMC Cancer, 2012, 12, 391.
[http://dx.doi.org/10.1186/1471-2407-12-391] [PMID: 22954140]
[14]
Rademakers, S.E.; Lok, J.; van der Kogel, A.J.; Bussink, J.; Kaanders, J.H. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1α, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. BMC Cancer, 2011, 11, 167.
[http://dx.doi.org/10.1186/1471-2407-11-167] [PMID: 21569415]
[15]
Denko, N.C. Hypoxic regulation of metabolism offers new opportunities for anticancer therapy. Expert Rev. Anticancer Ther., 2014, 14(9), 979-981.
[http://dx.doi.org/10.1586/14737140.2014.930345] [PMID: 24930453]
[16]
Chen, H.; Lee, L.S.; Li, G.; Tsao, S.W.; Chiu, J.F. Upregulation of glycolysis and oxidative phosphorylation in benzo[α]pyrene and arsenic-induced rat lung epithelial transformed cells. Oncotarget, 2016, 7(26), 40674-40689.
[http://dx.doi.org/10.18632/oncotarget.9814] [PMID: 27276679]
[17]
Li, X.B.; Gu, J.D.; Zhou, Q.H. Review of aerobic glycolysis and its key enzymes - new targets for lung cancer therapy. Thorac. Cancer, 2015, 6(1), 17-24.
[http://dx.doi.org/10.1111/1759-7714.12148] [PMID: 26273330]
[18]
Adekola, K.; Rosen, S.T.; Shanmugam, M. Glucose transporters in cancer metabolism. Curr. Opin. Oncol., 2012, 24(6), 650-654.
[http://dx.doi.org/10.1097/CCO.0b013e328356da72] [PMID: 22913968]
[19]
Vyatkina, G.; Bhatia, V.; Gerstner, A.; Papaconstantinou, J.; Garg, N. Impaired mitochondrial respiratory chain and bioenergetics during chagasic cardiomyopathy development. Biochim. Biophys. Acta, 2004, 1689(2), 162-173.
[http://dx.doi.org/10.1016/j.bbadis.2004.03.005] [PMID: 15196597]
[20]
Justus, C.R.; Leffler, N.; Ruiz-Echevarria, M.; Yang, L.V. In vitro cell migration and invasion assays. J. Vis. Exp., 2014, 88.
[21]
Toffoli, S.; Michiels, C. Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours. FEBS J., 2008, 275(12), 2991-3002.
[http://dx.doi.org/10.1111/j.1742-4658.2008.06454.x] [PMID: 18445039]
[22]
Annibaldi, A.; Widmann, C. Glucose metabolism in cancer cells. Curr. Opin. Clin. Nutr. Metab. Care, 2010, 13(4), 466-470.
[http://dx.doi.org/10.1097/MCO.0b013e32833a5577] [PMID: 20473153]
[23]
Liberti, M.V.; Locasale, J.W. The warburg effect: How does it benefit cancer cells? Trends Biochem. Sci., 2016, 41(3), 211-218.
[http://dx.doi.org/10.1016/j.tibs.2015.12.001] [PMID: 26778478]
[24]
Robey, I.F.; Stephen, R.M.; Brown, K.S.; Baggett, B.K.; Gatenby, R.A.; Gillies, R.J. Regulation of the Warburg effect in early-passage breast cancer cells. Neoplasia, 2008, 10(8), 745-756.
[http://dx.doi.org/10.1593/neo.07724] [PMID: 18670636]
[25]
Bettum, I.J.; Gorad, S.S.; Barkovskaya, A.; Pettersen, S.; Moestue, S.A.; Vasiliauskaite, K.; Tenstad, E.; Øyjord, T.; Risa, Ø.; Nygaard, V.; Mælandsmo, G.M.; Prasmickaite, L. Metabolic reprogramming supports the invasive phenotype in malignant melanoma. Cancer Lett., 2015, 366(1), 71-83.
[http://dx.doi.org/10.1016/j.canlet.2015.06.006] [PMID: 26095603]
[26]
Majmundar, A.J.; Wong, W.J.; Simon, M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell, 2010, 40(2), 294-309.
[http://dx.doi.org/10.1016/j.molcel.2010.09.022] [PMID: 20965423]
[27]
Yang, J.; Kalhan, S.C.; Hanson, R.W. What is the metabolic role of phosphoenolpyruvate carboxykinase? J. Biol. Chem., 2009, 284(40), 27025-27029.
[http://dx.doi.org/10.1074/jbc.R109.040543] [PMID: 19636077]
[28]
Gray, L.R.; Tompkins, S.C.; Taylor, E.B. Regulation of pyruvate metabolism and human disease. Cell. Mol. Life Sci., 2014, 71(14), 2577-2604.
[http://dx.doi.org/10.1007/s00018-013-1539-2] [PMID: 24363178]
[29]
Tanner, L.B.; Goglia, A.G.; Wei, M.H.; Sehgal, T.; Parsons, L.R.; Park, J.O.; White, E.; Toettcher, J.E.; Rabinowitz, J.D. Four key steps control glycolytic flux in mammalian cells. Cell Syst., 2018, 7(1), 49-62.
[http://dx.doi.org/10.1016/j.cels.2018.06.003]
[30]
Patra, K.C.; Hay, N. The pentose phosphate pathway and cancer. Trends Biochem. Sci., 2014, 39(8), 347-354.
[http://dx.doi.org/10.1016/j.tibs.2014.06.005] [PMID: 25037503]
[31]
Chen, Y.; Wan, Y.; Wang, Y.; Zhang, H.; Jiao, Z. Anticancer efficacy enhancement and attenuation of side effects of doxorubicin with titanium dioxide nanoparticles. Int. J. Nanomedicine, 2011, 6, 2321-2326.
[PMID: 22072869]
[32]
Ontikatze, T.; Rudner, J.; Handrick, R.; Belka, C.; Jendrossek, V. Dihydroartemisinin is a hypoxia-active anti-cancer drug in colorectal carcinoma cells. Front. Oncol., 2014, 4, 116.
[http://dx.doi.org/10.3389/fonc.2014.00116] [PMID: 24904829]
[33]
Adeva-Andany, M.M.; González-Lucán, M.; Donapetry-García, C.; Fernández-Fernández, C.; Ameneiros-Rodríguez, E. Glycogen metabolism in humans. BBA Clin., 2016, 5, 85-100.
[http://dx.doi.org/10.1016/j.bbacli.2016.02.001] [PMID: 27051594]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 3
Year: 2020
Page: [216 - 222]
Pages: 7
DOI: 10.2174/1568009619666191116095847
Price: $65

Article Metrics

PDF: 26
HTML: 6
EPUB: 1
PRC: 1