FRET Study Between Carbon Quantum Dots and Malachite Green by Steady-State and Time-Resolved Fluorescence Spectroscopy

Author(s): Bipin Rooj, Ankita Dutta, Debojyoti Mukherjee, Sahidul Islam, Ujjwal Mandal*

Journal Name: Current Physical Chemistry

Volume 10 , Issue 3 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: Understanding the interaction between different organic dyes and carbon quantum dots helps us to understand several photo physical processes like electron transfer, energy transfer, molecular sensing, drug delivery and dye degradation processes etc.

Objective: The primary objective of this study is to whether the carbon quantum dots can act as an electron donor and can participate in the different photo physical processes.

Methods: In this work, Carbon Quantum Dots (CQDLs) are synthesized in most economical and simple carbonization method where petals of Nelumbo nucifera L. are used as a carbon precursor. The synthesized CQDLs were characterized by using experimental techniques like UV−Vis absorption, FT-IR, Transmission Electron Microscopy (TEM), steadystate and time-resolved fluorescence spectroscopy.

Results: The spectral analysis shows that the so synthesized CQDLs are spherical in shape and its diameter is around 4.2 nm. It shows the fluorescence emission maximum at 495 nm with a quantum yield of 4%. In this work the interaction between Carbon Quantum Dots (CQDLs) and an organic dye Malachite Green (MG) is studied using fluorescence spectroscopic technique under ambient pH condition (At pH 7). The quenching mechanism of CQDLs with MG was investigated using Stern-Volmer equation and time-resolved fluorescence lifetime studies. The results show that the dominant process of fluorescence quenching is attributed to Forster Resonance Energy Transfer (FRET) having a donor acceptor distance of 53 Å where CQDLs act as a donor and MG acts as an acceptor.

Conclusion: This work has a consequence that CQDLs can be used as a donor species for different photo physical processes such as photovoltaic cell, dye sensitized solar cell, and also for antioxidant activity study.

Keywords: Carbon quantum dots, FRET, malachite green, Nelumbo nucifera L., stern-volmer plot, TEM.

[1]
Meice, L.; Yixing, D.; Yiheng, S.; Jisuan, T.; Li, Z. Green preparation of versatile nitrogen-doped carbon quantum dots from watermelon juice for cell imaging, detection of Fe3+ ions and cysteine, and optical thermometry. J. Mol. Liq., 2018, 269, 766-774.
[http://dx.doi.org/10.1016/j.molliq.2018.08.101]
[2]
Das, B.; Dadhich, P.; Pal, P.; Srivas, P.K.; Bankoti, K.; Dhara, S. Carbon nanodots from date molasses: New nanolights for the in vitro scavenging of reactive oxygen species. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(39), 6839-6847.
[http://dx.doi.org/10.1039/C4TB01020E] [PMID: 32261880]
[3]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764.
[http://dx.doi.org/10.1039/C3CS60273G] [PMID: 24220322]
[4]
Pandey, S.; Vimal, T.; Singh, D.P.; Gupta, S.K.; Mahamuni, S.; Srivastava, A.; Manohar, R. Analysis of physical parameters and collective dielectric relaxations in core/shell quantum dot ferroelectric liquid crystal composite. J. Mol. Liq., 2015, 121(3), 157-163.
[5]
Fernando, K.A.S.; Sahu, S.; Liu, Y.; Lewis, W.K.; Guliants, E.A.; Jafariyan, A.; Wang, P.; Bunker, C.E.; Sun, Y.P. Carbon quantum dots and applications in photocatalytic energy conversion. ACS Appl. Mater. Interfaces, 2015, 7(16), 8363-8376.
[http://dx.doi.org/10.1021/acsami.5b00448] [PMID: 25845394]
[6]
Luo, P.G.; Yang, F.; Yang, S-T.; Sonkar, S.K.; Yang, L.; Broglie, J.J.; Liu, Y.; Sun, Y-P. Carbon-based quantum dots for fluorescence imaging of cells and tissues. RSC Advances, 2014, 4, 10791-10807.
[http://dx.doi.org/10.1039/c3ra47683a]
[7]
Loo, A.H.; Sofer, Z.; Bouša, D.; Ulbrich, P.; Bonanni, A.; Pumera, M. Carboxylic carbon quantum dots as a fluorescent sensing platform for DNA detection. ACS Appl. Mater. Interfaces, 2016, 8(3), 1951-1957.
[http://dx.doi.org/10.1021/acsami.5b10160] [PMID: 26762211]
[8]
Xiao, L.; Sun, H. Novel properties and applications of carbon nanodots. Nanoscale Horiz, 2018, 3(6), 565-597.
[http://dx.doi.org/10.1039/C8NH00106E] [PMID: 32254112]
[9]
Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C.H.A.; Yang, X.; Lee, S.T. Water-Soluble fluorescent carbon quantum dots and photocatalyst design. Angewandte. Chem., 2010, 122(26), 4532-4536.
[10]
Li, H.; Kang, Z.; Liu, Y.; Lee, S.T. Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem., 2012, 22, 24230-24253.
[http://dx.doi.org/10.1039/c2jm34690g]
[11]
Li, M.; Wang, M.; Zhu, L.; Li, Y.; Yan, Z.; Shen, Z.; Cao, X. Facile microwave assisted synthesis of N-rich carbon quantum dots/dual-phase TiO2 heterostructured nanocomposites with high activity in CO2 photoreduction. Appl. Catal. B: Environ., 2018, 231, 269-276.
[12]
Namdari, P.; Negahdari, B.; Eatemadi, A. Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review. Biomed. Pharmacother., 2017, 87, 209-222.
[http://dx.doi.org/10.1016/j.biopha.2016.12.108 ] [PMID: 28061404]
[13]
Li, X.; Wang, H.; Shimizu, Y.; Pyatenko, A.; Kawaguchi, K.; Koshizaki, N. Preparation of carbon quantum dots with tunable photoluminescence by rapid laser passivation in ordinary organic solvents. Chem. Commun. (Camb., 2011, 47(3), 932-934.
[http://dx.doi.org/10.1039/C0CC03552A] [PMID: 21079826]
[14]
Deng, J.; Lu, Q.; Mi, N.; Li, H.; Liu, M.; Xu, M.; Tan, L.; Xie, Q.; Zhang, Y.; Yao, S. Electrochemical synthesis of carbon nanodots directly from alcohols.Chemistry,, 2014, 20(17), 4993-4999.
[http://dx.doi.org/10.1002/chem.201304869] [PMID: 24623706]
[15]
Muthusankar, G.; Sasikumar, R.; Chen, S.M.; Gopu, G.; Sengottuvelan, N.; Rwei, S.P. Electrochemical synthesis of nitrogen-doped carbon quantum dots decorated copper oxide for the sensitive and selective detection of non-steroidal anti-inflammatory drug in berries. J. Coll. Interf. Sci., 2018, 523, pp. 191-200.
[16]
Sahu, S.; Behera, B.; Maiti, T.K.; Mohapatra, S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bioimaging agents. Chem. Commun. (Camb.), 2012, 48(70), 8835-8837.
[http://dx.doi.org/10.1039/c2cc33796g] [PMID: 22836910]
[17]
Ma, Z.; Ming, H.; Huang, H.; Liu, Y.; Kang, Z. One-step ultrasonic synthesis of fluorescent N-doped carbon dots from glucose and their visible-light sensitive photocatalytic ability. New J. Chem., 2012, 36, 861-864.
[http://dx.doi.org/10.1039/c2nj20942j]
[18]
Mondal, T.K.; Gupta, A.; Shaw, B.K.; Mondal, S.; Ghorai, U.K.; Saha, S.K. Highly luminescent N-doped carbon quantum dots from lemon juice with porphyrin-like structures surrounded by graphitic network for sensing applications. RSC Advances, 2016, 6, 59927-59934.
[http://dx.doi.org/10.1039/C6RA12148A]
[19]
Zhu, C.; Zhai, J.; Dong, S. Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. (Camb.), 2012, 48(75), 9367-9369.
[http://dx.doi.org/10.1039/c2cc33844k] [PMID: 22911246]
[20]
Wang, J.; Wang, C.F.; Chen, S. Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process, and multicolor printing patterns. Angew. Chem. Int. Ed. Engl., 2012, 51(37), 9297-9301.
[http://dx.doi.org/10.1002/anie.201204381 ] [PMID: 22907831]
[21]
Buddhadev, S.G.; Buddhadev, S. Nelumbo nucifera the phytochemical profile and traditional uses. Pharma Sci. Monitor, 2014, 5(3), 1-12.
[22]
Paudel, K.R.; Panth, N. Phytochemical profile and biological activity of Nelumbo nucifera. Evid. Based Complement. Alternat. Med., 2015, 2015
[http://dx.doi.org/10.1155/2015/789124] [PMID: 27057194]
[24]
Combes, R.D.; Haveland-Smith, R.B. A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutat. Res., 1982, 98(2), 101-248.
[http://dx.doi.org/10.1016/0165-1110(82)90015-X ] [PMID: 7043261]
[25]
Clemmensen, S.; Jensen, J.C.; Jensen, N.J.; Meyer, O.; Olsen, P.; Würtzen, G. Toxicological studies on malachite green: A triphenylmethane dye. Arch. Toxicol., 1984, 56(1), 43-45.
[http://dx.doi.org/10.1007/BF00316351] [PMID: 6517711]
[26]
Alam, A.; Park, B.Y.; Ghouri, Z.K.; Park, M.; Kim, H.Y. Synthesis of carbon quantum dots from cabbage with down- and up-conversion photoluminescence properties: Excellent imaging agent for biomedical applications. Green Chem., 2015, 17, 3791-3797.
[http://dx.doi.org/10.1039/C5GC00686D]
[27]
Wang, Y.; Hu, A. Carbon quantum dots: Synthesis, properties and applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2014, 2, 6921-6939.
[http://dx.doi.org/10.1039/C4TC00988F]
[28]
Harlé, J.B.; Arata, S.h.; M’ine, S.; Kamegawa, T.; Nguyen, V.T.; Maeda, T.; Nakazumi, H.; Fujiwara, H. Malachite green derivatives for dye-sensitized solar cells: Optoelectronic characterizations and persistence on TiO2. Bull. Chem. Soc. Jpn., 2018, 91(1), 52-64.
[http://dx.doi.org/10.1246/bcsj.20170289]
[29]
Mandal, U.; Adhikari, A.; Dey, S.; Ghosh, S.; Mondal, S.K.; Bhattacharyya, K. Excitation wavelength dependence of solvation dynamics in a supramolecular assembly: PEO-PPO-PEO triblock copolymer and SDS. J. Phys. Chem. B, 2007, 111(21), 5896-5902.
[http://dx.doi.org/10.1021/jp0689722] [PMID: 17477559]
[30]
Chen, M.; Wu, W.; Chen, Y.; Pan, Q.; Chen, Y.; Zheng, Z.; Zheng, Y.; Huang, L.; Weng, S. Fluorescent sensor constructed from nitrogendoped carbon nanodots (N-CDs) for pH detection in synovial fluid and urea determination. RSC Adv, 2018, 8, 41432-41438.
[31]
Cui, B.; Yan, L.; Gu, H.; Yang, Y.; Liu, X.; Ma, Q.C.; Chen, Y.; Jia, H. Fluorescent carbon quantum dots synthesized by chemical vapor deposition: An alternative candidate for electron acceptor in polymer solar cells. Opt. Mater., 2018, 75, 166-173.
[http://dx.doi.org/10.1016/j.optmat.2017.10.010]
[32]
Wang, F.; Hao, Q.; Zhang, Y.; Xu, Y.; Lei, W. Fluorescence quenchometric method for determination of ferric ion using boron-doped carbon dots. Mikrochim. Acta, 2016, 183(1), 273-279.
[33]
Bharathi, D.; Siddlingeshwar, B.; Krishna, R.H.; Singh, V.; Kottam, N.; Divakar, D.D.; Alkheraif, A.A. Green and cost effective synthesis of fluorescent carbon quantum dots for dopamine detection. J. Fluoresc., 2018, 28(2), 573-579.
[http://dx.doi.org/10.1007/s10895-018-2218-3 ] [PMID: 29508118]
[34]
Rurack, K.; Spieles, M. Fluorescence quantum yields of a series of red and near-infrared dyes emitting at 600-1000 nm. Anal. Chem., 2011, 83(4), 1232-1242.
[http://dx.doi.org/10.1021/ac101329h ] [PMID: 21250654]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 3
Year: 2020
Published on: 14 November, 2019
Page: [178 - 188]
Pages: 11
DOI: 10.2174/1877946809666191114143123

Article Metrics

PDF: 18
HTML: 4