Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Modern Catalysts in A3- Coupling Reactions

Author(s): Ali Ramazani*, Hamideh Ahankar, Zahra T. Nafeh and Sang W. Joo*

Volume 23, Issue 25, 2019

Page: [2783 - 2801] Pages: 19

DOI: 10.2174/1385272823666191113160643

Price: $65

Abstract

Propargylamines are an important constituent of diverse, biologically active and industrially valuable compounds. These useful, convenient and effective compounds can be synthesized via the A3-coupling reactions between an aldehyde, amine, and alkyne in the presence of a catalyst. In the past years, most of the catalysts containing transition metals were applied in these reactions, but today, various heterogeneous catalysts, especially nanocatalysts are used. The purpose of this review was to introduce some modern catalysts for the A3-coupling reaction.

Keywords: A3-coupling reaction, aldehyde, amine, alkyne, catalyst, transition metal, nanocatalyst.

Next »
Graphical Abstract
[1]
Shachat, N.; Bagnell, J.J., Jr Reactions of propargyl alcohols and propargylamines with isocyanates. J. Org. Chem., 1963, 28, 991-995.
[http://dx.doi.org/10.1021/jo01039a028]
[2]
Easton, N.R.; Cassady, D.R.; Dillard, R.D. Acetylenic amines. V. Morpholines from substituted N-(2-hydroxyalkyl)-propargylamines. J. Org. Chem., 1963, 28, 448-453.
[http://dx.doi.org/10.1021/jo01037a042]
[3]
Dillard, R.D.; Easton, N.R. Acetylenic amines. X. Piperazines from substituted N-(2-hydroxyalkyl) propargylamines. J. Org. Chem., 1964, 29, 2464-2467.
[http://dx.doi.org/10.1021/jo01031a518]
[4]
Lapin, N.; Yarosh, O.; Dubovikova, L.; Serebrennikova, É.; Ivanova, Z.; Komarov, N.; Voronkov, M. Propargylamines, their organosilicon derivatives, and the bactericidal activity of these compounds. Pharm. Chem. J., 1978, 12, 1622-1625.
[5]
Langston, J.W.; Irwin, I.; Langston, E.B.; Forno, L.S. Pargyline prevents MPTP-induced parkinsonism in primates. Science, 1984, 225(4669), 1480-1482.
[http://dx.doi.org/10.1126/science.6332378] [PMID: 6332378]
[6]
Johannessen, J.N.; Chiueh, C.C.; Bacon, J.P.; Garrick, N.A.; Burns, R.S.; Weise, V.K.; Kopin, I.J.; Parisi, J.E.; Markey, S.P. Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the dog: effect of pargyline pretreatment. J. Neurochem., 1989, 53(2), 582-589.
[http://dx.doi.org/10.1111/j.1471-4159.1989.tb07373.x] [PMID: 2568405]
[7]
Chen, J.J.; Swope, D.M. Clinical pharmacology of rasagiline: a novel, second-generation propargylamine for the treatment of Parkinson disease. J. Clin. Pharmacol., 2005, 45(8), 878-894.
[http://dx.doi.org/10.1177/0091270005277935] [PMID: 16027398]
[8]
Youdim, M.B.; Weinstock, M. Novel neuroprotective anti-Alzheimer drugs with anti-depressant activity derived from the anti-Parkinson drug, rasagiline. Mech. Ageing Dev., 2002, 123(8), 1081-1086.
[http://dx.doi.org/10.1016/S0047-6374(01)00391-8] [PMID: 12044957]
[9]
Birks, J.; Flicker, L. >Selegiline for Alzheimer’s disease. Cochrane Database Syst. Rev., 2003, (1), CD000442..
[http://dx.doi.org/10.1002/14651858.CD000442] [PMID: 12535396]
[10]
Sano, M.; Ernesto, C.; Thomas, R.G.; Klauber, M.R.; Schafer, K.; Grundman, M.; Woodbury, P.; Growdon, J.; Cotman, C.W.; Pfeiffer, E.; Schneider, L.S.; Thal, L.J. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. The Alzheimer’s disease cooperative study. N. Engl. J. Med., 1997, 336(17), 1216-1222.
[http://dx.doi.org/10.1056/NEJM199704243361704] [PMID: 9110909]
[11]
Goad, D.L.; Davis, C.M.; Liem, P.; Fuselier, C.C.; McCormack, J.R.; Olsen, K.M. The use of selegiline in Alzheimer’s patients with behavior problems. J. Clin. Psychiatry, 1991, 52(8), 342-345.
[PMID: 1907964]
[12]
Baranyi, M.; Porceddu, P.F.; Gölöncsér, F.; Kulcsár, S.; Otrokocsi, L.; Kittel, Á.; Pinna, A.; Frau, L.; Huleatt, P.B.; Khoo, M-L.; Chai, C.L.; Dunkel, P.; Mátyus, P.; Morelli, M.; Sperlágh, B. Novel (Hetero)arylalkenyl propargylamine compounds are protective in toxin-induced models of Parkinson’s disease. Mol. Neurodegener., 2016, 11(1), 6.
[http://dx.doi.org/10.1186/s13024-015-0067-y] [PMID: 26758813]
[13]
McCormack, P.L. Rasagiline: a review of its use in the treatment of idiopathic Parkinson’s disease. CNS Drugs, 2014, 28(11), 1083-1097.
[http://dx.doi.org/10.1007/s40263-014-0206-y] [PMID: 25322951]
[14]
Bolea, I.; Gella, A.; Unzeta, M. Propargylamine-derived multitarget-directed ligands: fighting Alzheimer’s disease with monoamine oxidase inhibitors. J. Neural Transm. (Vienna), 2013, 120(6), 893-902.
[http://dx.doi.org/10.1007/s00702-012-0948-y] [PMID: 23238976]
[15]
León, R.; Garcia, A.G.; Marco-Contelles, J. Recent advances in the multitarget-directed ligands approach for the treatment of Alzheimer’s disease. Med. Res. Rev., 2013, 33(1), 139-189.
[http://dx.doi.org/10.1002/med.20248] [PMID: 21793014]
[16]
Bar-Am, O.; Amit, T.; Youdim, M.B.; Weinreb, O. Neuroprotective and neurorestorative potential of propargylamine derivatives in ageing: focus on mitochondrial targets. J. Neural Transm. (Vienna), 2016, 123(2), 125-135.
[http://dx.doi.org/10.1007/s00702-015-1395-3] [PMID: 25859841]
[17]
Gal, S.; Abassi, Z.A.; Youdim, M.B. Limited potentiation of blood pressure in response to oral tyramine by the anti-parkinson brain selective multifunctional monoamine oxidase-AB inhibitor, M30. Neurotox. Res., 2010, 18(2), 143-150.
[http://dx.doi.org/10.1007/s12640-009-9128-8] [PMID: 19894083]
[18]
Peshkov, V.A.; Pereshivko, O.P.; Van der Eycken, E.V. A walk around the A3-coupling. Chem. Soc. Rev., 2012, 41(10), 3790-3807.
[http://dx.doi.org/10.1039/c2cs15356d] [PMID: 22422343]
[19]
Zhu, J.; Wang, Q.; Wang, M. Multicomponent Reactions in Organic Synthesis; John Wiley & Sons, 2014.
[http://dx.doi.org/10.1002/9783527678174]
[20]
Herrera, R.P.; Marqués-López, E. Multicomponent Reactions: Concepts and Applications for Design and Synthesis; John Wiley & Sons, 2015.
[21]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[22]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed. Engl., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[23]
Ahankar, H.; Ramazani, A.; Ślepokura, K.; Lis, T.; Joo, S.W. Synthesis of pyrrolidinone derivatives from aniline, an aldehyde and diethyl acetylenedicarboxylate in an ethanolic citric acid solution under ultrasound irradiation. Green Chem., 2016, 18, 3582-3593.
[http://dx.doi.org/10.1039/C6GC00157B]
[24]
Ramazani, A.; Rezaei, A. Novel one-pot, four-component condensation reaction: an efficient approach for the synthesis of 2,5-disubstituted 1,3,4-oxadiazole derivatives by a Ugi-4CR/aza-wittig sequence. Org. Lett., 2010, 12(12), 2852-2855.
[http://dx.doi.org/10.1021/ol100931q] [PMID: 20481612]
[25]
Aghahosseini, H.; Ramazani, A.; Jalayer, N.S.; Ranjdoost, Z.; Souldozi, A.; Ślepokura, K.; Lis, T. Vinylphosphonium salt-mediated reactions: A one-pot condensation approach for the highly cis-selective synthesis of N-benzoylaziridines and the green synthesis of 1, 4, 2-dioxazoles as two important classes of heterocyclic compounds. Org. Lett., 2019, 21(1), 22-26.
[http://dx.doi.org/10.1021/acs.orglett.8b03388] [PMID: 30565459]
[26]
Amini, I.; Ramazani, A.; Ahankar, H. Synthesis of alkyl 2-(2-Oxo-1, 2-dihydronaphtho [2, 1-b] thiophen-1-yl)-2-(1, 1, 1-triphenyl-λ 5-phosphanylidene) acetates from triphenylphosphine, acetylenic esters, and 2-naphthalenethiol. Phosphorus Sulfur Silicon Relat. Elem., 2008, 183, 1994-1999.
[http://dx.doi.org/10.1080/10426500701839825]
[27]
Ramazani, A.; Nasrabadi, F.Z.; Ahankar, H.; Asiabi, P.A.; Sadri, F.; Joo, S.W. The reaction of N-isocyaniminotriphenylphosphorane (NICITPP) with 2-oxopropyl-1-benzenecarbothioate and a primary amine in the presence of benzoic acid derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191, 230-234.
[http://dx.doi.org/10.1080/10426507.2015.1067213]
[28]
Ramazani, A.; Khoobi, M.; Torkaman, A.; Nasrabadi, F.Z.; Forootanfar, H.; Shakibaie, M.; Jafari, M.; Ameri, A.; Emami, S.; Faramarzi, M.A.; Foroumadi, A.; Shafiee, A. One-pot, four-component synthesis of novel cytotoxic agents 1-(5-aryl-1,3,4-oxadiazol-2-yl)-1-(1H-pyrrol-2-yl) methanamines. Eur. J. Med. Chem., 2014, 78, 151-156.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.049] [PMID: 24681979]
[29]
Tietze, L.F. Concepts for Efficient Organic Synthesis; John Wiley & Sons, 2014.
[30]
Tietze, L.F. Domino reactions in organic synthesis. Chem. Rev., 1996, 96(1), 115-136.
[http://dx.doi.org/10.1021/cr950027e] [PMID: 11848746]
[31]
Zhou, M.; Li, J.; Tian, C.; Sun, X.; Zhu, X.; Cheng, Y.; An, G.; Li, G. A metal-free three-component reaction of trans-β-nitrostyrene dderivatives, dibromo amides, and amines leading to functionalized amidines. J. Org. Chem., 2019, 84(2), 1015-1024.
[http://dx.doi.org/10.1021/acs.joc.8b02998] [PMID: 30592406]
[32]
Vlahoviček-Kahlina, K.; Vazdar, M.; Jakas, A.; Smrečki, V.; Jerić, I. Synthesis of glycomimetics by diastereoselective passerini reaction. J. Org. Chem., 2018, 83(21), 13146-13156.
[http://dx.doi.org/10.1021/acs.joc.8b01874] [PMID: 30354108]
[33]
Lu, L.; Chen, C.; Jiang, H.; Yin, B. Three-component ring-opening reactions of cyclic ethers, α-diazo esters, and weak nucleophiles under metal-free conditions. J. Org. Chem., 2018, 83(23), 14385-14395.
[http://dx.doi.org/10.1021/acs.joc.8b02091] [PMID: 30403140]
[34]
Ramazani, A.; Mahyari, A.; Lashgari, H.; Ślepokura, K.; Lis, T. Silica nanoparticles as a highly efficient catalyst for the one‐pot synthesis of 2‐hydroxyacetamide derivatives from isocyanides and electron‐poor aromatic aldehydes. Helv. Chim. Acta, 2011, 94, 611-622.
[http://dx.doi.org/10.1002/hlca.201000280]
[35]
Massoudi, A.; Amini, I.; Ramazani, A.; Zeinali Nasrabdi, F. Three-component Passerini-Smiles coupling reaction of aldehydes and isocyanides with tropolone catalyzed by silica nanoparticles. Turk. J. Chem., 2012, 36, 537-544.
[36]
Ramazani, A.; Rouhani, M.; Mirhadi, E.; Sheikhi, M.; Ślepokura, K.; Lis, T. Perlite-SO3H nanoparticles as an efficient and reusable catalyst for one-pot three-component synthesis of 1, 2-dihydro-1-aryl-naphtho [1, 2-e][1, 3] oxazine-3-one derivatives under both microwave-assisted and thermal solvent-free conditions: single crystal X-ray structure analysis and theoretical study. Nanochem. Res., 2016, 1, 87-107.
[37]
Singh, S.B. Copper nanocatalysis in multi-component reactions: a green to greener approach. Curr. Catal., 2018, 7, 80-88.
[http://dx.doi.org/10.2174/2211544706666161228143222]
[38]
Das, D. Multicomponent reactions in organic synthesis using copper‐based nanocatalysts. ChemistrySelect, 2016, 1, 1959-1980.
[http://dx.doi.org/10.1002/slct.201600414]
[39]
Mirjafary, Z.; Saeidian, H.; Sadeghi, A.; Moghaddam, F.M. ZnO nanoparticles: an efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multi-component reaction. Catal. Commun., 2008, 9, 299-306.
[http://dx.doi.org/10.1016/j.catcom.2007.06.018]
[40]
Khoobi, M.; Ma’mani, L.; Rezazadeh, F.; Zareie, Z.; Foroumadi, A.; Ramazani, A.; Shafiee, A. One-pot synthesis of 4H-benzo [b] pyrans and dihydropyrano [c] chromenes using inorganic-organic hybrid magnetic nanocatalyst in water. J. Mol. Catal. Chem., 2012, 359, 74-80.
[http://dx.doi.org/10.1016/j.molcata.2012.03.023]
[41]
Ahankar, H.; Ramazani, A.; Joo, S.W. Magnetic nickel ferrite nanoparticles as an efficient catalyst for the preparation of polyhydroquinoline derivatives under microwave irradiation in solvent-free conditions. Res. Chem. Intermed., 2016, 42, 2487-2500.
[http://dx.doi.org/10.1007/s11164-015-2163-6]
[42]
Hosseinzadeh, Z.; Ramazani, A.; Ahankar, H.; Slepokura, K.; Lis, T. Sulfonic acid-functionalized silica-coated magnetic nanoparticles as a reusable catalyst for the preparation of pyrrolidinone derivatives in a green solvent conditions. Silicon, 2019. (in press)
[http://dx.doi.org/ 10.1007/s12633-019-0087-2]
[43]
Ahankar, H.; Ramazani, A.; Slepokura, K.; Lis, T.; Joo, S.W. One-pot synthesis of substituted 4H-chromenes by nickel ferrite nanoparticles as an efficient and magnetically reusable catalyst. Turk. J. Chem., 2018, 42, 719-734.
[44]
Taghavi Fardood, S.; Ramazani, A.; Golfar, Z.; Joo, S.W. Green synthesis of Ni‐Cu‐Zn ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. Appl. Organomet. Chem., 2017, 31e3823
[http://dx.doi.org/10.1002/aoc.3823]
[45]
Ahankar, H.; Ramazani, A.; Fattahi, N.; Ślepokura, K.; Lis, T.; Asiabi, P.A.; Kinzhybalo, V.; Hanifehpour, Y.; Joo, S.W. Tetramethylguanidine-functionalized silica-coated iron oxide magnetic nanoparticles catalyzed one-pot three-component synthesis of furanone derivatives. J. Chem. Sci., 2018, 130(12), 166.
[http://dx.doi.org/10.1007/s12039-018-1572-7]
[46]
Fardood, S.T.; Ramazani, A.; Moradi, S. Green synthesis of Ni–Cu–Mg ferrite nanoparticles using tragacanth gum and their use as an efficient catalyst for the synthesis of polyhydroquinoline derivatives. J. Sol-Gel Sci. Technol., 2017, 82, 432-439.
[http://dx.doi.org/10.1007/s10971-017-4310-6]
[47]
Hosseinzadeh, Z.; Ramazani, A.; Ahankar, H.; Ślepokura, K.; Lis, T. Synthesis of 2-amino-4, 6-diarylnicotinonitrile in the presence of CoFe2O4@SiO2-SO3H as a reusable solid acid nanocatalyst under microwave irradiation in solvent-freeconditions. Silicon, 2019, 11(4), 2169-2176.
[http://dx.doi.org/10.1007/s12633-018-0034-7]
[48]
Ahankar, H.; Ramazani, A.; Ślepokura, K.; Lis, T.; Kinzhybalo, V. Magnetic cobalt ferrite nanoparticles functionalized with citric acid as a green nanocatalyst for one-pot three-component sonochemical synthesis of substituted 3-pyrrolin-2-ones. Res. Chem. Intermed., 2019, 45(10), 5007-5025.
[http://dx.doi.org/10.1007/s11164-019-03878-1]
[49]
Ganem, B. Strategies for innovation in multicomponent reaction design. Acc. Chem. Res., 2009, 42(3), 463-472.
[http://dx.doi.org/10.1021/ar800214s] [PMID: 19175315]
[50]
Ugi, I.; Dömling, A.; Hörl, W. Multicomponent reactions in organic chemistry. Endeavour, 1994, 18, 115-122.
[http://dx.doi.org/10.1016/S0160-9327(05)80086-9]
[51]
Bu, H.; Kjøniksen, A-L.; Knudsen, K.D.; Nyström, B. Rheological and structural properties of aqueous alginate during gelation via the Ugi multicomponent condensation reaction. Biomacromolecules, 2004, 5(4), 1470-1479.
[http://dx.doi.org/10.1021/bm049947+] [PMID: 15244467]
[52]
Nair, V.; Rajesh, C.; Vinod, A.U.; Bindu, S.; Sreekanth, A.R.; Mathen, J.S.; Balagopal, L. Strategies for heterocyclic construction via novel multicomponent reactions based on isocyanides and nucleophilic carbenes. Acc. Chem. Res., 2003, 36(12), 899-907.
[http://dx.doi.org/10.1021/ar020258p] [PMID: 14674781]
[53]
Biggs-Houck, J.E.; Younai, A.; Shaw, J.T. Recent advances in multicomponent reactions for diversity-oriented synthesis. Curr. Opin. Chem. Biol., 2010, 14(3), 371-382.
[http://dx.doi.org/10.1016/j.cbpa.2010.03.003] [PMID: 20392661]
[54]
Ruijter, E.; Scheffelaar, R.; Orru, R.V. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed. Engl., 2011, 50(28), 6234-6246.
[http://dx.doi.org/10.1002/anie.201006515] [PMID: 21710674]
[55]
Rouhani, M.; Ramazani, A.; Joo, S.W. Ultrasonics in isocyanide-based multicomponent reactions: a new, efficient and fast method for the synthesis of fully substituted 1,3,4-oxadiazole derivatives under ultrasound irradiation. Ultrason. Sonochem., 2015, 22, 391-396.
[http://dx.doi.org/10.1016/j.ultsonch.2014.06.017] [PMID: 25060117]
[56]
Jafari, A.; Ramazani, A.; Ahankar, H.; Asiabi, P.A.; Sadri, F.; Joo, S.W. Three-component reaction of N-isocyaniminotriphenylphosphorane (Ph3PNNC), biacetyl, and a carboxylic acid in water. Phosphorus Sulfur Silicon Relat. Elem., 2016, 191, 373-380.
[http://dx.doi.org/10.1080/10426507.2015.1091826]
[57]
Ramazani, A.; Ahmadi, Y.; Rouhani, M.; Shajari, N.; Souldozi, A. The reaction of (N‐isocyanimino) triphenylphosphorane with an electron‐poor α‐haloketone in the presence of aromatic carboxylic acids: A novel three‐component reaction for the synthesis of disubstituted 1,3,4‐oxadiazole derivatives. Heteroatom Chem., 2010, 21, 368-372.
[http://dx.doi.org/10.1002/hc.20626]
[58]
Ghorbani, M.; Mohammadi, B.; Saraii, M.; Masoumi, B.; Abbasian, M.; Ramazani, A.; Slepokura, K.; Lis, T. A three-component reaction for the synthesis of 1-azabicyclo [3.1. 0]hexane-3-enes. Org. Lett., 2016, 18(19), 4759-4761.
[http://dx.doi.org/10.1021/acs.orglett.6b02180] [PMID: 27617698]
[59]
Ahmadi, E.; Mahyari, A.T.; Ramazani, A.; Haghighi, M.N. A novel three-component reaction of dibenzylamine and an aromatic aldehyde with an alkyl isocyanide in the presence of silica gel: an efficient route for the one-pot synthesis of sterically congested 2-(dibenzylamino)-2-aryl acetamide derivatives. Lett. Org. Chem., 2008, 5, 540-543.
[http://dx.doi.org/10.2174/157017808785982158]
[60]
Shajari, N.; Kazemizadeh, A.R.; Ramazani, A. Synthesis of 5-aryl-N-(trichloroacetyl)-1,3,4-oxadiazole-2-carboxamide via three-component reaction of trichloroacetyl isocyanate,(N-isocyanimino) triphenylphosphorane, and benzoic acid derivatives. Turk. J. Chem., 2015, 39, 874-879.
[http://dx.doi.org/10.3906/kim-1501-43]
[61]
von Wangelin, A.J.; Neumann, H.; Gördes, D.; Klaus, S.; Strübing, D.; Beller, M. Multicomponent coupling reactions for organic synthesis: chemoselective reactions with amide-aldehyde mixtures. Chemistry, 2003, 9(18), 4286-4294.
[http://dx.doi.org/10.1002/chem.200305048] [PMID: 14502613]
[62]
Yoshioka, E.; Nishimura, M.; Nakazawa, T.; Kohtani, S.; Miyabe, H. Multicomponent coupling reaction using arynes: synthesis of xanthene derivatives. J. Org. Chem., 2015, 80(16), 8464-8469.
[http://dx.doi.org/10.1021/acs.joc.5b01452] [PMID: 26214735]
[63]
Balme, G. Pyrrole syntheses by multicomponent coupling reactions. Angew. Chem. Int. Ed. Engl., 2004, 43(46), 6238-6241.
[http://dx.doi.org/10.1002/anie.200461073] [PMID: 15558675]
[64]
Powell, D.A.; Batey, R.A. Total synthesis of the alkaloids martinelline and martinellic acid via a hetero Diels-Alder multicomponent coupling reaction. Org. Lett., 2002, 4(17), 2913-2916.
[http://dx.doi.org/10.1021/ol026293d] [PMID: 12182587]
[65]
Yoshioka, E.; Kohtani, S.; Miyabe, H. A multicomponent coupling reaction induced by insertion of arynes into the C=O bond of formamide. Angew. Chem. Int. Ed. Engl., 2011, 50(29), 6638-6642.
[http://dx.doi.org/10.1002/anie.201102088] [PMID: 21626634]
[66]
Cala, L.; Mendoza, A.; Fañanás, F.J.; Rodríguez, F. A catalytic multicomponent coupling reaction for the enantioselective synthesis of spiroacetals. Chem. Commun. (Camb.), 2013, 49(26), 2715-2717.
[http://dx.doi.org/10.1039/c3cc00118k] [PMID: 23435368]
[67]
Majumder, S.; Gipson, K.R.; Staples, R.J.; Odom, A.L. Pyrazole synthesis using a titanium‐catalyzed multicomponent coupling reaction and synthesis of withasomnine. Adv. Synth. Catal., 2009, 351, 2013-2023.
[http://dx.doi.org/10.1002/adsc.200900293]
[68]
Rokade, B.V.; Barker, J.; Guiry, P.J. Development of and recent advances in asymmetric A3 coupling. Chem. Soc. Rev., 2019, 48(18), 4766-4790.
[http://dx.doi.org/10.1039/C9CS00253G] [PMID: 31465045]
[69]
Jesin, I.; Nandi, G.C. Recent advances in the A3 coupling reactions and their applications. Eur. J. Org. Chem., 2019, 2019, 2704-2720.
[http://dx.doi.org/10.1002/ejoc.201900001]
[70]
Carmona, R.C.; Wendler, E.P.; Sakae, G.H.; Comasseto, J.V.; Santos, A.A.D. A3-coupling reaction as a strategy towards the synthesis of alkaloids. J. Braz. Chem. Soc., 2015, 26, 117-123.
[71]
Ghosh, S.; Biswas, K.; Bhattacharya, S.; Ghosh, P.; Basu, B. Effect of the ortho-hydroxy group of salicylaldehyde in the A3 coupling reaction: a metal-catalyst-free synthesis of propargylamine. Beilstein J. Org. Chem., 2017, 13, 552-557.
[http://dx.doi.org/10.3762/bjoc.13.53] [PMID: 28405234]
[72]
Karimi, B.; Gholinejad, M.; Khorasani, M. Highly efficient three-component coupling reaction catalyzed by gold nanoparticles supported on periodic mesoporous organosilica with ionic liquid framework. Chem. Commun. (Camb.), 2012, 48(71), 8961-8963.
[http://dx.doi.org/10.1039/c2cc33320a] [PMID: 22842770]
[73]
González-Béjar, M.; Peters, K.; Hallett-Tapley, G.L.; Grenier, M.; Scaiano, J.C. Rapid one-pot propargylamine synthesis by plasmon mediated catalysis with gold nanoparticles on ZnO under ambient conditions. Chem. Commun. (Camb.), 2013, 49(17), 1732-1734.
[http://dx.doi.org/10.1039/c3cc38287g] [PMID: 23340772]
[74]
Movahedi, F.; Masrouri, H.; Kassaee, M. Immobilized silver on surface-modified ZnO nanoparticles: as an efficient catalyst for synthesis of propargylamines in water. J. Mol. Catal. Chem., 2014, 395, 52-57.
[http://dx.doi.org/10.1016/j.molcata.2014.08.007]
[75]
Zhou, X.; Lu, Y.; Zhai, L-L.; Zhao, Y.; Liu, Q.; Sun, W-Y. Propargylamines formed from three-component coupling reactions catalyzed by silver oxide nanoparticles. Rsc Adv., 2013, 3, 1732-1734.
[http://dx.doi.org/10.1039/C2RA22390B]
[76]
Aguilar, D.; Contel, M.; Urriolabeitia, E.P. Mechanistic insights into the one-pot synthesis of propargylamines from terminal alkynes and amines in chlorinated solvents catalyzed by gold compounds and nanoparticles. Chemistry, 2010, 16(30), 9287-9296.
[http://dx.doi.org/10.1002/chem.201000587] [PMID: 20583055]
[77]
Moghaddam, F.M.; Ayati, S.E.; Hosseini, S.H.; Pourjavadi, A. Gold immobilized onto poly (ionic liquid) functionalized magnetic nanoparticles: a robust magnetically recoverable catalyst for the synthesis of propargylamine in water. Rsc Adv., 2015, 5, 34502-34510.
[http://dx.doi.org/10.1039/C5RA02974K]
[78]
Abahmane, L.; Köhler, J.M.; Gross, G.A. Gold-nanoparticle-catalyzed synthesis of propargylamines: the traditional A3-multicomponent reaction performed as a two-step flow process. Chemistry, 2011, 17(10), 3005-3010.
[http://dx.doi.org/10.1002/chem.201002043] [PMID: 21284044]
[79]
Layek, K.; Chakravarti, R.; Kantam, M.L.; Maheswaran, H.; Vinu, A. Nanocrystalline magnesium oxide stabilized gold nanoparticles: an advanced nanotechnology based recyclable heterogeneous catalyst platform for the one-pot synthesis of propargylamines. Green Chem., 2011, 13, 2878-2887.
[http://dx.doi.org/10.1039/c1gc15518k]
[80]
Sharma, R.; Sharma, S.; Gaba, G. Silica nanospheres supported diazafluorene iron complex: an efficient and versatile nanocatalyst for the synthesis of propargylamines from terminal alkynes, dihalomethane and amines. RSC Adv, 2014, 4, 49198-49211.
[http://dx.doi.org/10.1039/C4RA10384J]
[81]
Lauder, K.; Toscani, A.; Scalacci, N.; Castagnolo, D. Synthesis and reactivity of propargylamines in organic chemistry. Chem. Rev., 2017, 117(24), 14091-14200.
[http://dx.doi.org/10.1021/acs.chemrev.7b00343] [PMID: 29166000]
[82]
Allen, S.E.; Walvoord, R.R.; Padilla-Salinas, R.; Kozlowski, M.C. Aerobic copper-catalyzed organic reactions. Chem. Rev., 2013, 113(8), 6234-6458.
[http://dx.doi.org/10.1021/cr300527g] [PMID: 23786461]
[83]
Alexakis, A.; Krause, N.; Woodward, S. Copper-Catalyzed Asymmetric Synthesis, 2014.
[84]
Guo, X-X.; Gu, D-W.; Wu, Z.; Zhang, W. Copper-catalyzed C-H functionalization reactions: efficient synthesis of heterocycles. Chem. Rev., 2015, 115(3), 1622-1651.
[http://dx.doi.org/10.1021/cr500410y] [PMID: 25531056]
[85]
Evano, G.; Blanchard, N.; Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev., 2008, 108(8), 3054-3131.
[http://dx.doi.org/10.1021/cr8002505] [PMID: 18698737]
[86]
Park, S.B.; Alper, H. An efficient synthesis of propargylamines via C-H activation catalyzed by copper(I) in ionic liquids. Chem. Commun. (Camb.), 2005, (10), 1315-1317.
[http://dx.doi.org/10.1039/B416268D] [PMID: 15742063]
[87]
Shi, L.; Tu, Y-Q.; Wang, M.; Zhang, F-M.; Fan, C-A. Microwave-promoted three-component coupling of aldehyde, alkyne, and amine via C-H activation catalyzed by copper in water. Org. Lett., 2004, 6(6), 1001-1003.
[http://dx.doi.org/10.1021/ol049936t] [PMID: 15012085]
[88]
Bieber, L.W.; da Silva, M.F. Mild and efficient synthesis of propargylamines by copper-catalyzed Mannich reaction. Tetrahedron Lett., 2004, 45, 8281-8283.
[http://dx.doi.org/10.1016/j.tetlet.2004.09.079]
[89]
Fan, W.; Yuan, W.; Ma, S. Unexpected E-stereoselective reductive A3-coupling reaction of terminal alkynes with aldehydes and amines. Nat. Commun., 2014, 5, 3884-3892.
[http://dx.doi.org/10.1038/ncomms4884] [PMID: 24848772]
[90]
Pereshivko, O.P.; Peshkov, V.A.; Van der Eycken, E.V. Unprecedented Cu(I)-catalyzed microwave-assisted three-component coupling of a ketone, an alkyne, and a primary amine. Org. Lett., 2010, 12(11), 2638-2641.
[http://dx.doi.org/10.1021/ol1008312] [PMID: 20441203]
[91]
Feng, H.; Ermolat’ev, D.S.; Song, G.; Van der Eycken, E.V. Synthesis of symmetric 1,4-diamino-2-butynes via a Cu(I)-catalyzed one-pot A3-coupling/decarboxylative coupling of a propiolic acid, an aldehyde, and an amine. J. Org. Chem., 2012, 77(11), 5149-5154.
[http://dx.doi.org/10.1021/jo300562j] [PMID: 22563934]
[92]
Zhao, Y.; Song, Q. Copper-catalyzed tandem A3-coupling-isomerization-hydrolysis reactions of aldehydes and terminal alkynes leading to chalcones. Org. Chem. Front., 2016, 3, 294-297.
[http://dx.doi.org/10.1039/C5QO00282F]
[93]
Chen, M-T.; Navarro, O. N-Heterocyclic carbene (NHC)-copper(I) complexes as catalysts for A3 reactions. Synlett, 2013, 24, 1190-1192.
[http://dx.doi.org/10.1055/s-0033-1338944]
[94]
Zheng, Q.H.; Meng, W.; Jiang, G-J.; Yu, Z-X. CuI-catalyzed C1-alkynylation of tetrahydroisoquinolines (THIQs) by A3 reaction with tunable iminium ions. Org. Lett., 2013, 15(23), 5928-5931.
[http://dx.doi.org/10.1021/ol402517e] [PMID: 24237286]
[95]
Chen, H.B.; Zhao, Y.; Liao, Y. Aldehyde-alkyne-amine (A3) coupling catalyzed by a highly efficient dicopper complex. Rsc Adv., 2015, 5, 37737-37741.
[http://dx.doi.org/10.1039/C5RA04729C]
[96]
Periasamy, M.; Reddy, P.O.; Satyanarayana, I.; Mohan, L.; Edukondalu, A. Diastereoselective synthesis of tetrasubstituted propargylamines via hydroamination and metalation of 1-alkynes and their enantioselective conversion to trisubstituted chiral allenes. J. Org. Chem., 2016, 81(3), 987-999.
[http://dx.doi.org/10.1021/acs.joc.5b02554] [PMID: 26726072]
[97]
Choi, Y.J.; Jang, H.Y. Copper‐catalyzed A3‐coupling: synthesis of 3‐amino‐1, 4‐diynes. Eur. J. Org. Chem., 2016, 2016(18), 3047-3050.
[http://dx.doi.org/10.1002/ejoc.201600343]
[98]
Kashid, V.S.; Balakrishna, M.S. Microwave-assisted copper (I) catalyzed A3-coupling reaction: reactivity, substrate scope and the structural characterization of two coupling products. Catal. Commun., 2018, 103, 78-82.
[http://dx.doi.org/10.1016/j.catcom.2017.09.020]
[99]
Cammarata, J.R.; Rivera, R.; Fuentes, F.; Otero, Y.; Ocando-Mavárez, E.; Arce, A.; Garcia, J.M. Single and double A3-coupling (aldehyde-amine-alkyne) reaction catalyzed by an air stable copper(I)-phosphole complex. Tetrahedron Lett., 2017, 58, 4078-4081.
[http://dx.doi.org/10.1016/j.tetlet.2017.09.031]
[100]
Saeidian, H.; Faghfori, M.; Abdoli, M. Green and efficient synthesis of propargylamines via A3 coupling reaction using a copper (II)–thioamide combination. Iran. Chem. Commun., 2018, 6, 408-415.
[101]
Li, P.; Regati, S.; Huang, H-C.; Arman, H.D.; Chen, B-L.; Zhao, J.C-G. A sulfonate-based Cu(I) metal-organic framework as a highly efficient and reusable catalyst for the synthesis of propargylamines under solvent-free conditions. Chin. Chem. Lett., 2015, 26, 6-10.
[http://dx.doi.org/10.1016/j.cclet.2014.10.022]
[102]
Loukopoulos, E.; Kallitsakis, M.; Tsoureas, N.; Abdul-Sada, A.; Chilton, N.F.; Lykakis, I.N.; Kostakis, G.E. Cu (II) coordination polymers as vehicles in the A3 coupling. Inorg. Chem., 2017, 56(9), 4898-4910.
[http://dx.doi.org/10.1021/acs.inorgchem.6b03084] [PMID: 28394133]
[103]
Grirrane, A.; Álvarez, E.; García, H.; Corma, A. Cationic copper(I) complexes as highly efficient catalysts for single and double A3-coupling Mannich reactions of terminal alkynes: mechanistic insights and comparative studies with analogous gold(I) complexes. Chemistry, 2014, 20(44), 14317-14328.
[http://dx.doi.org/10.1002/chem.201403927] [PMID: 25212722]
[104]
Rosales, J.; Garcia, J.M.; Ávila, E.; González, T.; Coll, D.S.; Ocando-Mavárez, E. A novel tetramer copper (I) complex containing diallylphosphine ligands: synthesis, characterization and catalytic application in A3-coupling (aldehyde-amine-alkyne) reactions. Inorg. Chim. Acta, 2017, 467, 155-162.
[http://dx.doi.org/10.1016/j.ica.2017.07.038]
[105]
Rasheed, O.K.; Bawn, C.; Davies, D.; Raftery, J.; Vitorica‐Yrzebal, I.; Pritchard, R.; Zhou, H.; Quayle, P. The synthesis of group 10 and 11 metal complexes of 3, 6, 9‐trithia‐1‐(2, 6)‐pyridinacyclodecaphane and their use in A3‐coupling reactions. Eur. J. Org. Chem., 2017, 2017, 5252-5261.
[http://dx.doi.org/10.1002/ejoc.201701033]
[106]
Zhu, N-X.; Zhao, C-W.; Yang, J.; Wang, X-R.; Ma, J-P.; Dong, Y-B. Synthesis, structure and multifunctional catalytic properties of a Cu(I)-coordination polymer with outer-hanging CuBr2. Rsc Adv., 2016, 6, 108645-108653.
[http://dx.doi.org/10.1039/C6RA20767G]
[107]
Yu, C-X.; Hu, F-L.; Liu, M-Y.; Zhang, C-W.; Lv, Y-H.; Mao, S-K.; Liu, L-L. Construction of four copper coordination polymers derived from a tetra-pyridyl-functionalized calix [4] arene: synthesis, structural diversity, and catalytic applications in the A3 (aldehyde, alkyne, and amine) coupling reaction. Cryst. Growth Des., 2017, 17, 5441-5448.
[http://dx.doi.org/10.1021/acs.cgd.7b00898]
[108]
Zhao, C.; Seidel, D. Enantioselective A(3) reactions of secondary amines with a Cu(I)/acid-thiourea catalyst combination. J. Am. Chem. Soc., 2015, 137(14), 4650-4653.
[http://dx.doi.org/10.1021/jacs.5b02071] [PMID: 25835280]
[109]
Li, Z.; Jiang, Z.; Su, W. Fast, solvent-free, highly enantioselective three-component coupling of aldehydes, alkynes, and amines catalysed by the copper (II) pybox complex under high-vibration ball-milling. Green Chem., 2015, 17, 2330-2334.
[http://dx.doi.org/10.1039/C5GC00079C]
[110]
Gao, X-T.; Gan, C-C.; Liu, S-Y.; Zhou, F.; Wu, H-H.; Zhou, J. Utilization of CO2 as a C1 building block in a tandem asymmetric A3 coupling-carboxylative cyclization sequence to 2-oxazolidinones. ACS Catal., 2017, 7, 8588-8593.
[http://dx.doi.org/10.1021/acscatal.7b03370]
[111]
Sharghi, H.; Shiri, P.; Aberi, M. A solvent-free and one-pot strategy for ecocompatible synthesis of substituted benzofurans from various salicylaldehydes, secondary amines, and nonactivated alkynes catalyzed by copper (I) oxide nanoparticles. Synthesis, 2014, 46, 2489-2498.
[http://dx.doi.org/10.1055/s-0034-1378206]
[112]
Zeng, T.; Ma, Y-R.; Niu, H-Y.; Cai, Y-Q. A novel Fe3O4-graphene-Au multifunctional nanocomposite: green synthesis and catalytic application. J. Mater. Chem., 2012, 22, 18658-18663.
[http://dx.doi.org/10.1039/c2jm34198k]
[113]
Prakash, A.; Chandra, S.; Bahadur, D. Structural, magnetic, and textural properties of iron oxide-reduced graphene oxide hybrids and their use for the electrochemical detection of chromium. Carbon, 2012, 50, 4209-4219.
[http://dx.doi.org/10.1016/j.carbon.2012.05.002]
[114]
Mirabedini, M.; Motamedi, E.; Kassaee, M.Z. Magnetic CuO nanoparticles supported on graphene oxide as an efficient catalyst for A3-coupling synthesis of propargylamines. Chin. Chem. Lett., 2015, 26, 1085-1090.
[http://dx.doi.org/10.1016/j.cclet.2015.05.021]
[115]
Gulati, U.; Rajesh, U.C.; Rawat, D.S. CuO/Fe2O3 NPs: Robust and magnetically recoverable nanocatalyst for decarboxylative A3 and KA2 coupling reactions under neat conditions. Tetrahedron Lett., 2016, 57, 4468-4472.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.066]
[116]
Saadati, F.; Leghaei, V.; Zamani, A. Environmentally benign copper nanoparticles supported on walnut shell as a highly durable nanocatalyst for the synthesis of propargylamines. J. Serb. Chem. Soc., 2017, 82, 1211-1221.
[http://dx.doi.org/10.2298/JSC161221081S]
[117]
Zhang, J.Y.; Huang, X.; Shen, Q.Y.; Wang, J.Y.; Song, G.H. Room temperature multicomponent synthesis of diverse propargylamines using magnetic CuFe2O4 nanoparticle as an efficient and reusable catalyst. Chin. Chem. Lett., 2017, 29(1), 197-200.
[118]
Srinivas, V.; Koketsu, M. Synthesis of indole-2-, 3-, or 5-substituted propargylamines via gold (III)-catalyzed three component reaction of aldehyde, alkyne, and amine in aqueous medium. Tetrahedron, 2013, 69, 8025-8033.
[http://dx.doi.org/10.1016/j.tet.2013.06.098]
[119]
Lo, V.K.Y.; Liu, Y.; Wong, M-K.; Che, C.M. Gold(III) Salen complex-catalyzed synthesis of propargylamines via a three-component coupling reaction. Org. Lett., 2006, 8(8), 1529-1532.
[http://dx.doi.org/10.1021/ol0528641] [PMID: 16597102]
[120]
Lo, V.K-Y.; Kung, K.K-Y.; Wong, M-K.; Che, C-M. Gold (III)(C^N) complex-catalyzed synthesis of propargylamines via a three-component coupling reaction of aldehydes, amines and alkynes. J. Organomet. Chem., 2009, 694, 583-591.
[http://dx.doi.org/10.1016/j.jorganchem.2008.12.008]
[121]
Kantam, M.L.; Prakash, B.V.; Reddy, C.R.V.; Sreedhar, B. Layered double hydroxide-supported gold catalyst for three-component aldehyde-amine-alkyne coupling. Synlett, 2005, 2005(15), 2329-2332.
[http://dx.doi.org/10.1055/s-2005-872677]
[122]
Lili, L.; Xin, Z.; Jinsen, G.; Chunming, X. Engineering metal-organic frameworks immobilize gold catalysts for highly efficient one-pot synthesis of propargylamines. Green Chem., 2012, 14, 1710-1720.
[http://dx.doi.org/10.1039/c2gc35284b]
[123]
Wei, C.; Li, Z.; Li, C-J. The first silver-catalyzed three-component coupling of aldehyde, alkyne, and amine. Org. Lett., 2003, 5(23), 4473-4475.
[http://dx.doi.org/10.1021/ol035781y] [PMID: 14602028]
[124]
Maggi, R.; Bello, A.; Oro, C.; Sartori, G.; Soldi, L. AgY zeolite as catalyst for the effective three-component synthesis of propargylamines. Tetrahedron, 2008, 64, 1435-1439.
[http://dx.doi.org/10.1016/j.tet.2007.11.043]
[125]
Jeganathan, M.; Dhakshinamoorthy, A.; Pitchumani, K. One-pot synthesis of propargylamines using Ag (I)-exchanged K10 montmorillonite clay as reusable catalyst in water. ACS Sustain. Chem. Eng., 2014, 2, 781-787.
[http://dx.doi.org/10.1021/sc400450t]
[126]
Yao, X.; Li, C-J. Phosphine-triggered complete chemo-switch: from efficient aldehyde-alkyne-amine coupling to efficient aldehyde-alkyne coupling in water. Org. Lett., 2005, 7(20), 4395-4398.
[http://dx.doi.org/10.1021/ol051575+] [PMID: 16178542]
[127]
Price, G.A.; Brisdon, A.K.; Flower, K.R.; Pritchard, R.G.; Quayle, P. Solvent effects in gold-catalysed A3-coupling reactions. Tetrahedron Lett., 2014, 55, 151-154.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.141]
[128]
Price, G.A.; Brisdon, A.K.; Randall, S.; Lewis, E.; Whittaker, D.M.; Pritchard, R.G.; Muryn, C.A.; Flower, K.R.; Quayle, P. Some insights into the gold-catalysed A3-coupling reaction. J. Organomet. Chem., 2017, 846, 251-262.
[http://dx.doi.org/10.1016/j.jorganchem.2017.06.019]
[129]
Zhang, F.; Lai, Q.; Shi, X.; Song, Z. Triazole-gold (TAAu) catalyzed three-component coupling (A3 reaction) towards the synthesis of 2, 4-disubstituted quinoline derivatives. Chin. Chem. Lett., 2019, 30, 392-394.
[http://dx.doi.org/10.1016/j.cclet.2018.05.036]
[130]
Trose, M.; Dell’Acqua, M.; Pedrazzini, T.; Pirovano, V.; Gallo, E.; Rossi, E.; Caselli, A.; Abbiati, G. [Silver(I)(pyridine-containing ligand)] complexes as unusual catalysts for A(3)-coupling reactions. J. Org. Chem., 2014, 79(16), 7311-7320.
[http://dx.doi.org/10.1021/jo500981r] [PMID: 25051223]
[131]
He, Y.; Lv, M.F.; Cai, C. A simple procedure for polymer-supported N-heterocyclic carbene silver complex via click chemistry: an efficient and recyclable catalyst for the one-pot synthesis of propargylamines. Dalton Trans., 2012, 41(40), 12428-12433.
[http://dx.doi.org/10.1039/c2dt31609a] [PMID: 22940886]
[132]
Loukopoulos, E.; Abdul-Sada, A.; Viseux, E.M.; Lykakis, I.N.; Kostakis, G.E. Structural diversity and catalytic properties in a family of Ag(I)-benzotriazole based coordination compounds. Cryst. Growth Des., 2018, 18, 5638-5651.
[http://dx.doi.org/10.1021/acs.cgd.8b00960]
[133]
Kumar, G.; Pandey, S.; Gupta, R. Ag-based coordination polymers based on metalloligands and their catalytic performance in multicomponent A3-coupling reactions. Cryst. Growth Des., 2018, 18, 5501-5511.
[http://dx.doi.org/10.1021/acs.cgd.8b00833]
[134]
Beillard, A.; Métro, T.X.; Bantreil, X.; Martinez, J.; Lamaty, F. A3‐coupling reaction and [Ag (IPr)2] PF6: a successful couple. Eur. J. Org. Chem., 2017, 2017(31), 4642-4647.
[http://dx.doi.org/10.1002/ejoc.201700985]
[135]
Cao, J.; Xu, G.; Li, P.; Tao, M.; Zhang, W. Polyacrylonitrile fiber supported N-heterocyclic carbene Ag(I) as efficient catalysts for three-component coupling and intramolecular 1, 3-dipolar cycloaddition reactions under flow conditions. ACS Sustain. Chem. Eng., 2017, 5, 3438-3447.
[http://dx.doi.org/10.1021/acssuschemeng.7b00103]
[136]
Datta, K.K.; Reddy, B.V.; Ariga, K.; Vinu, A. Gold nanoparticles embedded in a mesoporous carbon nitride stabilizer for highly efficient three-component coupling reaction. Angew. Chem. Int. Ed. Engl., 2010, 49(34), 5961-5965.
[http://dx.doi.org/10.1002/anie.201001699] [PMID: 20645367]
[137]
Kidwai, M.; Bansal, V.; Kumar, A.; Mozumdar, S. The first Au-nanoparticles catalyzed green synthesis of propargylamines via a three-component coupling reaction of aldehyde, alkyne and amine. Green Chem., 2007, 9, 742-745.
[http://dx.doi.org/10.1039/b702287e]
[138]
Corma, A.; Navas, J.; Sabater, M.J. Coupling of two multistep catalytic cycles for the one-pot synthesis of propargylamines from alcohols and primary amines on a nanoparticulated gold catalyst. Chemistry, 2012, 18(44), 14150-14156.
[http://dx.doi.org/10.1002/chem.201201837] [PMID: 22996294]
[139]
Zeng, T.; Chen, W-W.; Cirtiu, C.M.; Moores, A.; Song, G.; Li, C-J. Fe3O4 nanoparticles: a robust and magnetically recoverable catalyst for three-component coupling of aldehyde, alkyne and amine. Green Chem., 2010, 12, 570-573.
[http://dx.doi.org/10.1039/b920000b]
[140]
Shylesh, S.; Schünemann, V.; Thiel, W.R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl., 2010, 49(20), 3428-3459.
[http://dx.doi.org/10.1002/anie.200905684] [PMID: 20419718]
[141]
Sadri, F.; Ramazani, A.; Massoudi, A.; Khoobi, M.; Tarasi, R.; Shafiee, A.; Azizkhani, V.; Dolatyari, L.; Joo, S.W. Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst. Green Chem. Lett. Rev., 2014, 7, 257-264.
[http://dx.doi.org/10.1080/17518253.2014.939721]
[142]
Elhampour, A.; Nemati, F.; Heravi, M.M. Nano Ag-doped magnetic-Fe3O4@ mesoporous TiO2 core-shell hollow spheres: synthesis and enhanced catalytic activity in A3 and KA2 coupling reactions. Monatsh. Chem., 2017, 148, 1793-1805.
[http://dx.doi.org/10.1007/s00706-017-1948-2]
[143]
Munshi, A.M.; Shi, M.; Thomas, S.P.; Saunders, M.; Spackman, M.A.; Iyer, K.S.; Smith, N.M. Magnetically recoverable Fe3O4@Au-coated nanoscale catalysts for the A3-coupling reaction. Dalton Trans., 2017, 46(16), 5133-5137.
[http://dx.doi.org/10.1039/C7DT00058H] [PMID: 28350409]
[144]
Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem. Soc. Rev., 2011, 40(7), 3941-3994.
[http://dx.doi.org/10.1039/c0cs00108b] [PMID: 21566801]
[145]
Lam, E.; Hrapovic, S.; Majid, E.; Chong, J.H.; Luong, J.H. Catalysis using gold nanoparticles decorated on nanocrystalline cellulose. Nanoscale, 2012, 4(3), 997-1002.
[http://dx.doi.org/10.1039/c2nr11558a] [PMID: 22218753]
[146]
Huang, J-L.; Gray, D.G.; Li, C-J.A. (3)-Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films. Beilstein J. Org. Chem., 2013, 9, 1388-1396.
[http://dx.doi.org/10.3762/bjoc.9.155] [PMID: 23946833]
[147]
Aghahosseini, H.; Tabatabaei Rezaei, S.J.; Tadayyon, M.; Ramazani, A.; Amani, V.; Ahmadi, R.; Abdolahnjadian, D. Highly efficient aqueous synthesis of propargylamines through C-H activation catalyzed by magnetic organosilica‐supported gold nanoparticles as an artificial metalloenzyme. Eur. J. Inorg. Chem., 2018, 2018, 2589-2598.
[http://dx.doi.org/10.1002/ejic.201800085]
[148]
Gurumurthi, S.; Sundari, V.; Valliappan, R. An efficient and convenient approach to synthesis of tetrahydrobenzo [b] pyran derivatives using tetrabutylammonium bromide as catalyst. J. Chem., 2009, 6, S466-S472.
[149]
Ramu, E.; Varala, R.; Sreelatha, N.; Adapa, S.R. Zn(OAc)2.2H2O: a versatile catalyst for the one-pot synthesis of propargylamines. Tetrahedron Lett., 2007, 48, 7184-7190.
[http://dx.doi.org/10.1016/j.tetlet.2007.07.196]
[150]
Mishra, S.; Bagdi, A.K.; Ghosh, M.; Sinha, S.; Hajra, A. Zinc iodide: a mild and efficient catalyst for one-pot synthesis of aminoindolizines via sequential A3 coupling/cycloisomerization. RSC Adv, 2014, 4, 6672-6676.
[http://dx.doi.org/10.1039/c3ra46513f]
[151]
Sugiishi, T.; Nakamura, H. Zinc(II)-catalyzed redox cross-dehydrogenative coupling of propargylic amines and terminal alkynes for synthesis of N-tethered 1,6-enynes. J. Am. Chem. Soc., 2012, 134(5), 2504-2507.
[http://dx.doi.org/10.1021/ja211092q] [PMID: 22283631]
[152]
Khalifeh, R.; Sharghi, H.; Rashidi, Z. Synthesis of [Zn(II) BHPPDAH] as new heterogeneous catalyst without being immobilized on any support and applied for Mannich reaction. Heteroatom Chem., 2013, 24, 372-383.
[http://dx.doi.org/10.1002/hc.21103]
[153]
Qiu, Y.; Qin, Y.; Ma, Z.; Xia, W. Chitosan-supported zinc nitrate: preparation and catalyst for condensation reaction of aldehydes, amines, and terminal alkynes leading to the formation of propargylamines. Chem. Lett., 2014, 43, 1284-1286.
[http://dx.doi.org/10.1246/cl.140426]
[154]
Layek, S.; Agrahari, B.; Kumari, S.; Pathak, D.D. [Zn (L-proline)2] catalyzed one-pot synthesis of propargylamines under solvent-free conditions. Catal. Lett., 2018, 148, 2675-2682.
[http://dx.doi.org/10.1007/s10562-018-2449-6]
[155]
Sarode, P.B.; Bahekar, S.P.; Chandak, H.S. Zn(OTf)2-mediated expeditious and solvent-free synthesis of propargylamines via C–H activation of phenylacetylene. Synlett, 2016, 27, 2209-2212.
[http://dx.doi.org/10.1055/s-0035-1562114]
[156]
Shahamat, Z.; Nemati, F.; Elhampour, A. One-pot synthesis of propargylamines using magnetic mesoporous polymelamine formaldehyde/zinc oxide nanocomposite as highly efficient, eco-friendly and durable nanocatalyst: optimization by DOE approach. Mol. Divers., 2019. (Epub ahead of print)
[http://dx.doi.org/10.1007/s11030-019-09977-w] [PMID: 31359369]
[157]
Sakaguchi, S.; Mizuta, T.; Furuwan, M.; Kubo, T.; Ishii, Y. Iridium-catalyzed coupling of simple primary or secondary amines, aldehydes and trimethylsilylacetylene: preparation of propargylic amines. Chem. Commun. (Camb.), 2004, 35(14), 1638-1639.
[http://dx.doi.org/10.1039/b404430d] [PMID: 15263956]
[158]
Fischer, C.; Carreira, E.M. Direct addition of TMS-acetylene to aldimines catalyzed by a simple, commercially available Ir(I) complex. Org. Lett., 2001, 3(26), 4319-4321.
[http://dx.doi.org/10.1021/ol017022q] [PMID: 11784207]
[159]
Fischer, C.; Carreira, E.M. MgI2 as an additive in Ir (I)-catalyzed addition of silylacetylenes to imines: expeditious synthesis of propargylic amines. Synthesis, 2004, 9, 1497-1503.
[160]
Dhondi, P.K.; Carberry, P.; Choi, L.B.; Chisholm, J.D. Addition of alkynes to aldehydes and activated ketones catalyzed by rhodium-phosphine complexes. J. Org. Chem., 2007, 72(25), 9590-9596.
[http://dx.doi.org/10.1021/jo701643h] [PMID: 17999525]
[161]
Dhondi, P.K.; Chisholm, J.D. Rhodium-catalyzed addition of alkynes to activated ketones and aldehydes. Org. Lett., 2006, 8(1), 67-69.
[http://dx.doi.org/10.1021/ol0525260] [PMID: 16381569]
[162]
Chen, W-W.; Bi, H-P.; Li, C-J. The first cobalt-catalyzed transformation of alkynyl CH bond: Aldehyde-Alkyne-Amine (A3) coupling. Synlett, 2010, 3, 475-479.
[163]
Tang, Y.; Xiao, T.; Zhou, L. Cobalt-catalyzed alkyne-dihalomethane-amine coupling: an efficient route for propargylamines. Tetrahedron Lett., 2012, 53, 6199-6201.
[http://dx.doi.org/10.1016/j.tetlet.2012.08.136]
[164]
Bhatte, K.D.; Sawant, D.N.; Deshmukh, K.M.; Bhanage, B.M. Nanosize Co3O4 as a novel, robust, efficient and recyclable catalyst for A3-coupling reaction of propargylamines. Catal. Commun., 2011, 16, 114-119.
[http://dx.doi.org/10.1016/j.catcom.2011.09.012]
[165]
Rubio-Pérez, L.; Iglesias, M.; Munárriz, J.; Polo, V.; Sanz Miguel, P.J.; Pérez-Torrente, J.J.; Oro, L.A. A bimetallic iridium(ii) catalyst: [Ir(IDipp)(H)2][BF4]2 (IDipp = 1,3-bis(2,6-diisopropylphenylimidazol-2-ylidene)). Chem. Commun. (Camb.), 2015, 51(48), 9860-9863.
[http://dx.doi.org/10.1039/C5CC03296B] [PMID: 25993531]
[166]
Rubio-Pérez, L.; Iglesias, M.; Munárriz, J.; Polo, V.; Pérez-Torrente, J.J.; Oro, L.A. Efficient rhodium‐catalyzed multicomponent reaction for the synthesis of novel propargylamines. Chemistry, 2015, 21(49), 17701-17707.
[http://dx.doi.org/10.1002/chem.201502993]] [PMID: 26490447]
[167]
Sakai, N.; Kanada, R.; Hirasawa, M.; Konakahara, T. Facile and convenient synthesis of functionalized propargylic alcohols and amines: an InBr3–Et3N reagent system promotes the alkynylation of aldehydes and N, O-or N,S-acetals. Tetrahedron, 2005, 61, 9298-9304.
[http://dx.doi.org/10.1016/j.tet.2005.07.059]
[168]
Zhang, Y.; Li, P.; Wang, M.; Wang, L. Indium-catalyzed highly efficient three-component coupling of aldehyde, alkyne, and amine via C-H bond activation. J. Org. Chem., 2009, 74(11), 4364-4367.
[http://dx.doi.org/10.1021/jo900507v] [PMID: 19422248]
[169]
Yadav, J.; Reddy, B.S.; Gopal, A.H.; Patil, K. InBr3-catalyzed three-component reaction: a facile synthesis of propargyl amines. Tetrahedron Lett., 2009, 50, 3493-3496.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.014]
[170]
Ji, D-M.; Xu, M-H. InBr3-catalyzed direct alkynylation of nitrones with terminal alkynes: an efficient synthesis of N-hydroxy-propargyl amines. Tetrahedron Lett., 2009, 50, 2952-2955.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.206]
[171]
Traverse, J.F.; Hoveyda, A.H.; Snapper, M.L. Enantioselective synthesis of propargylamines through Zr-catalyzed addition of mixed alkynylzinc reagents to arylimines. Org. Lett., 2003, 5(18), 3273-3275.
[http://dx.doi.org/10.1021/ol035138b] [PMID: 12943405]
[172]
Akullian, L.C.; Snapper, M.L.; Hoveyda, A.H. Three-component enantioselective synthesis of propargylamines through Zr-catalyzed additions of alkyl zinc reagents to alkynylimines. Angew. Chem. Int. Ed. Engl., 2003, 42(35), 4244-4247.
[http://dx.doi.org/10.1002/anie.200352081] [PMID: 14502747]
[173]
Rahman, M.; Bagdi, A.K.; Majee, A.; Hajra, A. Nano indium oxide catalyzed efficient synthesis of propargylamines via C–H and C–Cl bond activations. Tetrahedron Lett., 2011, 52, 4437-4439.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.067]
[174]
da Silva, T.L.; Rambo, R.S.; da Silveira Rampon, D.; Radatz, C.S.; Benvenutti, E.V.; Russowsky, D.; Schneider, P.H. Covalently immobilized indium (III) composite (In/SiO2) as highly efficient reusable catalyst for A3-coupling of aldehydes, alkynes and amines under solvent-free conditions. J. Mol. Catal. Chem., 2015, 399, 71-78.
[http://dx.doi.org/10.1016/j.molcata.2015.01.021]
[175]
Li, P.; Zhang, Y.; Wang, L. Iron-catalyzed ligand-free three-component coupling reactions of aldehydes, terminal alkynes, and amines. Chemistry, 2009, 15(9), 2045-2049.
[http://dx.doi.org/10.1002/chem.200802643] [PMID: 19177481]
[176]
Gao, J.; Song, Q-W.; He, L-N.; Yang, Z-Z.; Dou, X-Y. Efficient iron(III)-catalyzed three-component coupling reaction of alkynes, CH2Cl2 and amines to propargylamines. Chem. Commun. (Camb.), 2012, 48(14), 2024-2026.
[http://dx.doi.org/10.1039/c2cc17616e] [PMID: 22234426]
[177]
Chen, W-W.; Nguyen, R.V.; Li, C-J. Iron-catalyzed three-component coupling of aldehyde, alkyne, and amine under neat conditions in air. Tetrahedron Lett., 2009, 50, 2895-2898.
[http://dx.doi.org/10.1016/j.tetlet.2009.03.182]
[178]
Namitharan, K.; Pitchumani, K. Nickel‐catalyzed solvent‐free three‐component coupling of aldehyde, alkyne and amine. Eur. J. Org. Chem., 2010, 2010, 411-415.
[http://dx.doi.org/10.1002/ejoc.200901084]
[179]
Lanke, S.R.; Bhanage, B.M. Nickel‐catalyzed three‐component coupling reaction of terminal alkynes, dihalomethane and amines to propargylamines. Appl. Organomet. Chem., 2013, 27, 729-733.
[http://dx.doi.org/10.1002/aoc.3071]
[180]
Kaur, S.; Kumar, M.; Bhalla, V. Aggregates of perylene bisimide stabilized superparamagnetic Fe3O4 nanoparticles: an efficient catalyst for the preparation of propargylamines and quinolines via C-H activation. Chem. Commun. (Camb.), 2015, 51(91), 16327-16330.
[http://dx.doi.org/10.1039/C5CC05752C] [PMID: 26399895]
[181]
Manikandan, R.; Anitha, P.; Viswanathamurthi, P.; Malecki, J.G. Palladium (II) pyridoxal thiosemicarbazone complexes as efficient and recyclable catalyst for the synthesis of propargylamines by a three‐component coupling reactions in ionic liquids. Polyhedron, 2016, 119, 300-306.
[http://dx.doi.org/10.1016/j.poly.2016.09.005]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy