Identification of Indium Tin Oxide Nanoparticle-Binding Peptides via Phage Display and Biopanning Under Various Buffer Conditions

Author(s): Hikaru Nakazawa, Mitsuo Umetsu*, Tatsuya Hirose, Takamitsu Hattori, Izumi Kumagai

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 6 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: By recent advances in phage-display approaches, many oligopeptides exhibiting binding affinities for metal oxides have been identified. Indium tin oxide is one of the most widely used conductive oxides, because it has a large band gap of 3.7–4.0 eV. In recent years, there have been reports about several ITO-based biosensors. Development of an ITO binding interface for the clustering of sensor proteins without complex bioconjugates is required.

Objective: In this article, we aimed to identify peptides that bind to indium tin oxide nanoparticles via different binding mechanisms.

Methods: Indium tin oxide nanoparticles binding peptide ware selected using phage display and biopanning against indium tin oxide, under five different buffer conditions and these peptides characterized about binding affinity and specificity.

Results: Three types of indium tin oxide nanoparticles-binding peptides were selected from 10 types of peptide candidates identified in phage display and biopanning. These included ITOBP8, which had an acidic isoelectric point, and was identified when a buffer containing guanidine was used, and ITOBP6 and ITOBP7, which contained a His-His-Lys sequence at their N-termini, and were identified when a highly concentrated phosphate elution buffer with a low ionic strength was used. Among these peptides, ITOBP6 exhibited the strongest indium tin oxide nanoparticlesbinding affinity (dissociation constant, 585 nmol/L; amount of protein bound at saturation, 17.5 nmol/m 2 - particles).

Conclusion: These results indicate that peptides with specific binding properties can be obtained through careful selection of the buffer conditions in which the biopanning procedure is performed.

Keywords: Biopanning, indium tin oxide, inorganic material, peptide, phage display, evolution.

Brown, S. Engineered iron oxide-adhesion mutants of the Escherichia coli phage lambda receptor. Proc. Natl. Acad. Sci. USA, 1992, 89(18), 8651-8655.
[] [PMID: 1528875]
Whaley, S.R.; English, D.S.; Hu, E.L.; Barbara, P.F.; Belcher, A.M. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature, 2000, 405(6787), 665-668.
[] [PMID: 10864319]
Kriplani, U.; Kay, B.K. Selecting peptides for use in nanoscale materials using phage-displayed combinatorial peptide libraries. Curr. Opin. Biotechnol., 2005, 16(4), 470-475.
[] [PMID: 16019201]
Mao, C.; Solis, D.J.; Reiss, B.D.; Kottmann, S.T.; Sweeney, R.Y.; Hayhurst, A.; Georgiou, G.; Iverson, B.; Belcher, A.M. Virus-based toolkit for the directed synthesis of magnetic and semiconducting nanowires. Science, 2004, 303(5655), 213-217.
[] [PMID: 14716009]
Park, T.J.; Lee, S.Y.; Lee, S.J.; Park, J.P.; Yang, K.S.; Lee, K.B.; Ko, S.; Park, J.B.; Kim, T.; Kim, S.K.; Shin, Y.B.; Chung, B.H.; Ku, S.J.; Kim, D.H.; Choi, I.S. Protein nanopatterns and biosensors using gold binding polypeptide as a fusion partner. Anal. Chem., 2006, 78(20), 7197-7205.
[] [PMID: 17037921]
Gronewold, T.M.; Baumgartner, A.; Weckmann, A.; Knekties, J.; Egler, C. Selection process generating peptide aptamers and analysis of their binding to the TiO2 surface of a surface acoustic wave sensor. Acta Biomater., 2009, 5(2), 794-800.
[] [PMID: 18977188]
Pavan, S.; Berti, F. Short peptides as biosensor transducers. Anal. Bioanal. Chem., 2012, 402(10), 3055-3070.
[] [PMID: 22169951]
Ma, Z.; Li, Z.; Liu, K.; Ye, C.; Sorger, V.J. Indium-Tin-Oxide for high-performance electro-optic modulation. Nanophotonics, 2015, 4, 198-213.
Tahar, R.B.H.; Ban, T.; Ohya, Y.; Takahashi, Y. Tin doped indium oxide thin films: Electrical properties. J. Appl. Phys., 1998, 83(5), 2631-2645.
Khan, M.Z.H.; Nakanishi, T.; Osaka, T. Surface and coatings technology, effects of chemical treatment of indium tin oxide electrode on its surface roughness and work function. Surf. Coat. Tech., 2014, 244, 189-193.
Lin, J.J.; Li, Z.Q. Electronic conduction properties of indium tin oxide: single-particle and many-body transport. J. Phys. Condens. Matter, 2014, 26(34), 343201-343223.
[] [PMID: 25105780]
Li, H.; Arita, T.; Takami, S.; Adschiri, T. Rapid synthesis of tin-doped indium oxide microcrystals in supercritical water using hydrazine as reducing agent. Prog. Cryst. Growth Charact. Mater., 2011, 57, 117-126.
Zhang, K.; Li, B.; Wu, Y.; Wang, W.; Li, R.; Zhang, Y.N.; Zuo, T. Recycling of indium from waste LCD: A promising non-crushing leaching with the aid of ultrasonic wave. Waste Manag., 2017, 64, 236-243.
[] [PMID: 28347586]
Zeng, T.; Leimkühler, S.; Koetz, J.; Wollenberger, U. Effective electrochemistry of human sulfite oxidase immobilized on quantum-dots-modified indium tin oxide electrode. ACS Appl. Mater. Interfaces, 2015, 7(38), 21487-21494.
[] [PMID: 26357959]
Canbaz, M.Ç.; Sezgintürk, M.K. Fabrication of a highly sensitive disposable immunosensor based on indium tin oxide substrates for cancer biomarker detection. Anal. Biochem., 2014, 446(21), 9-18.
[] [PMID: 24141078]
Xu, X.; Wei, W.; Huang, M.; Yao, L.; Liu, S. Electrochemically driven drug metabolism via cytochrome P450 2C9 isozyme microsomes with cytochrome P450 reductase and indium tin oxide nanoparticle composites. Chem. Commun. (Camb.), 2012, 48(63), 7802-7804.
[] [PMID: 22743353]
Yoshioka, K.; Kato, D.; Kamata, T.; Niwa, O. Cytochrome P450 modified polycrystalline indium tin oxide film as a drug metabolizing electrochemical biosensor with a simple configuration. Anal. Chem., 2013, 85(21), 9996-9999.
[] [PMID: 24117377]
Care, A.; Bergquist, P.L.; Sunna, A. Solid-binding peptides: smart tools for nanobiotechnology. Trends Biotechnol., 2015, 33(5), 259-268.
[] [PMID: 25796487]
Krauland, E.M.; Peelle, B.R.; Wittrup, K.D.; Belcher, A.M. Peptide tags for enhanced cellular and protein adhesion to single-crystalline sapphire. Biotechnol. Bioeng., 2007, 97(5), 1009-1020.
[] [PMID: 17238208]
Iacobucci, V.; Di Giuseppe, F.; Bui, T.T.; Vermeer, L.S.; Patel, J.; Scherman, D.; Kichler, A.; Drake, A.F.; Mason, A.J. Control of pH responsive peptide self-association during endocytosis is required for effective gene transfer. Biochim. Biophys. Acta, 2012, 1818(5), 1332-1341.
[] [PMID: 22226847]
Bulutoglu, B.; Dooley, K.; Szilvay, G.; Blenner, M.; Banta, S. Catch and release: Engineered allosterically regulated β-roll peptides enable on/off biomolecular recognition. ACS Synth. Biol., 2017, 6(9), 1732-1741.
[] [PMID: 28520402]
Connor, P.A.; McQuillan, A.J. Phosphate adsorption onto TiO2 from aqueous solutions: An in situ internal reflection infrared spectroscopic study. Langmuir, 1999, 15(8), 2916-2921.
He, B.; Jiang, L.; Duan, Y.; Chai, G.; Fang, Y.; Kang, J.; Yu, M.; Li, N.; Tang, Z.; Yao, P.; Wu, P.; Derda, R.; Huang, J. Biopanning data bank 2018: hugging next generation phage display. Database (Oxford), 2018, 2018bay032
[] [PMID: 29688378]
Sarikaya, M.; Tamerler, C.; Jen, A.K.; Schulten, K.; Baneyx, F. Molecular biomimetics: nanotechnology through biology. Nat. Mater., 2003, 2(9), 577-585.
[] [PMID: 12951599]
Umetsu, M.; Mizuta, M.; Tsumoto, K.; Ohara, S.; Takami, S.; Watanabe, H.; Kumagai, I.; Adschiri, T. Bioassisted room‐temperature immobilization and mineralization of zinc oxide- The structural ordering of ZnO nanoparticles into a flower-type morphology. Adv. Mater., 2005, 17, 2571-2575.
Naik, R.R.; Brott, L.L.; Clarson, S.J.; Stone, M.O. Silica-precipitating peptides isolated from a combinatorial phage display peptide library. J. Nanosci. Nanotechnol., 2002, 2(1), 95-100.
[] [PMID: 12908327]
Schembri, M.A.; Kjaergaard, K.; Klemm, P. Bioaccumulation of heavy metals by fimbrial designer adhesins. FEMS Microbiol. Lett., 1999, 170(2), 363-371.
[] [PMID: 9933931]
Kjaergaard, K.; Sørensen, J.K.; Schembri, M.A.; Klemm, P. Sequestration of zinc oxide by fimbrial designer chelators. Appl. Environ. Microbiol., 2000, 66(1), 10-14.
[] [PMID: 10618196]
Brown, S. Metal-recognition by repeating polypeptides. Nat. Biotechnol., 1997, 15(3), 269-272.
[] [PMID: 9062928]
Nygaard, S.; Wendelbo, R.; Brown, S. Surface-specific zeolite‐binding proteins. Adv. Mater., 2002, 14, 1853-1856.
Seker, U.O.; Wilson, B.; Dincer, S.; Kim, I.W.; Oren, E.E.; Evans, J.S.; Tamerler, C.; Sarikaya, M. Adsorption behavior of linear and cyclic genetically engineered platinum binding peptides. Langmuir, 2007, 23(15), 7895-7900.
[] [PMID: 17579466]
Tamerler, C.; Duman, M.; Oren, E.E.; Gungormus, M.; Xiong, X.; Kacar, T.; Parviz, B.A.; Sarikaya, M. Materials specificity and directed assembly of a gold-binding peptide. Small, 2006, 2(11), 1372-1378.
[] [PMID: 17192989]
Nakazawa, H.; Seta, Y.; Hirose, T.; Masuda, Y.; Umetsu, M. Use of a phage-display method to identify peptides that bind to a tin oxide nanosheets. Protein Pept. Lett., 2018, 25(1), 68-75.
[] [PMID: 29210630]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 13 November, 2019
Page: [557 - 566]
Pages: 10
DOI: 10.2174/0929866526666191113151934
Price: $65

Article Metrics

PDF: 16