Effect of Escherichia Coli Infection on Metabolism of Dietary Protein in Intestine

Author(s): Xiao-Pei Peng, Wei Ding, Jian-Min Ma, Jie Zhang, Jian Sun, Yun Cao, Li-Hui Lei, Jinshan Zhao*, Yun-Fu Li*

Journal Name: Current Protein & Peptide Science

Volume 21 , Issue 8 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Dietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins are metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation is effective in preventing and controlling infections by pathogenic E. coli in the intestine.

Keywords: Diarrheagenic E. coli, dietary protein, enterocyte, effector protein, intestine, enterocytes.

[1]
Fan, P.; Li, L.; Rezaei, A.; Eslamfam, S.; Che, D.; Ma, X. Metabolites of dietary protein and peptides by intestinal microbes and their impacts on gut. Curr. Protein Pept. Sci., 2015, 16(7), 646-654.
[http://dx.doi.org/10.2174/1389203716666150630133657] [PMID: 26122784]
[2]
Ma, N.; Tian, Y.; Wu, Y.; Ma, X. Contributions of the interaction between dietary protein and gut microbiota to intestinal health. Curr. Protein Pept. Sci., 2017, 18(8), 795-808.
[http://dx.doi.org/10.2174/1389203718666170216153505] [PMID: 28215168]
[3]
Ma, N.; Guo, P.; Zhang, J.; He, T.; Kim, S.W.; Zhang, G.; Ma, X. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Front. Immunol., 2018, 9, 5.
[http://dx.doi.org/10.3389/fimmu.2018.00005] [PMID: 29416535]
[4]
Fan, P.; Liu, P.; Song, P.; Chen, X.; Ma, X. Moderate dietary protein restriction alters the composition of gut microbiota and improves ileal barrier function in adult pig model. Sci. Rep., 2017, 7, 43412.
[http://dx.doi.org/10.1038/srep43412] [PMID: 28252026]
[5]
Chen, X.; Song, P.; Fan, P.; He, T.; Jacobs, D.; Levesque, C.L.; Johnston, L.J.; Ji, L.; Ma, N.; Chen, Y.; Zhang, J.; Zhao, J.; Ma, X. Moderate dietary protein restriction optimized gut microbiota and mucosal barrier in growing pig model. Front. Cell. Infect. Microbiol., 2018, 8, 246.
[http://dx.doi.org/10.3389/fcimb.2018.00246] [PMID: 30073151]
[6]
Zhang, S.; Qiao, S.; Ren, M.; Zeng, X.; Ma, X.; Wu, Z.; Thacker, P.; Wu, G. Supplementation with branched-chain amino acids to a low-protein diet regulates intestinal expression of amino acid and peptide transporters in weanling pigs. Amino Acids, 2013, 45(5), 1191-1205.
[http://dx.doi.org/10.1007/s00726-013-1577-y] [PMID: 23990159]
[7]
Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched chain amino acids: Beyond nutrition metabolism. Int. J. Mol. Sci., 2018, 19(4)E954
[http://dx.doi.org/10.3390/ijms19040954] [PMID: 29570613]
[8]
Han, M.; Song, P.; Huang, C.; Rezaei, A.; Farrar, S.; Brown, M.A.; Ma, X. Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget, 2016, 7(49), 80313-80326.
[http://dx.doi.org/10.18632/oncotarget.13450] [PMID: 27880936]
[9]
Ma, X.; Han, M.; Li, D.; Hu, S.; Gilbreath, K.R.; Bazer, F.W.; Wu, G. L-Arginine promotes protein synthesis and cell growth in brown adipocyte precursor cells via the mTOR signal pathway. Amino Acids, 2017, 49(5), 957-964.
[http://dx.doi.org/10.1007/s00726-017-2399-0] [PMID: 28260165]
[10]
Hu, S.; Han, M.; Rezaei, A.; Li, D.; Wu, G.; Ma, X. L-Arginine modulates glucose and lipid metabolism in obesity and diabetes. Curr. Protein Pept. Sci., 2017, 18(6), 599-608.
[http://dx.doi.org/10.2174/1389203717666160627074017] [PMID: 27356939]
[11]
Croxen, M.A.; Law, R.J.; Scholz, R.; Keeney, K.M.; Wlodarska, M.; Finlay, B.B. Recent advances in understanding enteric pathogenic Escherichia Coli. Clin. Microbiol. Rev., 2013, 26(4), 822-880.
[http://dx.doi.org/10.1128/CMR.00022-13] [PMID: 24092857]
[12]
Croxen, M.A.; Finlay, B.B. Molecular mechanisms of Escherichia Coli pathogenicity. Nat. Rev. Microbiol., 2010, 8(1), 26-38.
[http://dx.doi.org/10.1038/nrmicro2265] [PMID: 19966814]
[13]
Yang, S.C.; Lin, C.H.; Aljuffali, I.A.; Fang, J.Y. Current pathogenic Escherichia Coli foodborne outbreak cases and therapy development. Arch. Microbiol., 2017, 199(6), 811-825.
[http://dx.doi.org/10.1007/s00203-017-1393-y] [PMID: 28597303]
[14]
Daniel, H. Molecular and integrative physiology of intestinal peptide transport. Annu. Rev. Physiol., 2004, 66, 361-384.
[http://dx.doi.org/10.1146/annurev.physiol.66.032102.144149] [PMID: 14977407]
[15]
Kandasamy, P.; Gyimesi, G.; Kanai, Y.; Hediger, M.A. Amino acid transporters revisited: New views in health and disease. Trends Biochem. Sci., 2018, 43(10), 752-789.
[http://dx.doi.org/10.1016/j.tibs.2018.05.003] [PMID: 30177408]
[16]
Gilbert, E.R.; Wong, E.A.; Webb, K.E. Jr Board-invited review: Peptide absorption and utilization: Implications for animal nutrition and health. J. Anim. Sci., 2008, 86(9), 2135-2155.
[http://dx.doi.org/10.2527/jas.2007-0826] [PMID: 18441086]
[17]
Dallas, D.C.; Sanctuary, M.R.; Qu, Y.; Khajavi, S.H.; Van Zandt, A.E.; Dyandra, M.; Frese, S.A.; Barile, D.; German, J.B. Personalizing protein nourishment. Crit. Rev. Food Sci. Nutr., 2017, 57(15), 3313-3331.
[http://dx.doi.org/10.1080/10408398.2015.1117412] [PMID: 26713355]
[18]
Wu, G.; Bazer, F.W.; Dai, Z.; Li, D.; Wang, J.; Wu, Z. Amino acid nutrition in animals: protein synthesis and beyond. Annu. Rev. Anim. Biosci., 2014, 2, 387-417.
[http://dx.doi.org/10.1146/annurev-animal-022513-114113] [PMID: 25384149]
[19]
Chen, C.; Yin, Y.; Tu, Q.; Yang, H. Glucose and amino acid in enterocyte: absorption, metabolism and maturation. Front. Biosci. (Landmark Ed), 20181721
[20]
Diether, N.E.; Willing, B.P. Microbial fermentation of dietary protein: an important factor in diet-microbe-host interaction. Microorganisms, 2019, 7(1), 1.
[http://dx.doi.org/10.3390/microorganisms7010019] [PMID: 30642098]
[21]
Rerat, A.A. Intestinal absorption of end products from digestion of carbohydrates and proteins in the pig. Arch. Tierernahr., 1985, 35(7), 461-480.
[http://dx.doi.org/10.1080/17450398509425208] [PMID: 3901961]
[22]
van der Wielen, N.; Moughan, P.J.; Mensink, M. Amino acid absorption in the large intestine of humans and porcine models. J. Nutr., 2017, 147(8), 1493-1498.
[http://dx.doi.org/10.3945/jn.117.248187] [PMID: 28615378]
[23]
Olivares, M.; Benítez-Páez, A.; de Palma, G.; Capilla, A.; Nova, E.; Castillejo, G.; Varea, V.; Marcos, A.; Garrote, J.A.; Polanco, I.; Donat, E.; Ribes-Koninckx, C.; Calvo, C.; Ortigosa, L.; Palau, F.; Sanz, Y. Increased prevalence of pathogenic bacteria in the gut microbiota of infants at risk of developing celiac disease: The PROFICEL study. Gut Microbes, 2018, 9(6), 551-558.
[http://dx.doi.org/10.1080/19490976.2018.1451276] [PMID: 29672211]
[24]
Richard, M.L.; Liguori, G.; Lamas, B.; Brandi, G.; da Costa, G.; Hoffmann, T.W.; Pierluigi Di Simone, M.; Calabrese, C.; Poggioli, G.; Langella, P.; Campieri, M.; Sokol, H. Mucosa-associated microbiota dysbiosis in colitis associated cancer. Gut Microbes, 2018, 9(2), 131-142.
[http://dx.doi.org/10.1080/19490976.2017.1379637] [PMID: 28914591]
[25]
Rowan, S.; Taylor, A. Gut microbiota modify risk for dietary glycemia-induced age-related macular degeneration. Gut Microbes, 2018, 9(5), 452-457.
[http://dx.doi.org/10.1080/19490976.2018.1435247] [PMID: 29431583]
[26]
Sokol, H.; Jegou, S.; McQuitty, C.; Straub, M.; Leducq, V.; Landman, C.; Kirchgesner, J.; Le Gall, G.; Bourrier, A.; Nion-Larmurier, I.; Cosnes, J.; Seksik, P.; Richard, M.L.; Beaugerie, L. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes, 2018, 9(1), 55-60.
[http://dx.doi.org/10.1080/19490976.2017.1361092] [PMID: 28786749]
[27]
Kiely, C.J.; Pavli, P.; O’Brien, C.L. The role of inflammation in temporal shifts in the inflammatory bowel disease mucosal microbiome. Gut Microbes, 2018, 9(6), 477-485.
[http://dx.doi.org/10.1080/19490976.2018.1448742] [PMID: 29543557]
[28]
Elhenawy, W.; Oberc, A.; Coombes, B.K. A polymicrobial view of disease potential in Crohn’s-associated adherent-invasive E. coli. Gut Microbes, 2018, 9(2), 166-174.
[http://dx.doi.org/10.1080/19490976.2017.1378291] [PMID: 28914579]
[29]
Collins, J.; Danhof, H.; Britton, R.A. The role of trehalose in the global spread of epidemic Clostridium difficile. Gut Microbes, 2019, 10(2), 204-209.
[http://dx.doi.org/10.1080/19490976.2018.1491266] [PMID: 30118389]
[30]
Lai, Y.; Rosenshine, I.; Leong, J.M.; Frankel, G. Intimate host attachment: enteropathogenic and enterohaemorrhagic Escherichia Coli. Cell. Microbiol., 2013, 15(11), 1796-1808.
[PMID: 23927593 ]
[31]
Farfan, M.J.; Torres, A.G. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia Coli strains. Infect. Immun., 2012, 80(3), 903-913.
[http://dx.doi.org/10.1128/IAI.05907-11] [PMID: 22144484]
[32]
Huang, D.B.; Mohanty, A.; DuPont, H.L.; Okhuysen, P.C.; Chiang, T. A review of an emerging enteric pathogen: enteroaggregative Escherichia Coli. J. Med. Microbiol., 2006, 55(Pt 10), 1303-1311.
[http://dx.doi.org/10.1099/jmm.0.46674-0] [PMID: 17005776]
[33]
Martinez-Medina, M.; Garcia-Gil, L.J. Escherichia Coli in chronic inflammatory bowel diseases: An update on adherent invasive Escherichia Coli pathogenicity. World J. Gastrointest. Pathophysiol., 2014, 5(3), 213-227.
[http://dx.doi.org/10.4291/wjgp.v5.i3.213] [PMID: 25133024]
[34]
Madhavan, T.P.; Sakellaris, H. Colonization factors of enterotoxigenic Escherichia Coli. Adv. Appl. Microbiol., 2015, 90, 155-197.
[http://dx.doi.org/10.1016/bs.aambs.2014.09.003] [PMID: 25596032]
[35]
Wong, A.R.; Pearson, J.S.; Bright, M.D.; Munera, D.; Robinson, K.S.; Lee, S.F.; Frankel, G.; Hartland, E.L. Enteropathogenic and enterohaemorrhagic Escherichia Coli: even more subversive elements. Mol. Microbiol., 2011, 80(6), 1420-1438.
[http://dx.doi.org/10.1111/j.1365-2958.2011.07661.x] [PMID: 21488979]
[36]
Watanabe, K.; Petri, W.A. Learning from the research on amebiasis and gut microbiome: Is stimulation by gut flora essential for effective neutrophil mediated protection from external pathogens? Gut Microbes, 2019, 10(1), 100-104.
[http://dx.doi.org/10.1080/19490976.2018.1479626] [PMID: 30252579]
[37]
Roxas, J.L.; Vedantam, G.; Viswanathan, V.K. Epithelial maturity influences EPEC-induced desmosomal alterations. Gut Microbes, 2019, 10(2), 241-245.
[http://dx.doi.org/10.1080/19490976.2018.1506669] [PMID: 30183504]
[38]
Kavaliauskiene, S.; Dyve Lingelem, A.B.; Skotland, T.; Sandvig, K. Protection against Shiga Toxins. Toxins (Basel), 2017, 9(2)E44
[http://dx.doi.org/10.3390/toxins9020044] [PMID: 28165371]
[39]
Chan, Y.S.; Ng, T.B. Shiga toxins: from structure and mechanism to applications. Appl. Microbiol. Biotechnol., 2016, 100(4), 1597-1610.
[http://dx.doi.org/10.1007/s00253-015-7236-3] [PMID: 26685676]
[40]
Dutta, P.R.; Cappello, R.; Navarro-García, F.; Nataro, J.P. Functional comparison of serine protease autotransporters of enterobacteriaceae. Infect. Immun., 2002, 70(12), 7105-7113.
[http://dx.doi.org/10.1128/IAI.70.12.7105-7113.2002] [PMID: 12438392]
[41]
Dubreuil, J.D.; Isaacson, R.E.; Schifferli, D.M. Animal enterotoxigenic Escherichia Coli. Ecosal Plus, 2016, 7(1), 1.
[http://dx.doi.org/10.1128/ecosalplus.ESP-0006-2016] [PMID: 27735786]
[42]
Chen, J.; Li, Y.; Tian, Y.; Huang, C.; Li, D.; Zhong, Q.; Ma, X. Interaction between microbes and host intestinal health: modulation by dietary nutrients and gut-brain-endocrine-immune axis. Curr. Protein Pept. Sci., 2015, 16(7), 592-603.
[http://dx.doi.org/10.2174/1389203716666150630135720] [PMID: 26122779]
[43]
Nie, C.; Xie, F.; Ma, N.; Bai, Y.; Zhang, W.; Ma, X. Nutrients mediate bioavailability and turnover of proteins in mammals. Curr. Protein Pept. Sci., 2019, 20(7), 661-665.
[http://dx.doi.org/10.2174/1389203720666190125111235] [PMID: 30678625]
[44]
Liu, H.; Cao, X.; Wang, H.; Zhao, J.; Wang, X.; Wang, Y. Antimicrobial peptide KR-32 alleviates Escherichia Coli K88-induced fatty acid malabsorption by improving expression of FATP4. J. Anim. Sci., 2019.skz110
[http://dx.doi.org/10.1093/jas/skz110] [PMID: 30958881]
[45]
Manafi, M.; Hedayati, M.; Pirany, N.; Omede, A.A. Comparison of performance and feed digestibility of the non-antibiotic feed supplement (Novacid) and an antibiotic growth promoter in broiler chickens. Poult. Sci., 2019, 98(2), 904-911.
[http://dx.doi.org/10.3382/ps/pey437] [PMID: 30285253]
[46]
Trevisi, P.; Melchior, D.; Mazzoni, M.; Casini, L.; De Filippi, S.; Minieri, L.; Lalatta-Costerbosa, G.; Bosi, P. A tryptophan-enriched diet improves feed intake and growth performance of susceptible weanling pigs orally challenged with Escherichia Coli K88. J. Anim. Sci., 2009, 87(1), 148-156.
[http://dx.doi.org/10.2527/jas.2007-0732] [PMID: 18791156]
[47]
Capozzalo, M.M.; Kim, J.C.; Htoo, J.K.; de Lange, C.F.; Mullan, B.P.; Hansen, C.F.; Resink, J.W.; Stumbles, P.A.; Hampson, D.J.; Pluske, J.R. Effect of increasing the dietary tryptophan to lysine ratio on plasma levels of tryptophan, kynurenine and urea and on production traits in weaner pigs experimentally infected with an enterotoxigenic strain of Escherichia Coli. Arch. Anim. Nutr., 2015, 69(1), 17-29.
[http://dx.doi.org/10.1080/1745039X.2014.995972] [PMID: 25562691]
[48]
Bertschinger, H.U.; Jucker, H.; Pfirter, H.P.; Pohlenz, J. Role of nutrition in the pathogenesis of porcine Escherichia Coli enterotoxaemia. Ann. Rech. Vet., 1983, 14(4), 469-472.
[PMID: 6375528]
[49]
Rao, S.V.; Praharaj, N.K.; Reddy, M.R.; Sridevi, B. Immune competence, resistance to Escherichia Coli and growth in male broiler parent chicks fed different levels of crude protein. Vet. Res. Commun., 1999, 23(6), 323-326.
[http://dx.doi.org/10.1023/A:1006318307103] [PMID: 10543362]
[50]
Sun, Y.; Kim, S.W. Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Anim Nutr, 2017, 3(4), 322-330.
[http://dx.doi.org/10.1016/j.aninu.2017.10.001] [PMID: 29767133]
[51]
Nascimento de Araújo, A.; Giugliano, L.G. Human milk fractions inhibit the adherence of diffusely adherent Escherichia Coli (DAEC) and enteroaggregative E. coli (EAEC) to HeLa cells. FEMS Microbiol. Lett., 2000, 184(1), 91-94.
[http://dx.doi.org/10.1016/S0378-1097(00)00028-8] [PMID: 10689172]
[52]
Reiter, B.; Brock, J.H. Inhibition of Escherichia Coli by bovine colostrum and post-colostral milk. I. Complement-mediated bactericidal activity of antibodies to a serum susceptible strain of E. coli of the serotype O 111. Immunology, 1975, 28(1), 71-82.
[PMID: 1090521]
[53]
Atroshi, F.; Schildt, R.; Sandholm, M.K. 88-mediated adhesion of E. coli inhibited by fractions in sow milk. Zentralbl. Veterinärmed. B., 1983, 30(6), 425-433.
[http://dx.doi.org/10.1111/j.1439-0450.1983.tb01864.x] [PMID: 6353810]
[54]
Gustavo Hermes, R.; Molist, F.; Francisco Pérez, J.; Gómez de Segura, A.; Ywazaki, M.; Davin, R.; Nofrarías, M.; Korhonen, T.K.; Virkola, R.; Martín-Orúe, S.M. Casein glycomacropeptide in the diet may reduce Escherichia Coli attachment to the intestinal mucosa and increase the intestinal lactobacilli of early weaned piglets after an enterotoxigenic E. coli K88 challenge. Br. J. Nutr., 2013, 109(6), 1001-1012.
[http://dx.doi.org/10.1017/S0007114512002978] [PMID: 22850079]
[55]
Pahud, J.J.; Hilpert, H.; Schwarz, K.; Amster, H.; Smiley, M. Bovine milk antibodies in the treatment of enteric infections and their ability to eliminate virulence factors from pathogenic E. coli. Adv. Exp. Med. Biol., 1981, 137, 591-600.
[PMID: 7036687]
[56]
Ogundele, M.O. Complement-mediated bactericidal activity of human milk to a serum-susceptible strain of E. coli 0111. J. Appl. Microbiol., 1999, 87(5), 689-696.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00911.x] [PMID: 10594709]
[57]
Newburg, D.S.; Ruiz-Palacios, G.M.; Altaye, M.; Chaturvedi, P.; Guerrero, M.L.; Meinzen-Derr, J.K.; Morrow, A.L. Human milk alphal,2-linked fucosylated oligosaccharides decrease risk of diarrhea due to stable toxin of E. coli in breastfed infants. Adv. Exp. Med. Biol., 2004, 554, 457-461.
[http://dx.doi.org/10.1007/978-1-4757-4242-8_64] [PMID: 15384624]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 8
Year: 2020
Published on: 09 November, 2020
Page: [772 - 776]
Pages: 5
DOI: 10.2174/1389203720666191113144049
Price: $65

Article Metrics

PDF: 16
HTML: 1