The Potential Role of Dysfunctions in Neuron-Microglia Communication in the Pathogenesis of Brain Disorders

Author(s): Katarzyna Chamera, Ewa Trojan, Magdalena Szuster-Głuszczak, Agnieszka Basta-Kaim*

Journal Name: Current Neuropharmacology

Volume 18 , Issue 5 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The bidirectional communication between neurons and microglia is fundamental for the proper functioning of the central nervous system (CNS). Chemokines and clusters of differentiation (CD) along with their receptors represent ligand-receptor signalling that is uniquely important for neuron – microglia communication. Among these molecules, CX3CL1 (fractalkine) and CD200 (OX-2 membrane glycoprotein) come to the fore because of their cell-type-specific localization. They are principally expressed by neurons when their receptors, CX3CR1 and CD200R, respectively, are predominantly present on the microglia, resulting in the specific axis which maintains the CNS homeostasis. Disruptions to this balance are suggested as contributors or even the basis for many neurological diseases.

In this review, we discuss the roles of CX3CL1, CD200 and their receptors in both physiological and pathological processes within the CNS. We want to underline the critical involvement of these molecules in controlling neuron – microglia communication, noting that dysfunctions in their interactions constitute a key factor in severe neurological diseases, such as schizophrenia, depression and neurodegeneration-based conditions.

Keywords: Schizophrenia, depression, Alzheimer's disease, Parkinson’s disease, CX3CL1-CX3CR1, CD200-CD200R.

[1]
Dejda, A.; Mawambo, G.; Daudelin, J.F.; Miloudi, K.; Akla, N.; Patel, C.; Andriessen, E.M.M.A.; Labrecque, N.; Sennlaub, F.; Sapieha, P. Neuropilin-1-expressing microglia are associated with nascent retinal vasculature yet dispensable for developmental angiogenesis. Invest. Ophthalmol. Vis. Sci., 2016, 57(4), 1530-1536.
[http://dx.doi.org/10.1167/iovs.15-18598] [PMID: 27035626]
[2]
Louveau, A.; Nerrière-Daguin, V.; Vanhove, B.; Naveilhan, P.; Neunlist, M.; Nicot, A.; Boudin, H. Targeting the CD80/CD86 costimulatory pathway with CTLA4-Ig directs microglia toward a repair phenotype and promotes axonal outgrowth. Glia, 2015, 63(12), 2298-2312.
[http://dx.doi.org/10.1002/glia.22894] [PMID: 26212105]
[3]
Bilimoria, P.M.; Stevens, B. Microglia function during brain development: New insights from animal models. Brain Res., 2015, 1617, 7-17.
[http://dx.doi.org/10.1016/j.brainres.2014.11.032]
[4]
Rodríguez-Iglesias, N.; Sierra, A.; Valero, J. Rewiring of memory circuits: connecting adult newborn neurons with the help of microglia. Front. Cell Dev. Biol., 2019, 7, 24.
[http://dx.doi.org/10.3389/fcell.2019.00024] [PMID: 30891446]
[5]
Wu, L-J.; Stevens, B.; Duan, S.; MacVicar, B.A. Microglia in neuronal circuits. Neural Plast., 2013, 2013, 586426
[http://dx.doi.org/10.1155/2013/586426] [PMID: 24455310]
[6]
Wu, Y.; Dissing-Olesen, L.; MacVicar, B.A.; Stevens, B. Microglia: Dynamic mediators of synapse development and plasticity. Trends Immunol., 2015, 36(10), 605-613.
[7]
Bar, E.; Barak, B. Microglia Roles in Synaptic Plasticity and Myelination in Homeostatic Conditions and Neurodevelopmental Disorders. GLIA; John Wiley and Sons Inc., 2019.
[8]
Cazareth, J.; Guyon, A.; Heurteaux, C.; Chabry, J.; Petit-Paitel, A. Molecular and cellular neuroinflammatory status of mouse brain after systemic lipopolysaccharide challenge: importance of CCR2/CCL2 signaling. J. Neuroinflammation, 2014, 11(1), 132.
[http://dx.doi.org/10.1186/1742-2094-11-132] [PMID: 25065370]
[9]
Mosher, K.I.; Andres, R.H.; Fukuhara, T.; Bieri, G.; Hasegawa-Moriyama, M.; He, Y.; Guzman, R.; Wyss-Coray, T. Neural progenitor cells regulate microglia functions and activity. Nat. Neurosci., 2012, 15(11), 1485-1487.
[http://dx.doi.org/10.1038/nn.3233] [PMID: 23086334]
[10]
Kettenmann, H.; Hanisch, U-K.; Noda, M.; Verkhratsky, A. Physiology of microglia. Physiol. Rev., 2011, 91(2), 461-553.
[http://dx.doi.org/10.1152/physrev.00011.2010] [PMID: 21527731]
[11]
Dick, A.D.; Carter, D.; Robertson, M.; Broderick, C.; Hughes, E.; Forrester, J.V.; Liversidge, J. Control of myeloid activity during retinal inflammation. J. Leukoc. Biol., 2003, 74(2), 161-166.
[http://dx.doi.org/10.1189/jlb.1102535] [PMID: 12885931]
[12]
Ponomarev, E.D.; Veremeyko, T.; Barteneva, N.; Krichevsky, A.M.; Weiner, H.L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med., 2011, 17(1), 64-70.
[http://dx.doi.org/10.1038/nm.2266] [PMID: 21131957]
[13]
Liang, K.J.; Lee, J.E.; Wang, Y.D.; Ma, W.; Fontainhas, A.M.; Fariss, R.N.; Wong, W.T. Regulation of dynamic behavior of retinal microglia by CX3CR1 signaling. Invest. Ophthalmol. Vis. Sci., 2009, 50(9), 4444-4451.
[http://dx.doi.org/10.1167/iovs.08-3357] [PMID: 19443728]
[14]
Wake, H.; Moorhouse, A.J.; Jinno, S.; Kohsaka, S.; Nabekura, J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J. Neurosci., 2009, 29(13), 3974-3980.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-08.2009] [PMID: 19339593]
[15]
Tremblay, M.Ě.; Lowery, R.L.; Majewska, A.K. Microglial interactions with synapses are modulated by visual experience. PLoS Biol., 2010, 8(11), e1000527
[http://dx.doi.org/10.1371/journal.pbio.1000527] [PMID: 21072242]
[16]
Tremblay, M-E.; Stevens, B.; Sierra, A.; Wake, H.; Bessis, A.; Nimmerjahn, A. The role of microglia in the healthy brain. J. Neurosci., 2011, 31(45), 16064-16069.
[http://dx.doi.org/10.1523/JNEUROSCI.4158-11.2011] [PMID: 22072657]
[17]
Marinelli, S.; Basilico, B.; Marrone, M.C.; Ragozzino, D. Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin. Cell Dev. Biol., 2019, 94, 138-151.
[http://dx.doi.org/10.1016/j.semcdb.2019.05.017] [PMID: 31112798]
[18]
Zhan, Y.; Paolicelli, R.C.; Sforazzini, F.; Weinhard, L.; Bolasco, G.; Pagani, F.; Vyssotski, A.L.; Bifone, A.; Gozzi, A.; Ragozzino, D.; Gross, C.T. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci., 2014, 17(3), 400-406.
[http://dx.doi.org/10.1038/nn.3641] [PMID: 24487234]
[19]
Li, K.; Yu, W.; Cao, R.; Zhu, Z.; Zhao, G. Microglia-mediated BAFF-BAFFR ligation promotes neuronal survival in brain ischemia injury. Neuroscience, 2017, 363, 87-96.
[http://dx.doi.org/10.1016/j.neuroscience.2017.09.007] [PMID: 28918255]
[20]
Todd, L.; Palazzo, I.; Suarez, L.; Liu, X.; Volkov, L.; Hoang, T.V.; Campbell, W.A.; Blackshaw, S.; Quan, N.; Fischer, A.J. Reactive microglia and IL1β/IL-1R1-signaling mediate neuroprotection in excitotoxin-damaged mouse retina. J. Neuroinflammation, 2019, 16(1), 118.
[http://dx.doi.org/10.1186/s12974-019-1505-5] [PMID: 31170999]
[21]
Freria, C.M.; Hall, J.C.E.; Wei, P.; Guan, Z.; McTigue, D.M.; Popovich, P.G. Deletion of the fractalkine receptor, cx3cr1, improves endogenous repair, axon sprouting, and synaptogenesis after spinal cord injury in mice. J. Neurosci., 2017, 37(13), 3568-3587.
[http://dx.doi.org/10.1523/JNEUROSCI.2841-16.2017] [PMID: 28264978]
[22]
Raffo-Romero, A.; Arab, T.; Van Camp, C.; Lemaire, Q.; Wisztorski, M.; Franck, J.; Aboulouard, S.; Le Marrec-Croq, F.; Sautiere, P.E.; Vizioli, J.; Salzet, M.; Lefebvre, C. ALK4/5-dependent TGF-β signaling contributes to the crosstalk between neurons and microglia following axonal lesion. Sci. Rep., 2019, 9(1), 6896.
[http://dx.doi.org/10.1038/s41598-019-43328-x] [PMID: 31053759]
[23]
Biber, K.; Neumann, H.; Inoue, K.; Boddeke, H.W.G.M. Neuronal ‘On’ and ‘Off’ signals control microglia. Trends Neurosci., 2007, 30(11), 596-602.
[http://dx.doi.org/10.1016/j.tins.2007.08.007] [PMID: 17950926]
[24]
Kerschensteiner, M.; Meinl, E.; Hohlfeld, R. Neuro-immune crosstalk in CNS diseases. Results Probl. Cell Differ., 2010, 51, 197-216.
[http://dx.doi.org/10.1007/400_2009_6] [PMID: 19343310]
[25]
Luster, A.D. Chemokines--chemotactic cytokines that mediate inflammation. N. Engl. J. Med., 1998, 338(7), 436-445.
[http://dx.doi.org/10.1056/NEJM199802123380706] [PMID: 9459648]
[26]
Griffith, J.W.; Sokol, C.L.; Luster, A.D. Chemokines and chemokine receptors: positioning cells for host defense and immunity. Annu. Rev. Immunol., 2014, 32(1), 659-702.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120145] [PMID: 24655300]
[27]
Zlotnik, A.; Yoshie, O. The chemokine superfamily revisited. Immunity, 2012, 705-716.
[http://dx.doi.org/10.1016/j.immuni.2012.05.008]
[28]
Rot, A.; von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol., 2004, 22(1), 891-928.
[http://dx.doi.org/10.1146/annurev.immunol.22.012703.104543] [PMID: 15032599]
[29]
Dimitrijevic, O.B.; Stamatovic, S.M.; Keep, R.F.; Andjelkovic, A.V. Effects of the chemokine CCL2 on blood-brain barrier permeability during ischemia-reperfusion injury. J. Cereb. Blood Flow Metab., 2006, 26(6), 797-810.
[http://dx.doi.org/10.1038/sj.jcbfm.9600229] [PMID: 16192992]
[30]
Majerova, P.; Michalicova, A.; Cente, M.; Hanes, J.; Vegh, J.; Kittel, A.; Kosikova, N.; Cigankova, V.; Mihaljevic, S.; Jadhav, S.; Kovac, A. Trafficking of immune cells across the blood-brain barrier is modulated by neurofibrillary pathology in tauopathies. PLoS One, 2019, 14(5), e0217216
[http://dx.doi.org/10.1371/journal.pone.0217216] [PMID: 31120951]
[31]
Shou, J.; Peng, J.; Zhao, Z.; Huang, X.; Li, H.; Li, L.; Gao, X.; Xing, Y.; Liu, H. CCL26 and CCR3 are associated with the acute inflammatory response in the CNS in experimental autoimmune encephalomyelitis. J. Neuroimmunol., 2019, 333, 576967
[http://dx.doi.org/10.1016/j.jneuroim.2019.576967] [PMID: 31151084]
[32]
Si, M.; Jiao, X.; Li, Y.; Chen, H.; He, P.; Jiang, F. The role of cytokines and chemokines in the microenvironment of the blood-brain barrier in leukemia central nervous system metastasis. Cancer Manag. Res., 2018, 10, 305-313.
[http://dx.doi.org/10.2147/CMAR.S152419] [PMID: 29483784]
[33]
Yang, C.; Hawkins, K.E.; Doré, S.; Candelario-Jalil, E. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am. J. Physiol. Cell Physiol., 2019, 316(2), C135-C153.
[http://dx.doi.org/10.1152/ajpcell.00136.2018] [PMID: 30379577]
[34]
Marciniak, E.; Faivre, E.; Dutar, P.; Alves Pires, C.; Demeyer, D.; Caillierez, R.; Laloux, C.; Buée, L.; Blum, D.; Humez, S. The Chemokine MIP-1α/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci. Rep., 2015, 5, 15862.
[http://dx.doi.org/10.1038/srep15862] [PMID: 26511387]
[35]
Capsoni, S.; Malerba, F.; Carucci, N.M.; Rizzi, C.; Criscuolo, C.; Origlia, N.; Calvello, M.; Viegi, A.; Meli, G.; Cattaneo, A. The chemokine CXCL12 mediates the anti-amyloidogenic action of painless human nerve growth factor. Brain, 2017, 140(1), 201-217.
[http://dx.doi.org/10.1093/brain/aww271] [PMID: 28031222]
[36]
Lee, H.T.; Chang, H.T.; Lee, S.; Lin, C.H.; Fan, J.R.; Lin, S.Z.; Hsu, C.Y.; Hsieh, C.H.; Shyu, W.C. Role of IGF1R(+) MSCs in modulating neuroplasticity via CXCR4 cross-interaction. Sci. Rep., 2016, 6, 32595.
[http://dx.doi.org/10.1038/srep32595] [PMID: 27586516]
[37]
Schultheiß, C.; Abe, P.; Hoffmann, F.; Mueller, W.; Kreuder, A.E.; Schütz, D.; Haege, S.; Redecker, C.; Keiner, S.; Kannan, S.; Claasen, J.H.; Pfrieger, F.W.; Stumm, R. CXCR4 prevents dispersion of granule neuron precursors in the adult dentate gyrus. Hippocampus, 2013, 23(12), 1345-1358.
[http://dx.doi.org/10.1002/hipo.22180] [PMID: 23929505]
[38]
Huang, F.; Lan, Y.; Qin, L.; Dong, H.; Shi, H.; Wu, H.; Zou, Q.; Hu, Z.; Wu, X.; Astragaloside, I.V. Astragaloside IV promotes adult neurogenesis in hippocampal dentate gyrus of mouse through cxcl1/cxcr2 signaling. Molecules, 2018, 23(9), 2178.
[http://dx.doi.org/10.3390/molecules23092178] [PMID: 30158469]
[39]
Trousse, F.; Jemli, A.; Silhol, M.; Garrido, E.; Crouzier, L.; Naert, G.; Maurice, T.; Rossel, M. Knockdown of the CXCL12/CXCR7 chemokine pathway results in learning deficits and neural progenitor maturation impairment in mice. Brain Behav. Immun., 2019, 80, 697-710.
[http://dx.doi.org/10.1016/j.bbi.2019.05.019] [PMID: 31100368]
[40]
Fazi, B.; Proserpio, C.; Galardi, S.; Annesi, F.; Cola, M.; Mangiola, A.; Michienzi, A.; Ciafrè, S.A. The expression of the chemokine cxcl14 correlates with several aggressive aspects of glioblastoma and promotes key properties of glioblastoma cells. Int. J. Mol. Sci., 2019, 20(10), 2496.
[http://dx.doi.org/10.3390/ijms20102496] [PMID: 31117166]
[41]
Callewaere, C.; Banisadr, G.; Rostène, W.; Parsadaniantz, S.M. Chemokines and chemokine receptors in the brain: implication in neuroendocrine regulation. J. Mol. Endocrinol., 2007, 38(3), 355-363.
[http://dx.doi.org/10.1677/JME-06-0035] [PMID: 17339398]
[42]
Di Castro, M.A.; Trettel, F.; Milior, G.; Maggi, L.; Ragozzino, D.; Limatola, C. The chemokine CXCL16 modulates neurotransmitter release in hippocampal CA1 area. Sci. Rep., 2016, 6, 34633.
[http://dx.doi.org/10.1038/srep34633] [PMID: 27721466]
[43]
Roche, S.L.; Wyse-Jackson, A.C.; Ruiz-Lopez, A.M.; Byrne, A.M.; Cotter, T.G. Fractalkine-CX3CR1 signaling is critical for progesterone-mediated neuroprotection in the retina. Sci. Rep., 2017, 7, 43067.
[http://dx.doi.org/10.1038/srep43067] [PMID: 28216676]
[44]
Hattori, Y.; Miyata, T. Microglia extensively survey the developing cortex via the CXCL12/CXCR4 system to help neural progenitors to acquire differentiated properties. Genes Cells, 2018, 23(10), 915-922.
[http://dx.doi.org/10.1111/gtc.12632] [PMID: 30144249]
[45]
Parajuli, B.; Horiuchi, H.; Mizuno, T.; Takeuchi, H.; Suzumura, A. CCL11 enhances excitotoxic neuronal death by producing reactive oxygen species in microglia. Glia, 2015, 63(12), 2274-2284.
[http://dx.doi.org/10.1002/glia.22892] [PMID: 26184677]
[46]
Feng, C.; Wang, X.; Liu, T.; Zhang, M.; Xu, G.; Ni, Y. Expression of CCL2 and its receptor in activation and migration of microglia and monocytes induced by photoreceptor apoptosis. Mol. Vis., 2017, 23, 765-777.
[PMID: 29142497]
[47]
Chan, J.K.C.; Ng, C.S.; Hui, P.K. A simple guide to the terminology and application of leucocyte monoclonal antibodies. Histopathology, 1988, 12(5), 461-480.
[http://dx.doi.org/10.1111/j.1365-2559.1988.tb01967.x] [PMID: 3294157]
[48]
Human Cell Differentiation Molecules (HCDM).. hcdm.org/ (Accessed June 30, 2019)
[49]
Actor, J.K. A Functional Overview of the Immune System and Immune Components.Introductory Immunology; Elsevier, 2019, pp. 1-16.
[http://dx.doi.org/10.1016/B978-0-12-816572-0.00001-2]
[50]
Jamaludin, S.Y.N.; Azimi, I.; Davis, F.M.; Peters, A.A.; Gonda, T.J.; Thompson, E.W.; Roberts-Thomson, S.J.; Monteith, G.R. Assessment of CXC ligand 12-mediated calcium signalling and its regulators in basal-like breast cancer cells. Oncol. Lett., 2018, 15(4), 4289-4295.
[http://dx.doi.org/10.3892/ol.2018.7827] [PMID: 29541196]
[51]
Kijima, N.; Hosen, N.; Kagawa, N.; Hashimoto, N.; Nakano, A.; Fujimoto, Y.; Kinoshita, M.; Sugiyama, H.; Yoshimine, T. CD166/activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion. Neuro-oncol., 2012, 14(10), 1254-1264.
[http://dx.doi.org/10.1093/neuonc/nor202] [PMID: 22166264]
[52]
Sato, K.; Tachikawa, M.; Watanabe, M.; Uchida, Y.; Terasaki, T. Selective protein expression changes of leukocyte-migration-associated cluster of differentiation antigens at the blood-brain barrier in a lipopolysaccharide-induced systemic inflammation mouse model without alteration of transporters, receptors or tight junction-related protein. Biol. Pharm. Bull., 2019, 42(6), 944-953.
[http://dx.doi.org/10.1248/bpb.b18-00939] [PMID: 31155591]
[53]
Akiyama, H.; McGeer, P.L. Brain microglia constitutively express β-2 integrins. J. Neuroimmunol., 1990, 30(1), 81-93.
[http://dx.doi.org/10.1016/0165-5728(90)90055-R] [PMID: 1977769]
[54]
Aloisi, F.; De Simone, R.; Columba-Cabezas, S.; Penna, G.; Adorini, L. Functional maturation of adult mouse resting microglia into an APC is promoted by granulocyte-macrophage colony-stimulating factor and interaction with Th1 cells. J. Immunol., 2000, 164(4), 1705-1712.
[http://dx.doi.org/10.4049/jimmunol.164.4.1705] [PMID: 10657614]
[55]
Bachstetter, A.D.; Van Eldik, L.J.; Schmitt, F.A.; Neltner, J.H.; Ighodaro, E.T.; Webster, S.J.; Patel, E.; Abner, E.L.; Kryscio, R.J.; Nelson, P.T. Disease-related microglia heterogeneity in the hippocampus of Alzheimer’s disease, dementia with Lewy bodies, and hippocampal sclerosis of aging. Acta Neuropathol. Commun., 2015, 3, 32.
[http://dx.doi.org/10.1186/s40478-015-0209-z] [PMID: 26001591]
[56]
Stankov, A.; Belakaposka-Srpanova, V.; Bitoljanu, N.; Cakar, L.; Cakar, Z.; Rosoklija, G. Visualisation of microglia with the use of immunohistochemical double staining method for cd-68 and iba-1 of cerebral tissue samples in cases of brain contusions. Prilozi (Makedon. Akad. Nauk. Umet. Odd. Med. Nauki), 2015, 36(2), 141-145.
[http://dx.doi.org/10.1515/prilozi-2015-0062] [PMID: 27442380]
[57]
Dubbelaar, M.L.; Kracht, L.; Eggen, B.J.L.; Boddeke, E.W.G.M. The kaleidoscope of microglial phenotypes. Front. Immunol., 2018, 9, 1753.
[http://dx.doi.org/10.3389/fimmu.2018.01753] [PMID: 30108586]
[58]
Walker, D.G.; Lue, L.F. Immune phenotypes of microglia in human neurodegenerative disease: challenges to detecting microglial polarization in human brains. Alzheimers Res. Ther., 2015, 7(1), 56.
[http://dx.doi.org/10.1186/s13195-015-0139-9] [PMID: 26286145]
[59]
Tang, Y.; Le, W. Differential Roles of M1 and M2 Microglia in Neurodegenerative Diseases. Mol. Neurobiol., 2016, 53(2), 1181-1194.
[http://dx.doi.org/10.1007/s12035-014-9070-5] [PMID: 25598354]
[60]
Bolós, M.; Perea, J.R.; Avila, J. Alzheimer’s disease as an inflammatory disease. Biomol. Concepts, 2017, 8(1), 37-43.
[http://dx.doi.org/10.1515/bmc-2016-0029] [PMID: 28231054]
[61]
Fu, R.; Shen, Q.; Xu, P.; Luo, J.J.; Tang, Y. Phagocytosis of microglia in the central nervous system diseases. Mol. Neurobiol., 2014, 49(3), 1422-1434.
[http://dx.doi.org/10.1007/s12035-013-8620-6] [PMID: 24395130]
[62]
Sárvári, M.; Hrabovszky, E.; Kalló, I.; Solymosi, N.; Likó, I.; Berchtold, N.; Cotman, C.; Liposits, Z. Menopause leads to elevated expression of macrophage-associated genes in the aging frontal cortex: rat and human studies identify strikingly similar changes. J. Neuroinflammation, 2012, 9, 264.
[http://dx.doi.org/10.1186/1742-2094-9-264] [PMID: 23206327]
[63]
Dimayuga, F.O.; Reed, J.L.; Carnero, G.A.; Wang, C.; Dimayuga, E.R.; Dimayuga, V.M.; Perger, A.; Wilson, M.E.; Keller, J.N.; Bruce-Keller, A.J. Estrogen and brain inflammation: effects on microglial expression of MHC, costimulatory molecules and cytokines. J. Neuroimmunol., 2005, 161(1-2), 123-136.
[http://dx.doi.org/10.1016/j.jneuroim.2004.12.016] [PMID: 15748951]
[64]
Harry, G.J. Microglia during development and aging. Pharmacol. Ther., 2013, 139(3), 313-326.
[http://dx.doi.org/10.1016/j.pharmthera.2013.04.013] [PMID: 23644076]
[65]
Geissmann, F.; Revy, P.; Brousse, N.; Lepelletier, Y.; Folli, C.; Durandy, A.; Chambon, P.; Dy, M. Retinoids regulate survival and antigen presentation by immature dendritic cells. J. Exp. Med., 2003, 198(4), 623-634.
[http://dx.doi.org/10.1084/jem.20030390] [PMID: 12925678]
[66]
Pruszak, J.; Ludwig, W.; Blak, A.; Alavian, K.; Isacson, O. CD15, CD24, and CD29 define a surface biomarker code for neural lineage differentiation of stem cells. Stem Cells, 2009, 27(12), 2928-2940.
[http://dx.doi.org/10.1002/stem.211] [PMID: 19725119]
[67]
Griffiths, M.R.; Gasque, P.; Neal, J.W. The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain. J. Neuropathol. Exp. Neurol., 2009, 68(3), 217-226.
[http://dx.doi.org/10.1097/NEN.0b013e3181996688] [PMID: 19225414]
[68]
Hernangómez, M.; Mestre, L.; Correa, F.G.; Loría, F.; Mecha, M.; Iñigo, P.M.; Docagne, F.; Williams, R.O.; Borrell, J.; Guaza, C. CD200-CD200R1 interaction contributes to neuroprotective effects of anandamide on experimentally induced inflammation. Glia, 2012, 60(9), 1437-1450.
[http://dx.doi.org/10.1002/glia.22366] [PMID: 22653796]
[69]
Pachter, J.S.; de Vries, H.E.; Fabry, Z. The blood-brain barrier and its role in immune privilege in the central nervous system. J. Neuropathol. Exp. Neurol., 2003, 62(6), 593-604.
[http://dx.doi.org/10.1093/jnen/62.6.593] [PMID: 12834104]
[70]
Costello, D.A.; Lyons, A.; Denieffe, S.; Browne, T.C.; Cox, F.F.; Lynch, M.A. Long term potentiation is impaired in membrane glycoprotein CD200-deficient mice: a role for Toll-like receptor activation. J. Biol. Chem., 2011, 286(40), 34722-34732.
[http://dx.doi.org/10.1074/jbc.M111.280826] [PMID: 21835925]
[71]
Wilkins, H.M.; Koppel, S.J.; Weidling, I.W.; Roy, N.; Ryan, L.N.; Stanford, J.A.; Swerdlow, R.H. Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain. J. Neuroimmune Pharmacol., 2016, 11(4), 622-628.
[http://dx.doi.org/10.1007/s11481-016-9704-7] [PMID: 27562848]
[72]
Hancock, M.L.; Meyer, R.C.; Mistry, M.; Khetani, R.S.; Wagschal, A.; Shin, T.; Ho Sui, S.J.; Näär, A.M.; Flanagan, J.G. Insulin receptor associates with promoters genome-wide and regulates gene expression. Cell, 2019, 177(3), 722-736.e22.
[http://dx.doi.org/10.1016/j.cell.2019.02.030] [PMID: 30955890]
[73]
Billcliff, P.G.; Rollason, R.; Prior, I.; Owen, D.M.; Gaus, K.; Banting, G. CD317/tetherin is an organiser of membrane microdomains. J. Cell Sci., 2013, 126(Pt 7), 1553-1564.
[http://dx.doi.org/10.1242/jcs.112953] [PMID: 23378022]
[74]
Bazan, J.F.; Bacon, K.B.; Hardiman, G.; Wang, W.; Soo, K.; Rossi, D.; Greaves, D.R.; Zlotnik, A.; Schall, T.J. A new class of membrane-bound chemokine with a CX3C motif. Nature, 1997, 385(6617), 640-644.
[http://dx.doi.org/10.1038/385640a0] [PMID: 9024663]
[75]
Pan, Y.; Lloyd, C.; Zhou, H.; Dolich, S.; Deeds, J.; Gonzalo, J.A.; Vath, J.; Gosselin, M.; Ma, J.; Dussault, B.; Woolf, E.; Alperin, G.; Culpepper, J.; Gutierrez-Ramos, J.C.; Gearing, D. Neurotactin, a membrane-anchored chemokine upregulated in brain inflammation. Nature, 1997, 387(6633), 611-617.
[http://dx.doi.org/10.1038/42491] [PMID: 9177350]
[76]
Hughes, P.M.; Botham, M.S.; Frentzel, S.; Mir, A.; Perry, V.H. Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia, 2002, 37(4), 314-327.
[http://dx.doi.org/10.1002/glia.10037] [PMID: 11870871]
[77]
Cardona, A.E.; Sasse, M.E.; Liu, L.; Cardona, S.M.; Mizutani, M.; Savarin, C.; Hu, T.; Ransohoff, R.M. Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood, 2008, 112(2), 256-263.
[http://dx.doi.org/10.1182/blood-2007-10-118497] [PMID: 18347198]
[78]
Harrison, J.K.; Jiang, Y.; Chen, S.; Xia, Y.; Maciejewski, D.; McNamara, R.K.; Streit, W.J.; Salafranca, M.N.; Adhikari, S.; Thompson, D.A.; Botti, P.; Bacon, K.B.; Feng, L. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc. Natl. Acad. Sci. USA, 1998, 95(18), 10896-10901.
[http://dx.doi.org/10.1073/pnas.95.18.10896] [PMID: 9724801]
[79]
O’Sullivan, S.A.; Gasparini, F.; Mir, A.K.; Dev, K.K. Fractalkine shedding is mediated by p38 and the ADAM10 protease under pro-inflammatory conditions in human astrocytes. J. Neuroinflammation, 2016, 13(1), 189.
[http://dx.doi.org/10.1186/s12974-016-0659-7] [PMID: 27549131]
[80]
Sowa, J.E.; Ślusarczyk, J.; Trojan, E.; Chamera, K.; Leśkiewicz, M.; Regulska, M.; Kotarska, K.; Basta-Kaim, A. Prenatal stress affects viability, activation, and chemokine signaling in astroglial cultures. J. Neuroimmunol., 2017, 311, 79-87.
[http://dx.doi.org/10.1016/j.jneuroim.2017.08.006] [PMID: 28844502]
[81]
Tarozzo, G.; Bortolazzi, S.; Crochemore, C.; Chen, S.C.; Lira, A.S.; Abrams, J.S.; Beltramo, M. Fractalkine protein localization and gene expression in mouse brain. J. Neurosci. Res., 2003, 73(1), 81-88.
[http://dx.doi.org/10.1002/jnr.10645] [PMID: 12815711]
[82]
Imai, T.; Hieshima, K.; Haskell, C.; Baba, M.; Nagira, M.; Nishimura, M.; Kakizaki, M.; Takagi, S.; Nomiyama, H.; Schall, T.J.; Yoshie, O. Identification and molecular characterization of fractalkine receptor CX3CR1, which mediates both leukocyte migration and adhesion. Cell, 1997, 91(4), 521-530.
[http://dx.doi.org/10.1016/S0092-8674(00)80438-9] [PMID: 9390561]
[83]
Combadiere, C.; Salzwedel, K.; Smith, E.D.; Tiffany, H.L.; Berger, E.A.; Murphy, P.M. Identification of CX3CR1. A chemotactic receptor for the human CX3C chemokine fractalkine and a fusion coreceptor for HIV-1. J. Biol. Chem., 1998, 273(37), 23799-23804.
[http://dx.doi.org/10.1074/jbc.273.37.23799] [PMID: 9726990]
[84]
Maciejewski-Lenoir, D.; Chen, S.; Feng, L.; Maki, R.; Bacon, K.B. Characterization of fractalkine in rat brain cells: migratory and activation signals for CX3CR-1-expressing microglia. J. Immunol., 1999, 163(3), 1628-1635.
[PMID: 10415068]
[85]
Nardelli, B.; Tiffany, H.L.; Bong, G.W.; Yourey, P.A.; Morahan, D.K.; Li, Y.; Murphy, P.M.; Alderson, R.F. Characterization of the signal transduction pathway activated in human monocytes and dendritic cells by MPIF-1, a specific ligand for CC chemokine receptor 1. J. Immunol., 1999, 162(1), 435-444.
[PMID: 9886417]
[86]
Juremalm, M.; Nilsson, G. Chemokine receptor expression by mast cells. Chem. Immunol. Allergy, 2005, 87, 130-144.
[http://dx.doi.org/10.1159/000087640] [PMID: 16107768]
[87]
Schulz, C.; Schäfer, A.; Stolla, M.; Kerstan, S.; Lorenz, M.; von Brühl, M.L.; Schiemann, M.; Bauersachs, J.; Gloe, T.; Busch, D.H.; Gawaz, M.; Massberg, S. Chemokine fractalkine mediates leukocyte recruitment to inflammatory endothelial cells in flowing whole blood: a critical role for P-selectin expressed on activated platelets. Circulation, 2007, 116(7), 764-773.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.695189] [PMID: 17679613]
[88]
Umehara, H.; Goda, S.; Imai, T.; Nagano, Y.; Minami, Y.; Tanaka, Y.; Okazaki, T.; Bloom, E.T.; Domae, N. Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol. Cell Biol., 2001, 79(3), 298-302.
[http://dx.doi.org/10.1046/j.1440-1711.2001.01004.x] [PMID: 11380684]
[89]
Tsai, W.H.; Shih, C.H.; Feng, S.Y.; Chang, S.C.; Lin, Y.C.; Hsu, H.C. Role of CX3CL1 in the chemotactic migration of all-trans retinoic acid-treated acute promyelocytic leukemic cells toward apoptotic cells. J. Chin. Med. Assoc., 2014, 77(7), 367-373.
[http://dx.doi.org/10.1016/j.jcma.2014.04.008] [PMID: 24908182]
[90]
Voronova, A.; Yuzwa, S.A.; Wang, B.S.; Zahr, S.; Syal, C.; Wang, J.; Kaplan, D.R.; Miller, F.D. Migrating interneurons secrete fractalkine to promote oligodendrocyte formation in the developing mammalian brain. Neuron, 2017, 94(3), 500-516.e9.
[http://dx.doi.org/10.1016/j.neuron.2017.04.018] [PMID: 28472653]
[91]
Bachstetter, A.D.; Morganti, J.M.; Jernberg, J.; Schlunk, A.; Mitchell, S.H.; Brewster, K.W.; Hudson, C.E.; Cole, M.J.; Harrison, J.K.; Bickford, P.C.; Gemma, C. Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiol. Aging, 2011, 32(11), 2030-2044.
[http://dx.doi.org/10.1016/j.neurobiolaging.2009.11.022] [PMID: 20018408]
[92]
Maggi, L.; Scianni, M.; Branchi, I.; D’Andrea, I.; Lauro, C.; Limatola, C. CX(3)CR1 deficiency alters hippocampal-dependent plasticity phenomena blunting the effects of enriched environment. Front. Cell. Neurosci., 2011, 5, 22.
[http://dx.doi.org/10.3389/fncel.2011.00022] [PMID: 22025910]
[93]
Rogers, J.T.; Morganti, J.M.; Bachstetter, A.D.; Hudson, C.E.; Peters, M.M.; Grimmig, B.A.; Weeber, E.J.; Bickford, P.C.; Gemma, C. CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. J. Neurosci., 2011, 31(45), 16241-16250.
[http://dx.doi.org/10.1523/JNEUROSCI.3667-11.2011] [PMID: 22072675]
[94]
Zieger, M.; Ahnelt, P.K.; Uhrin, P. CX3CL1 (fractalkine) protein expression in normal and degenerating mouse retina: in vivo studies. PLoS One, 2014, 9(9), e106562
[http://dx.doi.org/10.1371/journal.pone.0106562] [PMID: 25191897]
[95]
Sellner, S.; Paricio-Montesinos, R.; Spieß, A.; Masuch, A.; Erny, D.; Harsan, L.A.; Elverfeldt, D.V.; Schwabenland, M.; Biber, K.; Staszewski, O.; Lira, S.; Jung, S.; Prinz, M.; Blank, T. Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathol. Commun., 2016, 4(1), 102.
[http://dx.doi.org/10.1186/s40478-016-0374-8] [PMID: 27639555]
[96]
Bolós, M.; Perea, J.R.; Terreros-Roncal, J.; Pallas-Bazarra, N.; Jurado-Arjona, J.; Ávila, J.; Llorens-Martín, M. Absence of microglial CX3CR1 impairs the synaptic integration of adult-born hippocampal granule neurons. Brain Behav. Immun., 2018, 68, 76-89.
[http://dx.doi.org/10.1016/j.bbi.2017.10.002] [PMID: 29017970]
[97]
Zujovic, V.; Benavides, J.; Vigé, X.; Carter, C.; Taupin, V. Fractalkine modulates TNF-alpha secretion and neurotoxicity induced by microglial activation. Glia, 2000, 29(4), 305-315.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000215)29:4<305::AID-GLIA2>3.0.CO;2-V] [PMID: 10652441]
[98]
Mizuno, T.; Kawanokuchi, J.; Numata, K.; Suzumura, A. Production and neuroprotective functions of fractalkine in the central nervous system. Brain Res., 2003, 979(1-2), 65-70.
[http://dx.doi.org/10.1016/S0006-8993(03)02867-1] [PMID: 12850572]
[99]
Ma, B.; Xu, L.; Pan, X.; Sun, L.; Ding, J.; Xie, C.; Koliatsos, V.E.; Cai, H. LRRK2 modulates microglial activity through regulation of chemokine (C-X3-C) receptor 1 -mediated signalling pathways. Hum. Mol. Genet., 2016, 25(16), 3515-3523.
[http://dx.doi.org/10.1093/hmg/ddw194] [PMID: 27378696]
[100]
Bian, C.; Zhao, Z.Q.; Zhang, Y.Q.; Lü, N. Involvement of CX3CL1/CX3CR1 signaling in spinal long term potentiation. PLoS One, 2015, 10(3), e0118842
[http://dx.doi.org/10.1371/journal.pone.0118842] [PMID: 25768734]
[101]
Ragozzino, D.; Di Angelantonio, S.; Trettel, F.; Bertollini, C.; Maggi, L.; Gross, C.; Charo, I.F.; Limatola, C.; Eusebi, F. Chemokine fractalkine/CX3CL1 negatively modulates active glutamatergic synapses in rat hippocampal neurons. J. Neurosci., 2006, 26(41), 10488-10498.
[http://dx.doi.org/10.1523/JNEUROSCI.3192-06.2006] [PMID: 17035533]
[102]
Bertollini, C.; Ragozzino, D.; Gross, C.; Limatola, C.; Eusebi, F. Fractalkine/CX3CL1 depresses central synaptic transmission in mouse hippocampal slices. Neuropharmacology, 2006, 51(4), 816-821.
[http://dx.doi.org/10.1016/j.neuropharm.2006.05.027] [PMID: 16815480]
[103]
Roseti, C.; Fucile, S.; Lauro, C.; Martinello, K.; Bertollini, C.; Esposito, V.; Mascia, A.; Catalano, M.; Aronica, E.; Limatola, C.; Palma, E. Fractalkine/CX3CL1 modulates GABAA currents in human temporal lobe epilepsy. Epilepsia, 2013, 54(10), 1834-1844.
[http://dx.doi.org/10.1111/epi.12354] [PMID: 24032743]
[104]
Heinisch, S.; Kirby, L.G. Fractalkine/CX3CL1 enhances GABA synaptic activity at serotonin neurons in the rat dorsal raphe nucleus. Neuroscience, 2009, 164(3), 1210-1223.
[http://dx.doi.org/10.1016/j.neuroscience.2009.08.075] [PMID: 19748551]
[105]
Scianni, M.; Antonilli, L.; Chece, G.; Cristalli, G.; Di Castro, M.A.; Limatola, C.; Maggi, L. Fractalkine (CX3CL1) enhances hippocampal N-methyl-D-aspartate receptor (NMDAR) function via D-serine and adenosine receptor type A2 (A2AR) activity. J. Neuroinflammation, 2013, 10, 108.
[http://dx.doi.org/10.1186/1742-2094-10-108] [PMID: 23981568]
[106]
O’Sullivan, S.A.; Dev, K.K. The chemokine fractalkine (CX3CL1) attenuates H2O2-induced demyelination in cerebellar slices. J. Neuroinflammation, 2017, 14(1), 159.
[http://dx.doi.org/10.1186/s12974-017-0932-4] [PMID: 28810923]
[107]
Bolós, M.; Llorens-Martín, M.; Perea, J.R.; Jurado-Arjona, J.; Rábano, A.; Hernández, F.; Avila, J. Absence of CX3CR1 impairs the internalization of Tau by microglia. Mol. Neurodegener., 2017, 12(1), 59.
[http://dx.doi.org/10.1186/s13024-017-0200-1] [PMID: 28810892]
[108]
Suzuki, M.; El-Hage, N.; Zou, S.; Hahn, Y.K.; Sorrell, M.E.; Sturgill, J.L.; Conrad, D.H.; Knapp, P.E.; Hauser, K.F. Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death. Mol. Neurodegener., 2011, 6(1), 78.
[http://dx.doi.org/10.1186/1750-1326-6-78] [PMID: 22093090]
[109]
Meucci, O.; Fatatis, A.; Simen, A.A.; Miller, R.J. Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc. Natl. Acad. Sci. USA, 2000, 97(14), 8075-8080.
[http://dx.doi.org/10.1073/pnas.090017497] [PMID: 10869418]
[110]
Lauro, C.; Cipriani, R.; Catalano, M.; Trettel, F.; Chece, G.; Brusadin, V.; Antonilli, L.; van Rooijen, N.; Eusebi, F.; Fredholm, B.B.; Limatola, C. Adenosine A1 receptors and microglial cells mediate CX3CL1-induced protection of hippocampal neurons against Glu-induced death. Neuropsychopharmacology, 2010, 35(7), 1550-1559.
[http://dx.doi.org/10.1038/npp.2010.26] [PMID: 20200508]
[111]
Lauro, C.; Catalano, M.; Di Paolo, E.; Chece, G.; de Costanzo, I.; Trettel, F.; Limatola, C. Fractalkine/CX3CL1 engages different neuroprotective responses upon selective glutamate receptor overactivation. Front. Cell. Neurosci., 2015, 8, 472.
[http://dx.doi.org/10.3389/fncel.2014.00472] [PMID: 25653593]
[112]
Catalano, M.; Lauro, C.; Cipriani, R.; Chece, G.; Ponzetta, A.; Di Angelantonio, S.; Ragozzino, D.; Limatola, C. CX3CL1 protects neurons against excitotoxicity enhancing GLT-1 activity on astrocytes. J. Neuroimmunol., 2013, 263(1-2), 75-82.
[http://dx.doi.org/10.1016/j.jneuroim.2013.07.020] [PMID: 23968561]
[113]
Nash, K.R.; Moran, P.; Finneran, D.J.; Hudson, C.; Robinson, J.; Morgan, D.; Bickford, P.C. Fractalkine over expression suppresses α-synuclein-mediated neurodegeneration. Mol. Ther., 2015, 23(1), 17-23.
[http://dx.doi.org/10.1038/mt.2014.175] [PMID: 25195598]
[114]
Liu, C.; Hong, K.; Chen, H.; Niu, Y.; Duan, W.; Liu, Y.; Ji, Y.; Deng, B.; Li, Y.; Li, Z.; Wen, D.; Li, C. Evidence for a protective role of the CX3CL1/CX3CR1 axis in a model of amyotrophic lateral sclerosis. Biol. Chem., 2019, 400(5), 651-661.
[http://dx.doi.org/10.1515/hsz-2018-0204] [PMID: 30352020]
[115]
Clark, M.J.; Gagnon, J.; Williams, A.F.; Barclay, A.N. MRC OX-2 antigen: a lymphoid/neuronal membrane glycoprotein with a structure like a single immunoglobulin light chain. EMBO J., 1985, 4(1), 113-118.
[http://dx.doi.org/10.1002/j.1460-2075.1985.tb02324.x] [PMID: 2862025]
[116]
Barclay, A.N.; Ward, H.A. Purification and chemical characterisation of membrane glycoproteins from rat thymocytes and brain, recognised by monoclonal antibody MRC OX 2. Eur. J. Biochem., 1982, 129(2), 447-458.
[http://dx.doi.org/10.1111/j.1432-1033.1982.tb07070.x] [PMID: 6129975]
[117]
Manich, G.; Recasens, M.; Valente, T.; Almolda, B.; González, B.; Castellano, B. Role of the CD200-CD200R Axis during homeostasis and neuroinflammation. Neuroscience, 2019, 405, 118-136.
[http://dx.doi.org/10.1016/j.neuroscience.2018.10.030] [PMID: 30367946]
[118]
Ko, Y.C.; Chien, H.F.; Jiang-Shieh, Y.F.; Chang, C.Y.; Pai, M.H.; Huang, J.P.; Chen, H.M.; Wu, C.H. Endothelial CD200 is heterogeneously distributed, regulated and involved in immune cell-endothelium interactions. J. Anat., 2009, 214(1), 183-195.
[http://dx.doi.org/10.1111/j.1469-7580.2008.00986.x] [PMID: 19166481]
[119]
Barclay, A.N.; Wright, G.J.; Brooke, G.; Brown, M.H. CD200 and membrane protein interactions in the control of myeloid cells. Trends Immunol., 2002, 23(6), 285-290.
[http://dx.doi.org/10.1016/S1471-4906(02)02223-8] [PMID: 12072366]
[120]
Zeis, T.; Enz, L.; Schaeren-Wiemers, N. The immunomodulatory oligodendrocyte. Brain Res., 2016, 1641(Pt A), 139-148.
[http://dx.doi.org/10.1016/j.brainres.2015.09.021] [PMID: 26423932]
[121]
Lyons, A.; Downer, E.J.; Crotty, S.; Nolan, Y.M.; Mills, K.H.G.; Lynch, M.A. CD200 ligand receptor interaction modulates microglial activation in vivo and in vitro: a role for IL-4. J. Neurosci., 2007, 27(31), 8309-8313.
[http://dx.doi.org/10.1523/JNEUROSCI.1781-07.2007] [PMID: 17670977]
[122]
Koning, N.; Swaab, D.F.; Hoek, R.M.; Huitinga, I. Distribution of the immune inhibitory molecules CD200 and CD200R in the normal central nervous system and multiple sclerosis lesions suggests neuron-glia and glia-glia interactions. J. Neuropathol. Exp. Neurol., 2009, 68(2), 159-167.
[http://dx.doi.org/10.1097/NEN.0b013e3181964113] [PMID: 19151626]
[123]
Wright, G.J.; Cherwinski, H.; Foster-Cuevas, M.; Brooke, G.; Puklavec, M.J.; Bigler, M.; Song, Y.; Jenmalm, M.; Gorman, D.; McClanahan, T.; Liu, M.R.; Brown, M.H.; Sedgwick, J.D.; Phillips, J.H.; Barclay, A.N. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol., 2003, 171(6), 3034-3046.
[http://dx.doi.org/10.4049/jimmunol.171.6.3034] [PMID: 12960329]
[124]
Wright, G.J.; Puklavec, M.J.; Willis, A.C.; Hoek, R.M.; Sedgwick, J.D.; Brown, M.H.; Barclay, A.N.; Dunn, W. Lymphoid/neuronal cell surface OX2 glycoprotein recognizes a novel receptor on macrophages implicated in the control of their function. Immunity, 2000, 13(2), 233-242.
[http://dx.doi.org/10.1016/S1074-7613(00)00023-6] [PMID: 10981966]
[125]
Seeds, R.E.; Gordon, S.; Miller, J.L. Characterisation of myeloid receptor expression and interferon alpha/beta production in murine plasmacytoid dendritic cells by flow cytomtery. J. Immunol. Methods, 2009, 350(1-2), 106-117.
[http://dx.doi.org/10.1016/j.jim.2009.07.016] [PMID: 19666024]
[126]
Gorczynski, R.; Chen, Z.; Kai, Y.; Lee, L.; Wong, S.; Marsden, P.A. CD200 is a ligand for all members of the CD200R family of immunoregulatory molecules. J. Immunol., 2004, 172(12), 7744-7749.
[http://dx.doi.org/10.4049/jimmunol.172.12.7744] [PMID: 15187158]
[127]
Hoek, R. H.; Ruuls, S. R.; Murphy, C. A.; Wright, G. J.; Goddard, R.; Zurawski, S. M.; Blom, B.; Homola, M. E.; Streit, W. J.; Brown, M. H.; Barclay, A. N.; Sedgwick, J. D. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science (80-. ), 2000, 290(5497), 1768-1771.
[http://dx.doi.org/10.1126/science.290.5497.1768]
[128]
Liu, C.; Shen, Y.; Tang, Y.; Gu, Y. The role of N-glycosylation of CD200-CD200R1 interaction in classical microglial activation. J. Inflamm. (Lond.), 2018, 15(1), 28.
[http://dx.doi.org/10.1186/s12950-018-0205-8] [PMID: 30574022]
[129]
Dentesano, G.; Straccia, M.; Ejarque-Ortiz, A.; Tusell, J.M.; Serratosa, J.; Saura, J.; Solà, C. Inhibition of CD200R1 expression by C/EBP β in reactive microglial cells. J. Neuroinflammation, 2012, 9, 165.
[http://dx.doi.org/10.1186/1742-2094-9-165] [PMID: 22776069]
[130]
Lyons, A.; McQuillan, K.; Deighan, B.F.; O’Reilly, J.A.; Downer, E.J.; Murphy, A.C.; Watson, M.; Piazza, A.; O’Connell, F.; Griffin, R.; Mills, K.H.G.; Lynch, M.A. Decreased neuronal CD200 expression in IL-4-deficient mice results in increased neuroinflammation in response to lipopolysaccharide. Brain Behav. Immun., 2009, 23(7), 1020-1027.
[http://dx.doi.org/10.1016/j.bbi.2009.05.060] [PMID: 19501645]
[131]
Cox, F.F.; Berezin, V.; Bock, E.; Lynch, M.A. The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a CD200-dependent manner. Neuroscience, 2013, 235, 141-148.
[http://dx.doi.org/10.1016/j.neuroscience.2012.12.030] [PMID: 23337536]
[132]
Lyons, A.; Downer, E.J.; Costello, D.A.; Murphy, N.; Lynch, M.A. Dok2 mediates the CD200Fc attenuation of Aβ-induced changes in glia. J. Neuroinflammation, 2012, 9, 107.
[http://dx.doi.org/10.1186/1742-2094-9-107] [PMID: 22642833]
[133]
Lyons, A.; Minogue, A.M.; Jones, R.S.; Fitzpatrick, O.; Noonan, J.; Campbell, V.A.; Lynch, M.A. Analysis of the Impact of CD200 on Phagocytosis. Mol. Neurobiol., 2017, 54(7), 5730-5739.
[http://dx.doi.org/10.1007/s12035-016-0223-6] [PMID: 27830533]
[134]
Cox, F.F.; Carney, D.; Miller, A.M.; Lynch, M.A. CD200 fusion protein decreases microglial activation in the hippocampus of aged rats. Brain Behav. Immun., 2012, 26(5), 789-796.
[http://dx.doi.org/10.1016/j.bbi.2011.10.004] [PMID: 22041297]
[135]
Dentesano, G.; Serratosa, J.; Tusell, J.M.; Ramón, P.; Valente, T.; Saura, J.; Solà, C. CD200R1 and CD200 expression are regulated by PPAR-γ in activated glial cells. Glia, 2014, 62(6), 982-998.
[http://dx.doi.org/10.1002/glia.22656] [PMID: 24639050]
[136]
Varnum, M.M.; Kiyota, T.; Ingraham, K.L.; Ikezu, S.; Ikezu, T. The anti-inflammatory glycoprotein, CD200, restores neurogenesis and enhances amyloid phagocytosis in a mouse model of Alzheimer’s disease. Neurobiol. Aging, 2015, 36(11), 2995-3007.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.07.027] [PMID: 26315370]
[137]
Lin, L.-F. H.; Doherty, D. H.; Lile, J. D.; Bektesh, S. GDNF: A Glial Cell Line-Derived Neurotrophic Factor for Midbrain Dopaminergic Neurons. Science (80-.), 1993, 260(5111), 1130-1132.
[http://dx.doi.org/10.1126/science.8493557]
[138]
Boscia, F.; Esposito, C.L.; Di Crisci, A.; de Franciscis, V.; Annunziato, L.; Cerchia, L. GDNF selectively induces microglial activation and neuronal survival in CA1/CA3 hippocampal regions exposed to NMDA insult through Ret/ERK signalling. PLoS One, 2009, 4(8), e6486
[http://dx.doi.org/10.1371/journal.pone.0006486] [PMID: 19649251]
[139]
Denieffe, S.; Kelly, R.J.; McDonald, C.; Lyons, A.; Lynch, M.A. Classical activation of microglia in CD200-deficient mice is a consequence of blood brain barrier permeability and infiltration of peripheral cells. Brain Behav. Immun., 2013, 34, 86-97.
[http://dx.doi.org/10.1016/j.bbi.2013.07.174] [PMID: 23916893]
[140]
Elward, K.; Gasque, P. “Eat me” and “don’t eat me” signals govern the innate immune response and tissue repair in the CNS: emphasis on the critical role of the complement system. Mol. Immunol., 2003, 40(2-4), 85-94.
[http://dx.doi.org/10.1016/S0161-5890(03)00109-3] [PMID: 12914815]
[141]
Rosenblum, M. D.; Woodliff, J. E.; Johnson, B. D.; Konkol, M. C.; Gerber, K. A.; Orentas, R. J.; Sandford, G.; Truitt, R. L. CD200 is a novel p53-target gene involved in apoptosis-associated immune tolerance 2004, 103(7), 2691-8.
[http://dx.doi.org/10.1182/blood]
[142]
Yang, Y.; Zhang, X.J.; Zhang, C.; Chen, R.; Li, L.; He, J.; Xie, Y.; Chen, Y. Loss of neuronal CD200 contributed to microglial activation after acute cerebral ischemia in mice. Neurosci. Lett., 2018, 678, 48-54.
[http://dx.doi.org/10.1016/j.neulet.2018.05.004] [PMID: 29729356]
[143]
Webb, M.; Barclay, A.N. Localisation of the MRC OX-2 glycoprotein on the surfaces of neurones. J. Neurochem., 1984, 43(4), 1061-1067.
[http://dx.doi.org/10.1111/j.1471-4159.1984.tb12844.x] [PMID: 6147390]
[144]
Morris, R.J.; Beech, J.N. Sequential expression of OX2 and Thy-1 glycoproteins on the neuronal surface during development. An immunohistochemical study of rat cerebellum. Dev. Neurosci., 1987, 9(1), 33-44.
[http://dx.doi.org/10.1159/000111606] [PMID: 2885171]
[145]
Shrivastava, K.; Gonzalez, P.; Acarin, L. The immune inhibitory complex CD200/CD200R is developmentally regulated in the mouse brain. J. Comp. Neurol., 2012, 520(12), 2657-2675.
[http://dx.doi.org/10.1002/cne.23062] [PMID: 22323214]
[146]
Pankratova, S.; Bjornsdottir, H.; Christensen, C.; Zhang, L.; Li, S.; Dmytriyeva, O.; Bock, E.; Berezin, V. Immunomodulator CD200 promotes neurotrophic activity by interacting with and activating the fibroblast growth factor receptor. Mol. Neurobiol., 2016, 53(1), 584-594.
[http://dx.doi.org/10.1007/s12035-014-9037-6] [PMID: 25502296]
[147]
Hayakawa, K.; Pham, L.D.D.; Seo, J.H.; Miyamoto, N.; Maki, T.; Terasaki, Y.; Sakadžić, S.; Boas, D.; van Leyen, K.; Waeber, C.; Kim, K.W.; Arai, K.; Lo, E.H. CD200 restrains macrophage attack on oligodendrocyte precursors via toll-like receptor 4 downregulation. J. Cereb. Blood Flow Metab., 2016, 36(4), 781-793.
[http://dx.doi.org/10.1177/0271678X15606148] [PMID: 26661156]
[148]
World Health Organization (WHO). who.int/news-room/fact-sheets/detail/schizophrenia (Accessed June 28, 2019).
[149]
Tandon, R.; Gaebel, W.; Barch, D.M.; Bustillo, J.; Gur, R.E.; Heckers, S.; Malaspina, D.; Owen, M.J.; Schultz, S.; Tsuang, M.; Van Os, J.; Carpenter, W. Definition and description of schizophrenia in the DSM-5. Schizophr. Res., 2013, 150(1), 3-10.
[http://dx.doi.org/10.1016/j.schres.2013.05.028] [PMID: 23800613]
[150]
Salleh, M.R. The genetics of schizophrenia. Malays. J. Med. Sci., 2004, 11(2), 3-11.
[PMID: 22973121]
[151]
Foley, C.; Corvin, A.; Nakagome, S. Genetics of Schizophrenia: Ready to Translate? Curr. Psychiatry Rep., 2017, 19(9), 61.
[http://dx.doi.org/10.1007/s11920-017-0807-5] [PMID: 28741255]
[152]
He, P.; Chen, G.; Guo, C.; Wen, X.; Song, X.; Zheng, X. Long-term effect of prenatal exposure to malnutrition on risk of schizophrenia in adulthood: Evidence from the Chinese famine of 1959-1961. Eur. Psychiatry, 2018, 51, 42-47.
[http://dx.doi.org/10.1016/j.eurpsy.2018.01.003] [PMID: 29514118]
[153]
Russo, D.A.; Stochl, J.; Painter, M.; Dobler, V.; Jackson, E.; Jones, P.B.; Perez, J. Trauma history characteristics associated with mental states at clinical high risk for psychosis. Psychiatry Res., 2014, 220(1-2), 237-244.
[http://dx.doi.org/10.1016/j.psychres.2014.08.028] [PMID: 25200190]
[154]
Canetta, S.E.; Brown, A.S. Prenatal infection, maternal immune activation, and risk for schizophrenia. Transl. Neurosci., 2012, 3(4), 320-327.
[http://dx.doi.org/10.2478/s13380-012-0045-6] [PMID: 23956839]
[155]
Kneeland, R.E.; Fatemi, S.H. Viral infection, inflammation and schizophrenia. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2013, 42, 35-48.
[http://dx.doi.org/10.1016/j.pnpbp.2012.02.001] [PMID: 22349576]
[156]
von Bernhardi, R.; Heredia, F.; Salgado, N.; Muñoz, P. Microglia function in the normal brain. Adv. Exp. Med. Biol., 2016, 949, 67-92.
[http://dx.doi.org/10.1007/978-3-319-40764-7_4] [PMID: 27714685]
[157]
Sedgwick, J.D.; Schwender, S.; Imrich, H.; Dörries, R.; Butcher, G.W.; ter Meulen, V. Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc. Natl. Acad. Sci. USA, 1991, 88(16), 7438-7442.
[http://dx.doi.org/10.1073/pnas.88.16.7438] [PMID: 1651506]
[158]
Wolf, S.A.; Boddeke, H.W.G.M.; Kettenmann, H. Microglia in Physiology and Disease. Annu. Rev. Physiol., 2017, 79(1), 619-643.
[http://dx.doi.org/10.1146/annurev-physiol-022516-034406] [PMID: 27959620]
[159]
Monji, A.; Kato, T.; Kanba, S. Cytokines and schizophrenia: Microglia hypothesis of schizophrenia. Psychiatry Clin. Neurosci., 2009, 63(3), 257-265.
[http://dx.doi.org/10.1111/j.1440-1819.2009.01945.x] [PMID: 19579286]
[160]
Simosky, J.K.; Freedman, R.; Stevens, K.E. Olanzapine improves deficient sensory inhibition in DBA/2 mice. Brain Res., 2008, 1233, 129-136.
[http://dx.doi.org/10.1016/j.brainres.2008.07.057] [PMID: 18687314]
[161]
Singer, P.; Feldon, J.; Yee, B.K. Are DBA/2 mice associated with schizophrenia-like endophenotypes? A behavioural contrast with C57BL/6 mice. Psychopharmacology (Berl.), 2009, 206(4), 677-698.
[http://dx.doi.org/10.1007/s00213-009-1568-6] [PMID: 19484222]
[162]
Arime, Y.; Fukumura, R.; Miura, I.; Mekada, K.; Yoshiki, A.; Wakana, S.; Gondo, Y.; Akiyama, K. Effects of background mutations and single nucleotide polymorphisms (SNPs) on the Disc1 L100P behavioral phenotype associated with schizophrenia in mice. Behav. Brain Funct., 2014, 10(1), 45.
[http://dx.doi.org/10.1186/1744-9081-10-45] [PMID: 25487992]
[163]
Ma, L.; Kulesskaya, N.; Võikar, V.; Tian, L. Differential expression of brain immune genes and schizophrenia-related behavior in C57BL/6N and DBA/2J female mice. Psychiatry Res., 2015, 226(1), 211-216.
[http://dx.doi.org/10.1016/j.psychres.2015.01.001] [PMID: 25661533]
[164]
Zhan, Y. Theta frequency prefrontal-hippocampal driving relationship during free exploration in mice. Neuroscience, 2015, 300, 554-565.
[http://dx.doi.org/10.1016/j.neuroscience.2015.05.063] [PMID: 26037805]
[165]
Meyer-Lindenberg, A.S.; Olsen, R.K.; Kohn, P.D.; Brown, T.; Egan, M.F.; Weinberger, D.R.; Berman, K.F. Regionally specific disturbance of dorsolateral prefrontal-hippocampal functional connectivity in schizophrenia. Arch. Gen. Psychiatry, 2005, 62(4), 379-386.
[http://dx.doi.org/10.1001/archpsyc.62.4.379] [PMID: 15809405]
[166]
Bähner, F.; Meyer-Lindenberg, A. Hippocampal-prefrontal connectivity as a translational phenotype for schizophrenia. Eur. Neuropsychopharmacol., 2017, 27(2), 93-106.
[http://dx.doi.org/10.1016/j.euroneuro.2016.12.007] [PMID: 28089652]
[167]
Bergon, A.; Belzeaux, R.; Comte, M.; Pelletier, F.; Hervé, M.; Gardiner, E.J.; Beveridge, N.J.; Liu, B.; Carr, V.; Scott, R.J.; Kelly, B.; Cairns, M.J.; Kumarasinghe, N.; Schall, U.; Blin, O.; Boucraut, J.; Tooney, P.A.; Fakra, E.; Ibrahim, E.C. CX3CR1 is dysregulated in blood and brain from schizophrenia patients. Schizophr. Res., 2015, 168(1-2), 434-443.
[http://dx.doi.org/10.1016/j.schres.2015.08.010] [PMID: 26285829]
[168]
Li, W.X.; Dai, S.X.; Liu, J.Q.; Wang, Q.; Li, G.H.; Huang, J.F. integrated analysis of alzheimer’s disease and schizophrenia dataset revealed different expression pattern in learning and memory. J. Alzheimers Dis., 2016, 51(2), 417-425.
[http://dx.doi.org/10.3233/JAD-150807] [PMID: 26890750]
[169]
Ishizuka, K.; Fujita, Y.; Kawabata, T.; Kimura, H.; Iwayama, Y.; Inada, T.; Okahisa, Y.; Egawa, J.; Usami, M.; Kushima, I.; Uno, Y.; Okada, T.; Ikeda, M.; Aleksic, B.; Mori, D.; Someya, T.; Yoshikawa, T.; Iwata, N.; Nakamura, H.; Yamashita, T.; Ozaki, N. Rare genetic variants in CX3CR1 and their contribution to the increased risk of schizophrenia and autism spectrum disorders. Transl. Psychiatry, 2017, 7(8), e1184
[http://dx.doi.org/10.1038/tp.2017.173] [PMID: 28763059]
[170]
van Mierlo, H.C.; Schot, A.; Boks, M.P.M.; de Witte, L.D. The association between schizophrenia and the immune system: Review of the evidence from unbiased ‘omic-studies’. Schizophr. Res.,, 2019, S0920-9964(19), 30204-X.
[http://dx.doi.org/10.1016/j.schres.2019.05.028] [PMID: 31130400]
[171]
Reif, A.; Schmitt, A.; Fritzen, S.; Lesch, K.P. Neurogenesis and schizophrenia: dividing neurons in a divided mind? Eur. Arch. Psychiatry Clin. Neurosci., 2007, 257(5), 290-299.
[http://dx.doi.org/10.1007/s00406-007-0733-3] [PMID: 17468935]
[172]
Wolf, S.A.; Melnik, A.; Kempermann, G. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav. Immun., 2011, 25(5), 971-980.
[http://dx.doi.org/10.1016/j.bbi.2010.10.014] [PMID: 20970493]
[173]
Ouchi, Y.; Banno, Y.; Shimizu, Y.; Ando, S.; Hasegawa, H.; Adachi, K.; Iwamoto, T. Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J. Neurosci., 2013, 33(22), 9408-9419.
[http://dx.doi.org/10.1523/JNEUROSCI.2700-12.2013] [PMID: 23719809]
[174]
Allen, K.M.; Fung, S.J.; Weickert, C.S. Cell proliferation is reduced in the hippocampus in schizophrenia. Aust. N. Z. J. Psychiatry, 2016, 50(5), 473-480.
[http://dx.doi.org/10.1177/0004867415589793] [PMID: 26113745]
[175]
Snyder, J.S.; Hong, N.S.; McDonald, R.J.; Wojtowicz, J.M. A role for adult neurogenesis in spatial long-term memory. Neuroscience, 2005, 130(4), 843-852.
[http://dx.doi.org/10.1016/j.neuroscience.2004.10.009] [PMID: 15652983]
[176]
Winocur, G.; Wojtowicz, J.M.; Sekeres, M.; Snyder, J.S.; Wang, S. Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus, 2006, 16(3), 296-304.
[http://dx.doi.org/10.1002/hipo.20163] [PMID: 16411241]
[177]
Aizawa, K.; Ageyama, N.; Yokoyama, C.; Hisatsune, T. Age-dependent alteration in hippocampal neurogenesis correlates with learning performance of macaque monkeys. Exp. Anim., 2009, 58(4), 403-407.
[http://dx.doi.org/10.1538/expanim.58.403] [PMID: 19654438]
[178]
Meltzer, H.Y.; McGurk, S.R. The effects of clozapine, risperidone, and olanzapine on cognitive function in schizophrenia. Schizophr. Bull., 1999, 25(2), 233-255.
[http://dx.doi.org/10.1093/oxfordjournals.schbul.a033376] [PMID: 10416729]
[179]
Gemma, C.; Bachstetter, A.D.; Cole, M.J.; Fister, M.; Hudson, C.; Bickford, P.C. Blockade of caspase-1 increases neurogenesis in the aged hippocampus. Eur. J. Neurosci., 2007, 26(10), 2795-2803.
[http://dx.doi.org/10.1111/j.1460-9568.2007.05875.x] [PMID: 18001276]
[180]
Paolicelli, R. C.; Bolasco, G.; Pagani, F.; Maggi, L.; Scianni, M.; Panzanelli, P.; Giustetto, M.; Ferreira, T. A.; Guiducci, E.; Dumas, L.; Ragozzino, D.; Gross, C. T. Synaptic pruning by microglia is necessary for normal brain development. Science (80-.), 2011, 333(6048), 1456-1458.
[http://dx.doi.org/10.1126/science.1202529]
[181]
Reshef, R.; Kudryavitskaya, E.; Shani-Narkiss, H.; Isaacson, B.; Rimmerman, N.; Mizrahi, A.; Yirmiya, R. The role of microglia and their CX3CR1 signaling in adult neurogenesis in the olfactory bulb. eLife, 2017, 6, e30809
[http://dx.doi.org/10.7554/eLife.30809] [PMID: 29251592]
[182]
Arnold, S.E.; Talbot, K.; Hahn, C.G. Neurodevelopment, neuroplasticity, and new genes for schizophrenia. Prog. Brain Res., 2005, 147(SPEC. ISS.), 319-345.
[http://dx.doi.org/10.1016/S0079-6123(04)47023-X] [PMID: 15581715]
[183]
Lewis, D.A.; Levitt, P. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci., 2002, 25(1), 409-432.
[http://dx.doi.org/10.1146/annurev.neuro.25.112701.142754] [PMID: 12052915]
[184]
Kam, J.W.Y.; Bolbecker, A.R.; O’Donnell, B.F.; Hetrick, W.P.; Brenner, C.A. Resting state EEG power and coherence abnormalities in bipolar disorder and schizophrenia. J. Psychiatr. Res., 2013, 47(12), 1893-1901.
[http://dx.doi.org/10.1016/j.jpsychires.2013.09.009] [PMID: 24090715]
[185]
Cousijn, H.; Tunbridge, E.M.; Rolinski, M.; Wallis, G.; Colclough, G.L.; Woolrich, M.W.; Nobre, A.C.; Harrison, P.J. Modulation of hippocampal theta and hippocampal-prefrontal cortex function by a schizophrenia risk gene. Hum. Brain Mapp., 2015, 36(6), 2387-2395.
[http://dx.doi.org/10.1002/hbm.22778] [PMID: 25757652]
[186]
Smit, D.J.A.; Wright, M.J.; Meyers, J.L.; Martin, N.G.; Ho, Y.Y.W.; Malone, S.M.; Zhang, J.; Burwell, S.J.; Chorlian, D.B.; de Geus, E.J.C.; Denys, D.; Hansell, N.K.; Hottenga, J.J.; McGue, M.; van Beijsterveldt, C.E.M.; Jahanshad, N.; Thompson, P.M.; Whelan, C.D.; Medland, S.E.; Porjesz, B.; Lacono, W.G.; Boomsma, D.I. Genome-wide association analysis links multiple psychiatric liability genes to oscillatory brain activity. Hum. Brain Mapp., 2018, 39(11), 4183-4195.
[http://dx.doi.org/10.1002/hbm.24238] [PMID: 29947131]
[187]
Narayanan, B.; Soh, P.; Calhoun, V.D.; Ruaño, G.; Kocherla, M.; Windemuth, A.; Clementz, B.A.; Tamminga, C.A.; Sweeney, J.A.; Keshavan, M.S.; Pearlson, G.D. Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study. Transl. Psychiatry, 2015, 5(6), e588
[http://dx.doi.org/10.1038/tp.2015.76] [PMID: 26101851]
[188]
Kang, S.S.; Sponheim, S.R.; Chafee, M.V.; MacDonald, A.W., III Disrupted functional connectivity for controlled visual processing as a basis for impaired spatial working memory in schizophrenia. Neuropsychologia, 2011, 49(10), 2836-2847.
[http://dx.doi.org/10.1016/j.neuropsychologia.2011.06.009] [PMID: 21703287]
[189]
Van Snellenberg, J.X.; Girgis, R.R.; Horga, G.; van de Giessen, E.; Slifstein, M.; Ojeil, N.; Weinstein, J.J.; Moore, H.; Lieberman, J.A.; Shohamy, D.; Smith, E.E.; Abi-Dargham, A. Mechanisms of working memory impairment in schizophrenia. Biol. Psychiatry, 2016, 80(8), 617-626.
[http://dx.doi.org/10.1016/j.biopsych.2016.02.017] [PMID: 27056754]
[190]
Obi-Nagata, K.; Temma, Y.; Hayashi-Takagi, A. Synaptic functions and their disruption in schizophrenia: From clinical evidence to synaptic optogenetics in an animal model. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci., 2019, 95(5), 179-197.
[http://dx.doi.org/10.2183/pjab.95.014] [PMID: 31080187]
[191]
Kakiuchi, C.; Ishiwata, M.; Nanko, S.; Ozaki, N.; Iwata, N.; Umekage, T.; Tochigi, M.; Kohda, K.; Sasaki, T.; Imamura, A.; Okazaki, Y.; Kato, T. Up-regulation of ADM and SEPX1 in the lymphoblastoid cells of patients in monozygotic twins discordant for schizophrenia. Am. J. Med. Genet. B. Neuropsychiatr. Genet., 2008, 147B(5), 557-564.
[http://dx.doi.org/10.1002/ajmg.b.30643] [PMID: 18081029]
[192]
Ormel, P. R.; Van Mierlo, H. C.; Litjens, M.; Van Strien, M. E.; Hol, E. M.; Kahn, R. S.; De Witte, L. D. Characterization of Macrophages from Schizophrenia Patients npj Schizophr, 2017, 3(1)
[http://dx.doi.org/10.1038/s41537-017-0042-4]
[193]
Meyer, U. Prenatal poly(i:C) exposure and other developmental immune activation models in rodent systems. Biol. Psychiatry, 2014, 75(4), 307-315.
[http://dx.doi.org/10.1016/j.biopsych.2013.07.011] [PMID: 23938317]
[194]
Basta-Kaim, A.; Budziszewska, B.; Leśkiewicz, M.; Fijał, K.; Regulska, M.; Kubera, M.; Wędzony, K.; Lasoń, W. Hyperactivity of the hypothalamus-pituitary-adrenal axis in lipopolysaccharide-induced neurodevelopmental model of schizophrenia in rats: effects of antipsychotic drugs. Eur. J. Pharmacol., 2011, 650(2-3), 586-595.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.083] [PMID: 21034739]
[195]
Basta-Kaim, A.; Szczęsny, E.; Leśkiewicz, M.; Głombik, K.; Ślusarczyk, J.; Budziszewska, B.; Regulska, M.; Kubera, M.; Nowak, W.; Wędzony, K.; Lasoń, W. Maternal immune activation leads to age-related behavioral and immunological changes in male rat offspring - the effect of antipsychotic drugs. Pharmacol. Rep., 2012, 64(6), 1400-1410.
[http://dx.doi.org/10.1016/S1734-1140(12)70937-4] [PMID: 23406750]
[196]
Winter, C.; Djodari-Irani, A.; Sohr, R.; Morgenstern, R.; Feldon, J.; Juckel, G.; Meyer, U. Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int. J. Neuropsychopharmacol., 2009, 12(4), 513-524.
[http://dx.doi.org/10.1017/S1461145708009206] [PMID: 18752727]
[197]
Hadar, R.; Soto-Montenegro, M.L.; Götz, T.; Wieske, F.; Sohr, R.; Desco, M.; Hamani, C.; Weiner, I.; Pascau, J.; Winter, C. Using a maternal immune stimulation model of schizophrenia to study behavioral and neurobiological alterations over the developmental course. Schizophr. Res., 2015, 166(1-3), 238-247.
[http://dx.doi.org/10.1016/j.schres.2015.05.010] [PMID: 26055633]
[198]
Basta-Kaim, A.; Fijał, K.; Ślusarczyk, J.; Trojan, E.; Głombik, K.; Budziszewska, B.; Leśkiewicz, M.; Regulska, M.; Kubera, M.; Lasoń, W.; Wędzony, K. Prenatal administration of lipopolysaccharide induces sex-dependent changes in glutamic acid decarboxylase and parvalbumin in the adult rat brain. Neuroscience, 2015, 287, 78-92.
[http://dx.doi.org/10.1016/j.neuroscience.2014.12.013] [PMID: 25528062]
[199]
Paylor, J.W.; Lins, B.R.; Greba, Q.; Moen, N.; de Moraes, R.S.; Howland, J.G.; Winship, I.R. Developmental disruption of perineuronal nets in the medial prefrontal cortex after maternal immune activation. Sci. Rep., 2016, 6, 37580.
[http://dx.doi.org/10.1038/srep37580] [PMID: 27876866]
[200]
da Silveira, V.T.; Medeiros, D.C.; Ropke, J.; Guidine, P.A.; Rezende, G.H.; Moraes, M.F.D.; Mendes, E.M.A.M.; Macedo, D.; Moreira, F.A.; de Oliveira, A.C.P. Effects of early or late prenatal immune activation in mice on behavioral and neuroanatomical abnormalities relevant to schizophrenia in the adulthood. Int. J. Dev. Neurosci., 2017, 58, 1-8.
[http://dx.doi.org/10.1016/j.ijdevneu.2017.01.009] [PMID: 28122258]
[201]
Basta-Kaim, A.; Fijał, K.; Budziszewska, B.; Regulska, M.; Leśkiewicz, M.; Kubera, M.; Gołembiowska, K.; Lasoń, W.; Wędzony, K. Prenatal lipopolysaccharide treatment enhances MK-801-induced psychotomimetic effects in rats. Pharmacol. Biochem. Behav., 2011, 98(2), 241-249.
[http://dx.doi.org/10.1016/j.pbb.2010.12.026] [PMID: 21236292]
[202]
Eßlinger, M.; Wachholz, S.; Manitz, M.P.; Plümper, J.; Sommer, R.; Juckel, G.; Friebe, A. Schizophrenia associated sensory gating deficits develop after adolescent microglia activation. Brain Behav. Immun., 2016, 58, 99-106.
[http://dx.doi.org/10.1016/j.bbi.2016.05.018] [PMID: 27235930]
[203]
Lin, Y.; Zeng, Y.; Di, J.; Zeng, S. Murine CD200+ CK7+ trophoblasts in a poly (I:C)-induced embryo resorption model. Reproduction, 2005, 130(4), 529-537.
[http://dx.doi.org/10.1530/rep.1.00575] [PMID: 16183870]
[204]
Antonson, A.M.; Balakrishnan, B.; Radlowski, E.C.; Petr, G.; Johnson, R.W. Altered Hippocampal Gene Expression and Morphology in Fetal Piglets following Maternal Respiratory Viral Infection. Dev. Neurosci., 2018, 40(2), 104-119.
[http://dx.doi.org/10.1159/000486850] [PMID: 29539630]
[205]
Elmore, M.R.P.; Burton, M.D.; Conrad, M.S.; Rytych, J.L.; Van Alstine, W.G.; Johnson, R.W. Respiratory viral infection in neonatal piglets causes marked microglia activation in the hippocampus and deficits in spatial learning. J. Neurosci., 2014, 34(6), 2120-2129.
[http://dx.doi.org/10.1523/JNEUROSCI.2180-13.2014] [PMID: 24501353]
[206]
Jurgens, H.A.; Amancherla, K.; Johnson, R.W. Influenza infection induces neuroinflammation, alters hippocampal neuron morphology, and impairs cognition in adult mice. J. Neurosci., 2012, 32(12), 3958-3968.
[http://dx.doi.org/10.1523/JNEUROSCI.6389-11.2012] [PMID: 22442063]
[207]
Jurgens, H.A.; Johnson, R.W. Environmental enrichment attenuates hippocampal neuroinflammation and improves cognitive function during influenza infection. Brain Behav. Immun., 2012, 26(6), 1006-1016.
[http://dx.doi.org/10.1016/j.bbi.2012.05.015] [PMID: 22687335]
[208]
Rygiel, T.P.; Rijkers, E.S.K.; de Ruiter, T.; Stolte, E.H.; van der Valk, M.; Rimmelzwaan, G.F.; Boon, L.; van Loon, A.M.; Coenjaerts, F.E.; Hoek, R.M.; Tesselaar, K.; Meyaard, L. Lack of CD200 enhances pathological T cell responses during influenza infection. J. Immunol., 2009, 183(3), 1990-1996.
[http://dx.doi.org/10.4049/jimmunol.0900252] [PMID: 19587022]
[209]
Snelgrove, R.J.; Goulding, J.; Didierlaurent, A.M.; Lyonga, D.; Vekaria, S.; Edwards, L.; Gwyer, E.; Sedgwick, J.D.; Barclay, A.N.; Hussell, T. A critical function for CD200 in lung immune homeostasis and the severity of influenza infection. Nat. Immunol., 2008, 9(9), 1074-1083.
[http://dx.doi.org/10.1038/ni.1637] [PMID: 18660812]
[210]
Brown, A.S. Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism. Dev. Neurobiol., 2012, 72(10), 1272-1276.
[http://dx.doi.org/10.1002/dneu.22024] [PMID: 22488761]
[211]
Khandaker, G.M.; Zimbron, J.; Lewis, G.; Jones, P.B. Prenatal maternal infection, neurodevelopment and adult schizophrenia: a systematic review of population-based studies. Psychol. Med., 2013, 43(2), 239-257.
[http://dx.doi.org/10.1017/S0033291712000736] [PMID: 22717193]
[212]
Blackburn, T.P. Depressive disorders: Treatment failures and poor prognosis over the last 50 years. Pharmacol. Res. Perspect., 2019, 7(3), e00472
[http://dx.doi.org/10.1002/prp2.472] [PMID: 31065377]
[213]
World Health Organization (WHO). who.int/news-room/fact-sheets/detail/depression (Accessed June 27, 2019).
[214]
Trivedi, M.H. The link between depression and physical symptoms. Prim. Care Companion J. Clin. Psychiatry, 2004, 6(Suppl. 1), 12-16.
[PMID: 16001092]
[215]
Grahek, I.; Shenhav, A.; Musslick, S.; Krebs, R.M.; Koster, E.H.W. Motivation and cognitive control in depression. Neurosci. Biobehav. Rev., 2019, 102, 371-381.
[http://dx.doi.org/10.1016/j.neubiorev.2019.04.011] [PMID: 31047891]
[216]
Park, C.; Rosenblat, J.D.; Lee, Y.; Pan, Z.; Cao, B.; Iacobucci, M.; McIntyre, R.S. The neural systems of emotion regulation and abnormalities in major depressive disorder. Behav. Brain Res., 2019, 367, 181-188.
[http://dx.doi.org/10.1016/j.bbr.2019.04.002] [PMID: 30951753]
[217]
Belujon, P.; Grace, A.A. Dopamine System Dysregulation in Major Depressive Disorders. Int. J. Neuropsychopharmacol., 2017, 20(12), 1036-1046.
[http://dx.doi.org/10.1093/ijnp/pyx056] [PMID: 29106542]
[218]
Maletic, V.; Eramo, A.; Gwin, K.; Offord, S.J.; Duffy, R.A. The role of norepinephrine and its α-adrenergic receptors in the pathophysiology and treatment of major depressive disorder and schizophrenia: a systematic review. Front. Psychiatry, 2017, 8(MAR), 42.
[http://dx.doi.org/10.3389/fpsyt.2017.00042] [PMID: 28367128]
[219]
Dell’Osso, L.; Carmassi, C.; Mucci, F.; Marazziti, D. Depression, serotonin and tryptophan. Curr. Pharm. Des., 2016, 22(8), 949-954.
[http://dx.doi.org/10.2174/1381612822666151214104826] [PMID: 26654774]
[220]
Shadrina, M.; Bondarenko, E.A.; Slominsky, P.A. Genetics Factors in Major Depression Disease. Front. Psychiatry, 2018, 9(334), 334.
[http://dx.doi.org/10.3389/fpsyt.2018.00334] [PMID: 30083112]
[221]
Varinthra, P.; Liu, I.Y. Molecular basis for the association between depression and circadian rhythm. Ci Ji Yi Xue Za Zhi, 2019, 31(2), 67-72.
[http://dx.doi.org/10.4103/tcmj.tcmj_181_18] [PMID: 31007484]
[222]
Szczęsny, E.; Ślusarczyk, J.; Głombik, K.; Budziszewska, B.; Kubera, M.; Lasoń, W.; Basta-Kaim, A. Possible contribution of IGF-1 to depressive disorder. Pharmacol. Rep., 2013, 65(6), 1622-1631.
[http://dx.doi.org/10.1016/S1734-1140(13)71523-8] [PMID: 24553010]
[223]
Detka, J.; Kurek, A.; Kucharczyk, M.; Głombik, K.; Basta-Kaim, A.; Kubera, M.; Lasoń, W.; Budziszewska, B. Brain glucose metabolism in an animal model of depression. Neuroscience, 2015, 295, 198-208.
[http://dx.doi.org/10.1016/j.neuroscience.2015.03.046] [PMID: 25819664]
[224]
Stachowicz, A.; Głombik, K.; Olszanecki, R.; Basta-Kaim, A.; Suski, M.; Lasoń, W.; Korbut, R. The impact of mitochondrial aldehyde dehydrogenase (ALDH2) activation by Alda-1 on the behavioral and biochemical disturbances in animal model of depression. Brain Behav. Immun., 2016, 51, 144-153.
[http://dx.doi.org/10.1016/j.bbi.2015.08.004] [PMID: 26254233]
[225]
Głombik, K.; Stachowicz, A.; Ślusarczyk, J.; Trojan, E.; Budziszewska, B.; Suski, M.; Kubera, M.; Lasoń, W.; Wędzony, K.; Olszanecki, R.; Basta-Kaim, A. Maternal stress predicts altered biogenesis and the profile of mitochondrial proteins in the frontal cortex and hippocampus of adult offspring rats. Psychoneuroendocrinology, 2015, 60, 151-162.
[http://dx.doi.org/10.1016/j.psyneuen.2015.06.015] [PMID: 26143539]
[226]
Głombik, K.; Stachowicz, A.; Olszanecki, R.; Ślusarczyk, J.; Trojan, E.; Lasoń, W.; Kubera, M.; Budziszewska, B.; Spedding, M.; Basta-Kaim, A. The effect of chronic tianeptine administration on the brain mitochondria: direct links with an animal model of depression. Mol. Neurobiol., 2016, 53(10), 7351-7362.
[http://dx.doi.org/10.1007/s12035-016-9807-4] [PMID: 26934888]
[227]
Głombik, K.; Stachowicz, A.; Trojan, E.; Olszanecki, R.; Ślusarczyk, J.; Suski, M.; Chamera, K.; Budziszewska, B.; Lasoń, W.; Basta-Kaim, A. Evaluation of the effectiveness of chronic antidepressant drug treatments in the hippocampal mitochondria - A proteomic study in an animal model of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2017, 78, 51-60.
[http://dx.doi.org/10.1016/j.pnpbp.2017.05.014] [PMID: 28526399]
[228]
Głombik, K.; Stachowicz, A.; Trojan, E.; Ślusarczyk, J.; Suski, M.; Chamera, K.; Kotarska, K.; Olszanecki, R.; Basta-Kaim, A. Mitochondrial proteomics investigation of frontal cortex in an animal model of depression: Focus on chronic antidepressant drugs treatment. Pharmacol. Rep., 2018, 70(2), 322-330.
[http://dx.doi.org/10.1016/j.pharep.2017.11.016] [PMID: 29477041]
[229]
Kubera, M.; Curzytek, K.; Duda, W.; Leskiewicz, M.; Basta-Kaim, A.; Budziszewska, B.; Roman, A.; Zajicova, A.; Holan, V.; Szczesny, E.; Lason, W.; Maes, M. A new animal model of (chronic) depression induced by repeated and intermittent lipopolysaccharide administration for 4 months. Brain Behav. Immun., 2013, 31, 96-104.
[http://dx.doi.org/10.1016/j.bbi.2013.01.001] [PMID: 23313516]
[230]
Detka, J.; Ślusarczyk, J.; Kurek, A.; Kucharczyk, M.; Adamus, T.; Konieczny, P.; Kubera, M.; Basta-Kaim, A.; Lasoń, W.; Budziszewska, B. Hypothalamic insulin and glucagon-like peptide-1 levels in an animal model of depression and their effect on corticotropin-releasing hormone promoter gene activity in a hypothalamic cell line. Pharmacol. Rep., 2019, 71(2), 338-346.
[http://dx.doi.org/10.1016/j.pharep.2018.11.001] [PMID: 30831439]
[231]
Trojan, E.; Ślusarczyk, J.; Chamera, K.; Kotarska, K.; Głombik, K.; Kubera, M.; Basta-Kaim, A. The Modulatory Properties of Chronic Antidepressant Drugs Treatment on the Brain Chemokine - Chemokine Receptor Network: A Molecular Study in an Animal Model of Depression. Front. Pharmacol., 2017, 8(779), 779.
[http://dx.doi.org/10.3389/fphar.2017.00779] [PMID: 29163165]
[232]
Trojan, E.; Chamera, K.; Bryniarska, N.; Kotarska, K.; Leśkiewicz, M.; Regulska, M.; Basta-Kaim, A. Role of chronic administration of antidepressant drugs in the prenatal stress-evoked inflammatory response in the brain of adult offspring rats: involvement of the nlrp3 inflammasome-related pathway. Mol. Neurobiol., 2019, 56(8), 5365-5380.
[http://dx.doi.org/10.1007/s12035-018-1458-1] [PMID: 30610610]
[233]
Maes, M. Activation of the inflammatory response system (irs) in major depression. Psychoneuroendocrinology, 1999, 25, S34.
[http://dx.doi.org/10.1016/S0306-4530(00)90127-6]
[234]
Schiepers, O.J.G.; Wichers, M.C.; Maes, M. Cytokines and major depression. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2005, 29(2), 201-217.
[http://dx.doi.org/10.1016/j.pnpbp.2004.11.003] [PMID: 15694227]
[235]
Ślusarczyk, J.; Trojan, E.; Chwastek, J.; Głombik, K.; Basta-Kaim, A. A potential contribution of chemokine network dysfunction to the depressive disorders. Curr. Neuropharmacol., 2016, 14(7), 705-720.
[http://dx.doi.org/10.2174/1570159X14666160219131357] [PMID: 26893168]
[236]
Merendino, R.A.; Di Pasquale, G.; De Luca, F.; Di Pasquale, L.; Ferlazzo, E.; Martino, G.; Palumbo, M.C.; Morabito, F.; Gangemi, S. Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression. Mediators Inflamm., 2004, 13(3), 205-207.
[http://dx.doi.org/10.1080/09511920410001713484] [PMID: 15223613]
[237]
García-Marchena, N.; Barrera, M.; Mestre-Pintó, J.I.; Araos, P.; Serrano, A.; Pérez-Mañá, C.; Papaseit, E.; Fonseca, F.; Ruiz, J.J.; Rodríguez de Fonseca, F.; Farré, M.; Pavón, F.J.; Torrens, M. Inflammatory mediators and dual depression: Potential biomarkers in plasma of primary and substance-induced major depression in cocaine and alcohol use disorders. PLoS One, 2019, 14(3), e0213791
[http://dx.doi.org/10.1371/journal.pone.0213791] [PMID: 30870525]
[238]
Miranda, D.O.; Anatriello, E.; Azevedo, L.R.; Santos, J.C.; Cordeiro, J.F.C.; Peria, F.M.; Flória-Santos, M.; Pereira-Da-Silva, G. Fractalkine (C-X3-C motif chemokine ligand 1) as a potential biomarker for depression and anxiety in colorectal cancer patients. Biomed. Rep., 2017, 7(2), 188-192.
[http://dx.doi.org/10.3892/br.2017.937] [PMID: 28804633]
[239]
Corona, A.W.; Norden, D.M.; Skendelas, J.P.; Huang, Y.; O’Connor, J.C.; Lawson, M.; Dantzer, R.; Kelley, K.W.; Godbout, J.P. Indoleamine 2,3-dioxygenase inhibition attenuates lipopolysaccharide induced persistent microglial activation and depressive-like complications in fractalkine receptor (CX(3)CR1)-deficient mice. Brain Behav. Immun., 2013, 31, 134-142.
[http://dx.doi.org/10.1016/j.bbi.2012.08.008] [PMID: 22926082]
[240]
Stepanichev, M.; Dygalo, N.N.; Grigoryan, G.; Shishkina, G.T.; Gulyaeva, N. Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BioMed Res. Int., 2014, 2014, 932757
[http://dx.doi.org/10.1155/2014/932757] [PMID: 24999483]
[241]
Ślusarczyk, J.; Trojan, E.; Wydra, K.; Głombik, K.; Chamera, K.; Kucharczyk, M.; Budziszewska, B.; Kubera, M.; Lasoń, W.; Filip, M.; Basta-Kaim, A. Beneficial impact of intracerebroventricular fractalkine administration on behavioral and biochemical changes induced by prenatal stress in adult rats: Possible role of NLRP3 inflammasome pathway. Biochem. Pharmacol., 2016, 113, 45-56.
[http://dx.doi.org/10.1016/j.bcp.2016.05.008] [PMID: 27206338]
[242]
Rossetti, A.C.; Papp, M.; Gruca, P.; Paladini, M.S.; Racagni, G.; Riva, M.A.; Molteni, R. Stress-induced anhedonia is associated with the activation of the inflammatory system in the rat brain: Restorative effect of pharmacological intervention. Pharmacol. Res., 2016, 103, 1-12.
[http://dx.doi.org/10.1016/j.phrs.2015.10.022] [PMID: 26535964]
[243]
Corona, A.W.; Huang, Y.; O’Connor, J.C.; Dantzer, R.; Kelley, K.W.; Popovich, P.G.; Godbout, J.P. Fractalkine receptor (CX3CR1) deficiency sensitizes mice to the behavioral changes induced by lipopolysaccharide. J. Neuroinflammation, 2010, 7, 93.
[http://dx.doi.org/10.1186/1742-2094-7-93] [PMID: 21167054]
[244]
Milior, G.; Lecours, C.; Samson, L.; Bisht, K.; Poggini, S.; Pagani, F.; Deflorio, C.; Lauro, C.; Alboni, S.; Limatola, C.; Branchi, I.; Tremblay, M.E.; Maggi, L. Fractalkine receptor deficiency impairs microglial and neuronal responsiveness to chronic stress. Brain Behav. Immun., 2016, 55, 114-125.
[http://dx.doi.org/10.1016/j.bbi.2015.07.024] [PMID: 26231972]
[245]
Winkler, Z.; Kuti, D.; Ferenczi, S.; Gulyás, K.; Polyák, Á.; Kovács, K.J. Impaired microglia fractalkine signaling affects stress reaction and coping style in mice. Behav. Brain Res., 2017, 334, 119-128.
[http://dx.doi.org/10.1016/j.bbr.2017.07.023] [PMID: 28736330]
[246]
Rimmerman, N.; Schottlender, N.; Reshef, R.; Dan-Goor, N.; Yirmiya, R. The hippocampal transcriptomic signature of stress resilience in mice with microglial fractalkine receptor (CX3CR1) deficiency. Brain Behav. Immun., 2017, 61, 184-196.
[http://dx.doi.org/10.1016/j.bbi.2016.11.023] [PMID: 27890560]
[247]
Hellwig, S.; Brioschi, S.; Dieni, S.; Frings, L.; Masuch, A.; Blank, T.; Biber, K. Altered microglia morphology and higher resilience to stress-induced depression-like behavior in CX3CR1-deficient mice. Brain Behav. Immun., 2016, 55, 126-137.
[http://dx.doi.org/10.1016/j.bbi.2015.11.008] [PMID: 26576722]
[248]
Wang, H.T.; Huang, F.L.; Hu, Z.L.; Zhang, W.J.; Qiao, X.Q.; Huang, Y.Q.; Dai, R.P.; Li, F.; Li, C.Q. Early-life social isolation-induced depressive-like behavior in rats results in microglial activation and neuronal histone methylation that are mitigated by minocycline. Neurotox. Res., 2017, 31(4), 505-520.
[http://dx.doi.org/10.1007/s12640-016-9696-3] [PMID: 28092020]
[249]
Bollinger, J.L.; Collins, K.E.; Patel, R.; Wellman, C.L. Behavioral stress alters corticolimbic microglia in a sex- and brain region-specific manner. PLoS One, 2017, 12(12), e0187631
[http://dx.doi.org/10.1371/journal.pone.0187631] [PMID: 29194444]
[250]
Frank, M.G.; Fonken, L.K.; Annis, J.L.; Watkins, L.R.; Maier, S.F. Stress disinhibits microglia via down-regulation of CD200R: A mechanism of neuroinflammatory priming. Brain Behav. Immun., 2018, 69, 62-73.
[http://dx.doi.org/10.1016/j.bbi.2017.11.001] [PMID: 29104062]
[251]
Fonken, L.K.; Frank, M.G.; Gaudet, A.D.; D’Angelo, H.M.; Daut, R.A.; Hampson, E.C.; Ayala, M.T.; Watkins, L.R.; Maier, S.F. Neuroinflammatory priming to stress is differentially regulated in male and female rats. Brain Behav. Immun., 2018, 70, 257-267.
[http://dx.doi.org/10.1016/j.bbi.2018.03.005] [PMID: 29524458]
[252]
Blandino, P., Jr; Barnum, C.J.; Solomon, L.G.; Larish, Y.; Lankow, B.S.; Deak, T. Gene expression changes in the hypothalamus provide evidence for regionally-selective changes in IL-1 and microglial markers after acute stress. Brain Behav. Immun., 2009, 23(7), 958-968.
[http://dx.doi.org/10.1016/j.bbi.2009.04.013] [PMID: 19464360]
[253]
Lovelock, D.F.; Deak, T. Neuroendocrine and neuroimmune adaptation to Chronic Escalating Distress (CED): A novel model of chronic stress. Neurobiol. Stress, 2018, 9, 74-83.
[http://dx.doi.org/10.1016/j.ynstr.2018.08.007] [PMID: 30450375]
[254]
Catanzaro, J.M.; Hueston, C.M.; Deak, M.M.; Deak, T. The impact of the P2X7 receptor antagonist A-804598 on neuroimmune and behavioral consequences of stress. Behav. Pharmacol., 2014, 25(5-6), 582-598.
[http://dx.doi.org/10.1097/FBP.0000000000000072] [PMID: 25083574]
[255]
Park, M.J.; Park, H.S.; You, M.J.; Yoo, J.; Kim, S.H.; Kwon, M.S. Dexamethasone induces a specific form of ramified dysfunctional microglia. Mol. Neurobiol., 2019, 56(2), 1421-1436.
[http://dx.doi.org/10.1007/s12035-018-1156-z] [PMID: 29948944]
[256]
Wachholz, S.; Eßlinger, M.; Plümper, J.; Manitz, M.P.; Juckel, G.; Friebe, A. Microglia activation is associated with IFN-α induced depressive-like behavior. Brain Behav. Immun., 2016, 55, 105-113.
[http://dx.doi.org/10.1016/j.bbi.2015.09.016] [PMID: 26408795]
[257]
Lane, C.A.; Hardy, J.; Schott, J.M. Alzheimer’s disease. Eur. J. Neurol., 2018, 25(1), 59-70.
[http://dx.doi.org/10.1111/ene.13439] [PMID: 28872215]
[258]
Gaugler, J.; James, B.; Johnson, T.; Scholz, K.; Weuve, J. Alzheimer’s disease facts and figures. Alzheimers Dement., 2018, 2018, 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[259]
Alzheimer, A.; Stelzmann, R.A.; Schnitzlein, H.N.; Murtagh, F.R. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin. Anat., 1995, 8(6), 429-431.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[260]
He, Z.; Guo, J.L.; McBride, J.D.; Narasimhan, S.; Kim, H.; Changolkar, L.; Zhang, B.; Gathagan, R.J.; Yue, C.; Dengler, C.; Stieber, A.; Nitla, M.; Coulter, D.A.; Abel, T.; Brunden, K.R.; Trojanowski, J.Q.; Lee, V.M. Amyloid-β plaques enhance Alzheimer’s brain tau-seeded pathologies by facilitating neuritic plaque tau aggregation. Nat. Med., 2018, 24(1), 29-38.
[http://dx.doi.org/10.1038/nm.4443] [PMID: 29200205]
[261]
Hansen, D.V.; Hanson, J.E.; Sheng, M. Microglia in Alzheimer’s disease. J. Cell Biol., 2018, 217(2), 459-472.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[262]
Munger, E.L.; Edler, M.K.; Hopkins, W.D.; Ely, J.J.; Erwin, J.M.; Perl, D.P.; Mufson, E.J.; Hof, P.R.; Sherwood, C.C.; Raghanti, M.A. Astrocytic changes with aging and Alzheimer’s disease-type pathology in chimpanzees. J. Comp. Neurol., 2019, 527(7), 1179-1195.
[http://dx.doi.org/10.1002/cne.24610] [PMID: 30578640]
[263]
Zhang, H.; Wang, D.; Gong, P.; Lin, A.; Zhang, Y.; Ye, R.D.; Yu, Y. Formyl peptide receptor 2 deficiency improves cognition and attenuates tau hyperphosphorylation and astrogliosis in a mouse model of alzheimer’s disease. J. Alzheimers Dis., 2019, 67(1), 169-179.
[http://dx.doi.org/10.3233/JAD-180823] [PMID: 30475772]
[264]
Van Hoesen, G.W.; Hyman, B.T. Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Prog. Brain Res., 1990, 83(C), 445-457.
[http://dx.doi.org/10.1016/S0079-6123(08)61268-6] [PMID: 2392569]
[265]
Fjell, A.M.; McEvoy, L.; Holland, D.; Dale, A.M.; Walhovd, K.B. Alzheimer’s Disease Neuroimaging Initiative. What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog. Neurobiol., 2014, 117, 20-40.
[http://dx.doi.org/10.1016/j.pneurobio.2014.02.004] [PMID: 24548606]
[266]
Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol., 1991, 82(4), 239-259.
[http://dx.doi.org/10.1007/BF00308809] [PMID: 1759558]
[267]
Strobel, S.; Grünblatt, E.; Riederer, P.; Heinsen, H.; Arzberger, T.; Al-Sarraj, S.; Troakes, C.; Ferrer, I.; Monoranu, C.M. Changes in the expression of genes related to neuroinflammation over the course of sporadic Alzheimer’s disease progression: CX3CL1, TREM2, and PPARγ. J. Neural Transm. (Vienna), 2015, 122(7), 1069-1076.
[http://dx.doi.org/10.1007/s00702-015-1369-5] [PMID: 25596843]
[268]
Perea, J.R.; Lleó, A.; Alcolea, D.; Fortea, J.; Ávila, J.; Bolós, M. Decreased cx3cl1 levels in the cerebrospinal fluid of patients with alzheimer’s disease. Front. Neurosci., 2018, 12(SEP), 609.
[http://dx.doi.org/10.3389/fnins.2018.00609] [PMID: 30245615]
[269]
Lyons, A.; Lynch, A.M.; Downer, E.J.; Hanley, R.; O’Sullivan, J.B.; Smith, A.; Lynch, M.A. Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activation in vivo and in vitro. J. Neurochem., 2009, 110(5), 1547-1556.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06253.x] [PMID: 19627440]
[270]
Nash, K.R.; Lee, D.C.; Hunt, J.B., Jr; Morganti, J.M.; Selenica, M.L.; Moran, P.; Reid, P.; Brownlow, M.; Guang-Yu Yang, C.; Savalia, M.; Gemma, C.; Bickford, P.C.; Gordon, M.N.; Morgan, D. Fractalkine overexpression suppresses tau pathology in a mouse model of tauopathy. Neurobiol. Aging, 2013, 34(6), 1540-1548.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.011] [PMID: 23332170]
[271]
Finneran, D.J.; Morgan, D.; Gordon, M.N.; Nash, K.R. CNS-Wide over expression of fractalkine improves cognitive functioning in a tauopathy model. J. Neuroimmune Pharmacol., 2019, 14(2), 312-325.
[http://dx.doi.org/10.1007/s11481-018-9822-5] [PMID: 30499006]
[272]
Walker, D.G.; Lue, L.F.; Tang, T.M.; Adler, C.H.; Caviness, J.N.; Sabbagh, M.N.; Serrano, G.E.; Sue, L.I.; Beach, T.G. Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer’s pathology not α-synuclein pathology. Neurobiol. Aging, 2017, 54, 175-186.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.03.007] [PMID: 28390825]
[273]
Walker, D.G.; Dalsing-Hernandez, J.E.; Campbell, N.A.; Lue, L.F. Decreased expression of CD200 and CD200 receptor in Alzheimer’s disease: a potential mechanism leading to chronic inflammation. Exp. Neurol., 2009, 215(1), 5-19.
[http://dx.doi.org/10.1016/j.expneurol.2008.09.003] [PMID: 18938162]
[274]
Bliss, T.V.; Collingridge, G.L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature, 1993, 361(6407), 31-39.
[http://dx.doi.org/10.1038/361031a0] [PMID: 8421494]
[275]
Werner, P; Klaus, S; Tanner, C.M.; Halliday, G.M.; Patrik, B; Jens , V; Anette-Eleonore,, S. L. A. E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3(17013)
[http://dx.doi.org/10.1038/nrdp.2017.13]
[276]
Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; Tanner, C.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007, 68(5), 384-386.
[http://dx.doi.org/10.1212/01.wnl.0000247740.47667.03] [PMID: 17082464]
[277]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[http://dx.doi.org/10.1016/S0140-6736(14)61393-3] [PMID: 25904081]
[278]
Gröger, A.; Kolb, R.; Schäfer, R.; Klose, U. Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS One, 2014, 9(1), e84081
[http://dx.doi.org/10.1371/journal.pone.0084081] [PMID: 24416192]
[279]
Rocha, E.M.; De Miranda, B.; Sanders, L.H. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol. Dis., 2018, 109(Pt B), 249-257.
[http://dx.doi.org/10.1016/j.nbd.2017.04.004] [PMID: 28400134]
[280]
Shi, M.; Bradner, J.; Hancock, A.M.; Chung, K.A.; Quinn, J.F.; Peskind, E.R.; Galasko, D.; Jankovic, J.; Zabetian, C.P.; Kim, H.M.; Leverenz, J.B.; Montine, T.J.; Ginghina, C.; Kang, U.J.; Cain, K.C.; Wang, Y.; Aasly, J.; Goldstein, D.; Zhang, J. Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Ann. Neurol., 2011, 69(3), 570-580.
[http://dx.doi.org/10.1002/ana.22311] [PMID: 21400565]
[281]
Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget, 2015, 6(35), 37043-37053.
[http://dx.doi.org/10.18632/oncotarget.6158] [PMID: 26497684]
[282]
Zhou, Y.; Gu, C.; Li, J.; Zhu, L.; Huang, G.; Dai, J.; Huang, H. Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr. Dis. Treat., 2018, 14, 3219-3229.
[http://dx.doi.org/10.2147/NDT.S178435] [PMID: 30538480]
[283]
Castro-Sánchez, S.; García-Yagüe, Á.J.; López-Royo, T.; Casarejos, M.; Lanciego, J.L.; Lastres-Becker, I. Cx3cr1-deficiency exacerbates alpha-synuclein-A53T induced neuroinflammation and neurodegeneration in a mouse model of Parkinson’s disease. Glia, 2018, 66(8), 1752-1762.
[http://dx.doi.org/10.1002/glia.23338] [PMID: 29624735]
[284]
Thome, A.D.; Standaert, D.G.; Harms, A.S. Fractalkine signaling regulates the inflammatory response in an α-synuclein model of parkinson disease. PLoS One, 2015, 10(10), e0140566
[http://dx.doi.org/10.1371/journal.pone.0140566] [PMID: 26469270]
[285]
Parillaud, V.R.; Lornet, G.; Monnet, Y.; Privat, A.L.; Haddad, A.T.; Brochard, V.; Bekaert, A.; de Chanville, C.B.; Hirsch, E.C.; Combadière, C.; Hunot, S.; Lobsiger, C.S. Analysis of monocyte infiltration in MPTP mice reveals that microglial CX3CR1 protects against neurotoxic over-induction of monocyte-attracting CCL2 by astrocytes. J. Neuroinflammation, 2017, 14(1), 60.
[http://dx.doi.org/10.1186/s12974-017-0830-9] [PMID: 28320442]
[286]
Morganti, J.M.; Nash, K.R.; Grimmig, B.A.; Ranjit, S.; Small, B.; Bickford, P.C.; Gemma, C. The soluble isoform of CX3CL1 is necessary for neuroprotection in a mouse model of Parkinson’s disease. J. Neurosci., 2012, 32(42), 14592-14601.
[http://dx.doi.org/10.1523/JNEUROSCI.0539-12.2012] [PMID: 23077045]
[287]
Pabon, M.M.; Bachstetter, A.D.; Hudson, C.E.; Gemma, C.; Bickford, P.C. CX3CL1 reduces neurotoxicity and microglial activation in a rat model of Parkinson’s disease. J. Neuroinflammation, 2011, 8, 9.
[http://dx.doi.org/10.1186/1742-2094-8-9] [PMID: 21266082]
[288]
Miman, O.; Kusbeci, O.Y.; Aktepe, O.C.; Cetinkaya, Z. The probable relation between Toxoplasma gondii and Parkinson’s disease. Neurosci. Lett., 2010, 475(3), 129-131.
[http://dx.doi.org/10.1016/j.neulet.2010.03.057] [PMID: 20350582]
[289]
Xiao, J.; Prandovszky, E.; Kannan, G.; Pletnikov, M.V.; Dickerson, F.; Severance, E.G.; Yolken, R.H. Toxoplasma gondii: Biological parameters of the connection to schizophrenia. Schizophr. Bull., 2018, 44(5), 983-992.
[http://dx.doi.org/10.1093/schbul/sby082] [PMID: 29889280]
[290]
Mahmoudvand, H.; Sheibani, V.; Shojaee, S.; Mirbadie, S.R.; Keshavarz, H.; Esmaeelpour, K.; Keyhani, A.R.; Ziaali, N.; Keshavarz, H.; Esmaeelpour, K.; Keyhani, A.R.; Ziaali, N. Toxoplasma gondii infection potentiates cognitive impairments of alzheimer’s disease in the balb/c mice. J. Parasitol., 2016, 102(6), 629-635.
[http://dx.doi.org/10.1645/16-28] [PMID: 27513205]
[291]
Alvarado-Esquivel, C.; Méndez-Hernández, E.M.; Salas-Pacheco, J.M.; Ruano-Calderón, L.Á.; Hernández-Tinoco, J.; Arias-Carrión, O.; Sánchez-Anguiano, L.F.; Castellanos-Juárez, F.X.; Sandoval-Carrillo, A.A.; Liesenfeld, O.; Ramos-Nevárez, A. Toxoplasma gondii exposure and Parkinson’s disease: a case-control study. BMJ Open, 2017, 7(2), e013019
[http://dx.doi.org/10.1136/bmjopen-2016-013019] [PMID: 28193849]
[292]
Li, Y.; Severance, E.G.; Viscidi, R.P.; Yolken, R.H.; Xiao, J. Persistent Toxoplasma infection of the brain induced neurodegeneration associated with activation of complement and microglia. Infect. Immun., 2019, 87(8), e00139-e19.
[http://dx.doi.org/10.1128/IAI.00139-19] [PMID: 31182619]
[293]
Luo, X.G.; Zhang, J.J.; Zhang, C.D.; Liu, R.; Zheng, L.; Wang, X.J.; Chen, S.D.; Ding, J.Q. Altered regulation of CD200 receptor in monocyte-derived macrophages from individuals with Parkinson’s disease. Neurochem. Res., 2010, 35(4), 540-547.
[http://dx.doi.org/10.1007/s11064-009-0094-6] [PMID: 19924532]
[294]
Xie, X.; Luo, X.; Liu, N.; Li, X.; Lou, F.; Zheng, Y.; Ren, Y. Monocytes, microglia, and CD200-CD200R1 signaling are essential in the transmission of inflammation from the periphery to the central nervous system. J. Neurochem., 2017, 141(2), 222-235.
[http://dx.doi.org/10.1111/jnc.13972] [PMID: 28164283]
[295]
Xia, L.; Xie, X.; Liu, Y.; Luo, X. Peripheral blood monocyte tolerance alleviates intraperitoneal lipopolysaccharides-induced neuroinflammation in rats via upregulating the cd200r expression. Neurochem. Res., 2017, 42(11), 3019-3032.
[http://dx.doi.org/10.1007/s11064-017-2334-5] [PMID: 28664397]
[296]
Ren, Y.; Ye, M.; Chen, S.; Ding, J. CD200 inhibits inflammatory response by promoting katp channel opening in microglia cells in parkinson’s disease. Med. Sci. Monit., 2016, 22, 1733-1741.
[http://dx.doi.org/10.12659/MSM.898400] [PMID: 27213506]
[297]
Wang, X.J.; Zhang, S.; Yan, Z.Q.; Zhao, Y.X.; Zhou, H.Y.; Wang, Y.; Lu, G.Q.; Zhang, J.D. Impaired CD200-CD200R-mediated microglia silencing enhances midbrain dopaminergic neurodegeneration: roles of aging, superoxide, NADPH oxidase, and p38 MAPK. Free Radic. Biol. Med., 2011, 50(9), 1094-1106.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.032] [PMID: 21295135]
[298]
Sung, Y.H.; Kim, S.C.; Hong, H.P.; Park, C.Y.; Shin, M.S.; Kim, C.J.; Seo, J.H.; Kim, D.Y.; Kim, D.J.; Cho, H.J. Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson’s disease mice. Life Sci., 2012, 91(25-26), 1309-1316.
[http://dx.doi.org/10.1016/j.lfs.2012.10.003] [PMID: 23069581]
[299]
Zhang, S.; Wang, X.J.; Tian, L.P.; Pan, J.; Lu, G.Q.; Zhang, Y.J.; Ding, J.Q.; Chen, S.D. CD200-CD200R dysfunction exacerbates microglial activation and dopaminergic neurodegeneration in a rat model of Parkinson’s disease. J. Neuroinflammation, 2011, 8, 154.
[http://dx.doi.org/10.1186/1742-2094-8-154] [PMID: 22053982]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 18
ISSUE: 5
Year: 2020
Page: [408 - 430]
Pages: 23
DOI: 10.2174/1570159X17666191113101629
Price: $65

Article Metrics

PDF: 32
HTML: 1