Separation of the Epitopes in a Multi-Epitope Chimera: Helical or Flexible Linkers

Author(s): Mona Kabiri, Mohsen Tafaghodi, Mohammad Reza Saberi, Maliheh Moghadam, Seyed Abdolrahim Rezaee, Mojtaba Sankian*

Journal Name: Protein & Peptide Letters

Volume 27 , Issue 7 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Background: The engineered chimeric peptides including functional multi-epitope structures fused by various peptide linkers are widely applied in biotechnological research to improve the expression level and biological activity of chimera.

Objective: The aim of our study was to evaluate the effect of helical and flexible linkers on solubility, expression level and folding of multi-epitope chimera containing four epitopes of Human T Lymphotropic Virus Type 1 (HTLV-1).

Methods: For this purpose, the chimera sequences connected by the helical or flexible linker were inserted into different plasmid vectors and expressed in E. coli strains. The expressed products were analyzed using SDS-PAGE and Western blot techniques. Additionally, the molecular modeling study of the chimera with helical or flexible linker was performed using iterative threading assembly refinement (I-TASSER) to attain their three-dimensional structures.

Results: Comparison of the chimera expression indicated that the insertion of a flexible (GGGGS)3 linker among chimera epitopes could significantly enhance the level of expression, whereas, the low-level of chimera expression was observed for chimera containing the contiguous helical (EAAAK)5 linker. According to the results of sequence alignment and plasmid stability test, the structure and function of a consecutive helical linker among chimera epitopes were similar to porins as the outer-membrane pore-forming proteins. The molecular modeling results confirmed our experimental study.

Conclusion: This investigation illustrated the key role of linker design in determining the expression level of multi-epitope chimera and conformational folding.

Keywords: Multi-epitope chimera, helical and flexible linkers, expression level, immobilized metal ion affinity chromatography, purified chimera, molecular modeling.

[1]
Arai, R.; Ueda, H.; Kitayama, A.; Kamiya, N.; Nagamune, T. Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Eng., 2001, 14(8), 529-532.
[http://dx.doi.org/10.1093/protein/14.8.529] [PMID: 11579220]
[2]
Chen, X.; Zaro, J.L.; Shen, W-C. Fusion protein linkers: Property, design and functionality. Adv. Drug Deliv. Rev., 2013, 65(10), 1357-1369.
[http://dx.doi.org/10.1016/j.addr.2012.09.039] [PMID: 23026637]
[3]
Wriggers, W.; Chakravarty, S.; Jennings, P.A. Control of protein functional dynamics by peptide linkers. Biopolymers, 2005, 80(6), 736-746.
[http://dx.doi.org/10.1002/bip.20291] [PMID: 15880774]
[4]
Argos, P. An investigation of oligopeptides linking domains in protein tertiary structures and possible candidates for general gene fusion. J. Mol. Biol., 1990, 211(4), 943-958.
[http://dx.doi.org/10.1016/0022-2836(90)90085-Z] [PMID: 2313701]
[5]
Reddy Chichili, V.P.; Kumar, V.; Sivaraman, J. Linkers in the structural biology of protein-protein interactions. Protein Sci., 2013, 22(2), 153-167.
[http://dx.doi.org/10.1002/pro.2206] [PMID: 23225024]
[6]
Arai, R.; Wriggers, W.; Nishikawa, Y.; Nagamune, T.; Fujisawa, T. Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins, 2004, 57(4), 829-838.
[http://dx.doi.org/10.1002/prot.20244] [PMID: 15390267]
[7]
Wilchek, M.; Miron, T. Polymers coupled to agarose as stable and high capacity spacers. Methods Enzymol., 1974, 34, 72-76.
[http://dx.doi.org/10.1016/S0076-6879(74)34008-6] [PMID: 4449485]
[8]
Amet, N.; Lee, H-F.; Shen, W-C. Insertion of the designed helical linker led to increased expression of tf-based fusion proteins. Pharm. Res., 2009, 26(3), 523-528.
[http://dx.doi.org/10.1007/s11095-008-9767-0] [PMID: 19002568]
[9]
Ortiz, V.; Nielsen, S.O.; Klein, M.L.; Discher, D.E. Unfolding a linker between helical repeats. J. Mol. Biol., 2005, 349(3), 638-647.
[http://dx.doi.org/10.1016/j.jmb.2005.03.086] [PMID: 15896349]
[10]
Zhao, H.L.; Yao, X.Q.; Xue, C.; Wang, Y.; Xiong, X.H.; Liu, Z.M. Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b fusion protein by linker engineering. Protein Expr. Purif., 2008, 61(1), 73-77.
[http://dx.doi.org/10.1016/j.pep.2008.04.013] [PMID: 18541441]
[11]
Yan, D.-D.; Fang, J.; Song, J.-D. Construction and expression of bivalent single-chain antibodies with different linker sequence against human colorectal carcinoma. Chin. J. Cell Biol., 2007, 29, 272-276.
[12]
Trinh, R.; Gurbaxani, B.; Morrison, S.L.; Seyfzadeh, M. Optimization of codon pair use within the (GGGGS)3 linker sequence results in enhanced protein expression. Mol. Immunol., 2004, 40(10), 717-722.
[http://dx.doi.org/10.1016/j.molimm.2003.08.006] [PMID: 14644097]
[13]
Hu, W.; Li, F.; Yang, X.; Li, Z.; Xia, H.; Li, G.; Wang, Y.; Zhang, Z. A flexible peptide linker enhances the immunoreactivity of two copies HBsAg preS1 (21-47) fusion protein. J. Biotechnol., 2004, 107(1), 83-90.
[http://dx.doi.org/10.1016/j.jbiotec.2003.09.009] [PMID: 14687974]
[14]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9, 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[15]
Brooks, N.; Esparon, S.; Pouniotis, D.; Pietersz, G.A. Comparative immunogenicity of a cytotoxic T cell epitope delivered by penetratin and TAT cell penetrating peptides. Molecules, 2015, 20(8), 14033-14050.
[http://dx.doi.org/10.3390/molecules200814033] [PMID: 26247926]
[16]
Apostolopoulos, V.; Pouniotis, D.S.; van Maanen, P.J.; Andriessen, R.W.; Lodding, J.; Xing, P.X.; McKenzie, I.F.; Loveland, B.E.; Pietersz, G.A. Delivery of tumor associated antigens to antigen presenting cells using penetratin induces potent immune responses. Vaccine, 2006, 24(16), 3191-3202.
[http://dx.doi.org/10.1016/j.vaccine.2006.01.032] [PMID: 16480791]
[17]
Irvine, D.J.; Purbhoo, M.A.; Krogsgaard, M.; Davis, M.M. Direct observation of ligand recognition by T cells. Nature, 2002, 419(6909), 845-849.
[http://dx.doi.org/10.1038/nature01076] [PMID: 12397360]
[18]
Kabiri, M.; Sankian, M.; Hosseinpour, M.; Tafaghodi, M. The novel immunogenic chimeric peptide vaccine to elicit potent cellular and mucosal immune responses against HTLV-1. Int. J. Pharm., 2018, 549(1-2), 404-414.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.069] [PMID: 30075250]
[19]
Kabiri, M.; Sankian, M.; Sadri, K.; Tafaghodi, M. Robust mucosal and systemic responses against HTLV-1 by delivery of multi-epitope vaccine in PLGA nanoparticles. Eur. J. Pharm. Biopharm., 2018, 133, 321-330.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.003] [PMID: 30408519]
[20]
Lu, P.; Feng, M-G. Bifunctional enhancement of a β-glucanasexylanase fusion enzyme by optimization of peptide linkers. Appl. Microbiol. Biotechnol., 2008, 79(4), 579-587.
[http://dx.doi.org/10.1007/s00253-008-1468-4] [PMID: 18415095]
[21]
George, R.A.; Heringa, J. An analysis of protein domain linkers: Their classification and role in protein folding. Protein Eng., 2002, 15(11), 871-879.
[http://dx.doi.org/10.1093/protein/15.11.871] [PMID: 12538906]
[22]
Blot, N.; Berrier, C.; Hugouvieux-Cotte-Pattat, N.; Ghazi, A.; Condemine, G. The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J. Biol. Chem., 2002, 277(10), 7936-7944.
[http://dx.doi.org/10.1074/jbc.M109193200] [PMID: 11773048]
[23]
Castillo-Keller, M.; Vuong, P.; Misra, R. Novel mechanism of Escherichia coli porin regulation. J. Bacteriol., 2006, 188(2), 576-586.
[http://dx.doi.org/10.1128/JB.188.2.576-586.2006] [PMID: 16385048]
[24]
Fernández, L.; Hancock, R.E. Adaptive and mutational resistance: Role of porins and efflux pumps in drug resistance. Clin. Microbiol. Rev., 2012, 25(4), 661-681.
[http://dx.doi.org/10.1128/CMR.00043-12] [PMID: 23034325]
[25]
Kreusch, A.; Neubüser, A.; Schiltz, E.; Weckesser, J.; Schulz, G.E. Structure of the membrane channel porin from Rhodopseudomonas blastica at 2.0 A resolution. Protein Sci., 1994, 3(1), 58-63.
[http://dx.doi.org/10.1002/pro.5560030108] [PMID: 8142898]
[26]
Barta, M.L.; Dickenson, N.E.; Patil, M.; Keightley, A.; Wyckoff, G.J.; Picking, W.D.; Picking, W.L.; Geisbrecht, B.V. The structures of coiled-coil domains from type III secretion system translocators reveal homology to pore-forming toxins. J. Mol. Biol., 2012, 417(5), 395-405.
[http://dx.doi.org/10.1016/j.jmb.2012.01.026] [PMID: 22321794]
[27]
Tanaka, K.; Caaveiro, J.M.; Morante, K.; González-Mañas, J.M.; Tsumoto, K. Structural basis for self-assembly of a cytolytic pore lined by protein and lipid. Nat. Commun., 2015, 6, 6337.
[http://dx.doi.org/10.1038/ncomms7337] [PMID: 25716479]
[28]
Costa, S.; Almeida, A.; Castro, A.; Domingues, L. Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: The novel Fh8 system. Front. Microbiol., 2014, 5, 63.
[http://dx.doi.org/10.3389/fmicb.2014.00063] [PMID: 24600443]
[29]
Dyson, M.R.; Shadbolt, S.P.; Vincent, K.J.; Perera, R.L.; McCafferty, J. Production of soluble mammalian proteins in Escherichia coli: Identification of protein features that correlate with successful expression. BMC Biotechnol., 2004, 4, 32.
[http://dx.doi.org/10.1186/1472-6750-4-32] [PMID: 15598350]
[30]
Esposito, D.; Chatterjee, D.K. Enhancement of soluble protein expression through the use of fusion tags. Curr. Opin. Biotechnol., 2006, 17(4), 353-358.
[http://dx.doi.org/10.1016/j.copbio.2006.06.003] [PMID: 16781139]
[31]
Sachdev, D.; Chirgwin, J.M. Solubility of proteins isolated from inclusion bodies is enhanced by fusion to maltose-binding protein or thioredoxin. Protein Expr. Purif., 1998, 12(1), 122-132.
[http://dx.doi.org/10.1006/prep.1997.0826] [PMID: 9473466]
[32]
Soni, S.; Tyagi, C.; Grover, A.; Goswami, S.K. Molecular modeling and molecular dynamics simulations based structural analysis of the SG2NA protein variants. BMC Res. Notes, 2014, 7, 446.
[http://dx.doi.org/10.1186/1756-0500-7-446] [PMID: 25015106]
[33]
Yang, J.; Zhang, Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res., 2015, 43(W1) W174-181
[http://dx.doi.org/10.1093/nar/gkv342] [PMID: 25883148]
[34]
Kemege, K.E.; Hickey, J.M.; Lovell, S.; Battaile, K.P.; Zhang, Y.; Hefty, P.S. Ab initio structural modeling of and experimental validation for Chlamydia trachomatis protein CT296 reveal structural similarity to Fe(II) 2-oxoglutarate-dependent enzymes. J. Bacteriol., 2011, 193(23), 6517-6528.
[http://dx.doi.org/10.1128/JB.05488-11] [PMID: 21965559]
[35]
Liu, Y-Y.; Wang, Y.; Walsh, T.R.; Yi, L-X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; Yu, L.F.; Gu, D.; Ren, H.; Chen, X.; Lv, L.; He, D.; Zhou, H.; Liang, Z.; Liu, J.H.; Shen, J. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis., 2016, 16(2), 161-168.
[http://dx.doi.org/10.1016/S1473-3099(15)00424-7] [PMID: 26603172]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 27
ISSUE: 7
Year: 2020
Published on: 13 August, 2020
Page: [604 - 613]
Pages: 10
DOI: 10.2174/0929866526666191112124602
Price: $65

Article Metrics

PDF: 46
HTML: 2