Functionalized Allenes: Generation by Sigmatropic Rearrangement and Application in Heterocyclic Chemistry

Author(s): Klaus Banert*

Journal Name: Current Organic Chemistry

Volume 23 , Issue 27 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The present review article summarizes the synthesis of allenes, which bear an adjacent functional group, by [3,3]- or [2,3]-sigmatropic rearrangement of appropriate propargyl substrates. Functionalized allenes, such as allenyl isothiocyanates, isoelenocyanates, isocyanates, thiocyanates, azides, azo compounds and others, are easily available by these methods. In several cases, however, the title compounds show high reactivity, which leads to rapid intermolecular or intramolecular successive reactions. Consequently, synthesis of the allenes by sigmatropic rearrangement has to be combined with special techniques, for example, flash vacuum pyrolysis or in situ generation and trapping reactions. The high tendency of the presented functionalized allenes to undergo cyclization reactions can be utilized to prepare heterocyclic products, for instance, thiazoles, selenazoles, 1,2,3-triazoles and pyrazoles. The synthesis of functionalized 1,3-butadienes by a second sigmatropic rearrangement of the title compounds is also successful.

Keywords: Allenes, 1, 3-butadienes, cyclization reactions, heterocumulenes, nitrogen-containing heterocycles, reactive intermediates, sigmatropic rearrangements.

[1]
Patai, S., Ed.; The Chemistry of Ketenes, Allenes and Related Compounds; Wiley: Chichester, 1980.
[2]
Landor, S.R., Ed.; The Chemistry of the Allenes; Academic Press: London, 1982.
[3]
Schuster, H.F.; Coppola, G.M., Eds.; Allenes in Organic Chemistry; Wiley: New York, 1984.
[4]
Krause, N.; Hashmi, A.S.K., Eds.; Modern Allene Chemistry; Wiley-VCH: Weinheim, 2004.
[http://dx.doi.org/10.1002/9783527619573]
[5]
Banert, K. New functionalized allenes: Synthesis using sigmatropic rearrangements and unusual reactivity. Liebigs Ann., 1997, 2005-2018.
[http://dx.doi.org/10.1002/jlac.199719971003]
[6]
Viola, A.; Collins, J.J.; Filipp, N. Intramolecular pericyclic reactions of acetylenic compounds. Tetrahedron, 1981, 37, 3765-3811.
[http://dx.doi.org/10.1016/S0040-4020(01)98877-5]
[7]
Banert, K. Synthesis of five-membered heterocycles from novel functionalized allenes. Targets Heterocyc. Syst, 2000, 3, 1-32.
[8]
Braverman, S.; Cherkinsky, M. [2,3]sigmatropic rearrangements of propargylic and allenic systems. Top. Curr. Chem., 2007, 275, 67-101.
[http://dx.doi.org/10.1007/128_047] [PMID: 23605510]
[9]
Braverman, S.; Mechoulam, H. The rearrangement of propargylic benzenesulfinates. Isr. J. Chem., 1967, 5, 71-74.
[http://dx.doi.org/10.1002/ijch.196700014]
[10]
Braverman, S. The rearrangement of allylic and related sulfinates and sulfenates. Int. J. Sulfur Chem. C., 1971, 6, 149-154.
[11]
Braverman, S.; Mechoulam, H. The [2,3]-sigmatropic rearrangement of propargyl benzenesulphinates to allenyl phenyl sulphones. Tetrahedron, 1974, 30, 3883-3890.
[http://dx.doi.org/10.1016/S0040-4020(01)97078-4]
[12]
Stirling, C.J.M. Rearrangement of an acetylenic sulphinic ester to an allenic sulphone. Chem. Commun., 1967, 3, 131.
[http://dx.doi.org/10.1039/c19670000131]
[13]
Smith, G.; Stirling, C.J.M. Intramolecular reactions. part IX. Stereochemistry and mechanism of the rearrangement of acetylenic esters of sulphinic and sulphenic acids to allenes. J. Chem. Soc. C, 1971, 1530-1535.
[http://dx.doi.org/10.1039/j39710001530]
[14]
van Dijck, L.A.; Lankwerden, B.J.; Vermeer, J.G.C.M. On the formation of allenes in the steroid series III. Synthesis and reactions of 3-methoxy-17α-hydroxy-17β-ethynyl-1,3,5(10)-estratriene (“epimestranol”). Recl. Trav. Chim. Pays Bas, 1977, 96, 200-206.
[http://dx.doi.org/10.1002/recl.19770960708]
[15]
Ohmori, M.; Yamada, S.; Takayama, H.; Ochi, K. Stereocontrolled synthesis of steroid side chain; stereoselective syntheses of cholesterol and 25-hydroxycholesterol. Tetrahedron Lett., 1982, 23, 4709-4712.
[http://dx.doi.org/10.1016/S0040-4039(00)85693-2]
[16]
Horner, L.; Binder, V. Zur Chemie der Allen-sulfoxide. Justus Liebigs Ann. Chem., 1972, 757, 33-68.
[http://dx.doi.org/10.1002/jlac.19727570106]
[17]
Braverman, S.; Stabinsky, Y. The rearrangement of propargylic trichloromethanesulfenates. Isr. J. Chem., 1967, 5, 125-126.
[http://dx.doi.org/10.1002/ijch.196700022]
[18]
Altenbach, H-J.; Soicke, H. β-Ketosulfoxide aus 3-Alkin-1-olen über Allensulfoxide. Liebigs Ann. Chem., 1982, 1096-1104.
[http://dx.doi.org/10.1002/jlac.198219820610]
[19]
van Kruchten, E.M.G.A.; Okamura, W.H. On the [2,3]-sigmatropic rearrangements of sulfenate esters derived from alkenynols: Synthesis of vinylallene and vinylacetylene sulfoxides. Tetrahedron Lett., 1982, 23, 1019-1022.
[http://dx.doi.org/10.1016/S0040-4039(00)87011-2]
[20]
Bridges, A.J.; Fischer, J.W. Highly substituted dienes from butyne-1,4-diol. A one-flask synthesis and the mechanism of formation of 3-(N,N-diethyl- amino)-2-phenylsulphinylbutadiene. J. Chem. Soc. Chem. Commun., 1982, (12), 665-666.
[http://dx.doi.org/10.1039/c39820000665]
[21]
Jeganathan, S.; Okamura, W.H. 2,3-Di(phenylsulfinyl)-1,3-butadiene via a double [2,3]-sigmatropic rearrangement of the bis-sulfenate ester of 2-butyne-1,4-diol. Tetrahedron Lett., 1982, 23, 4763-4764.
[http://dx.doi.org/10.1016/S0040-4039(00)85707-X]
[22]
Ma, S. Control of regio- and stereoselectivity in electrophilic addition reactions of allenes. Pure Appl. Chem., 2007, 79, 261-267.
[http://dx.doi.org/10.1351/pac200779020261]
[23]
Kumara Swamy, K.C.; Anitha, M.; Gangadhararao, G.; Suresh, R.R. Exploring allene chemistry using phosphorus-based allenes as scaffolds. Pure Appl. Chem., 2017, 89, 367-377.
[http://dx.doi.org/10.1515/pac-2016-0907]
[24]
Enchev, D.D. Phosphorylated allenes-suitable precursors in organic syntheses. Trends Inorg. Chem., 2012, 13, 97-112.
[25]
Minami, T.; Motoyoshiya, J. Vinylphosphonates in organic synthesis. Synthesis, 1992, (4), 333-349.
[http://dx.doi.org/10.1055/s-1992-26103]
[26]
Mark, V. A facile SNi’ rearrangement: The formation of 1,2-alkadienyl-phosphonates from 2-alkynyl phosphites. Tetrahedron Lett., 1962, 3(7), 281-285.
[http://dx.doi.org/10.1016/S0040-4039(00)70867-7]
[27]
Pudovik, A.N.; Aladzheva, I.M. Acetylene-allene-acetylenic rearrangements of phosphites with a β, γ-acetylene linkage in the ester radical. J. Gen. Chem. USSR, 1963, 33, 700-701.
[28]
Pudovik, A.N.; Aladzheva, I.M.; Yakovenko, L.N. Synthesis and rearrangements of dialkyl 2-propynyl phosphites and dialkyl propadienylphosphonates. J. Gen. Chem. USSR, 1965, 35, 1214-1220.
[29]
Huché, M.; Cresson, P. Transpositions (2-3) et (2-5) de phosphites d’enynols. Tetrahedron Lett., 1973, 4291-4292
[http://dx.doi.org/10.1016/S0040-4039(01)87201-4]
[30]
Paulsen, H.; Bartsch, W. Darstellung von Zucker-Olefinphosphonaten und Zucker-Allenphosphonaten. Chem. Ber., 1975, 108, 1732-1744.
[http://dx.doi.org/10.1002/cber.19751080540]
[31]
Welter, W.; Hartmann, A.; Regitz, M. Isomerisierungsreaktionen von Phosphoryl-vinyl-carbenen zu phosphorylierten Cyclopropenen, Allenen, Acetylenen, Indenen und 1,3-Butadienen. Chem. Ber., 1978, 111, 3068-3085.
[http://dx.doi.org/10.1002/cber.19781110907]
[32]
Cooper, D.; Trippett, S. Some rearrangements of unsaturated phosphonate esters. J. Chem. Soc., Perkin Trans. 1, 1981, 2127-2133.
[http://dx.doi.org/10.1039/p19810002127]
[33]
Altenbach, H-J.; Korff, R. Phosphor-und schwefel-substituierte Allene in der Synthese I: Einfache Synthese von β-Ketophosphonaten aus 1-Alkin-3-olen. Tetrahedron Lett., 1981, 22, 5175-5178.
[http://dx.doi.org/10.1016/S0040-4039(01)92451-7]
[34]
Altenbach, H-J.; Korff, R. β,ε‐Dioxophosphonates by reductive nucleophilic acylation of 1,3‐dioxo compounds: Facile synthesis of jasmones. Angew. Chem. Int. Ed. Engl., 1982, 21, 371.
[http://dx.doi.org/10.1002/anie.198203711]
[35]
Sevin, A.; Chodkiewicz, W. Determination de la stereoisomerie d’α-alcynols tertiaires: Etude en RMN des oxydes de phosphine alleniques. Tetrahedron Lett., 1967, 8(31), 2975-2980.
[http://dx.doi.org/10.1016/S0040-4039(00)90898-0]
[36]
Sevin, A.; Chodkiewicz, W. Détermination de la stéréoisomérie d’α-alcynols tertiaires. Etude en RMN des oxydes de phosphine alléniques correspondants. Bull. Soc. Chim. Fr., 1969, 8(31), 4016-4022.
[37]
Boisselle, A.P.; Meinhardt, N.A. Acetylene-allene rearrangements. Reactions of trivalent phosphorus chlorides with α-acetylenic alcohols and glycols. J. Org. Chem., 1962, 27, 1828-1833.
[http://dx.doi.org/10.1021/jo01052a084]
[38]
Ignat’ev, V.M.; Timofeeva, T.N.; Ionin, B.I.; Petrov, A.A. Asymmetric phosphine oxides based on the acetylene-allene isomerization of propargyl phosphinites. J. Gen. Chem. USSR, 1969, 39, 2379-2385.
[39]
Huché, M.; Cresson, P. Transposition (2-3) d’esters phosphineux d’enynols et d’allenols. Tetrahedron Lett., 1972, 13(48), 4933-4934.
[http://dx.doi.org/10.1016/S0040-4039(01)94469-7]
[40]
Huché, M.; Cresson, P. Réactions sigmatropiques d’ordre (2,3) au niveau d’un atome de phosphore. Bull. Soc. Chim. Fr., 1975, 1975(3-4), 800-804.
[41]
Banert, K.; Köhler, F.; Melzer, A.; Scharf, I.; Rheinwald, G.; Rüffer, T.; Lang, H. Reactions of unsaturated azides, part 27. Synthesis of 1,4-Diazidobuta-1,3-dienes. Synthesis, 2011, 2011(10), 1561-1568.
[http://dx.doi.org/10.1055/s-0030-1260000]
[42]
Overman, L.E. Allylic and propargylic imidic esters in organic synthesis. Acc. Chem. Res., 1980, 13, 218-224.
[http://dx.doi.org/10.1021/ar50151a005]
[43]
Overman, L.E.; Clizbe, L.A. Synthesis of trichloroacetamido-1,3-dienes. Useful aminobutadiene equivalents for the Diels-Alder reaction. J. Am. Chem. Soc., 1976, 98, 2352-2354, 8295. [correction].
[http://dx.doi.org/10.1021/ja00424a068]
[44]
Overman, L.E.; Marlowe, C.K.; Clizbe, L.A. The preparation of N-trichloroacetamido-1,2-dienes. Tetrahedron Lett., 1979, 20(7), 599-600.
[http://dx.doi.org/10.1016/S0040-4039(01)86012-3]
[45]
Pravia, K.; White, R.; Fodda, R.; Maynard, D.F. Dihydrofurans via an intramolecular alkoxide addition to an allenylphosphine oxide. J. Org. Chem., 1996, 61, 6031-6032.
[http://dx.doi.org/10.1021/jo960559a]
[46]
Macomber, R.S.; Kennedy, E.R. Phosphorus-containing products from the reaction of propargyl alcohols with phosphorus trihalides. 4. Alkyl substituent effects on oxaphospholene formation. J. Org. Chem., 1976, 41, 3191-3197.
[http://dx.doi.org/10.1021/jo00881a028]
[47]
Braverman, S.; Duar, Y. Stereochemistry of the electrophilic fragmentation-cyclization of allenic sulfones and sulfinates: Stereoselective synthesis of chiral α,β-unsaturated γ-sultines. J. Am. Chem. Soc., 1983, 105, 1061-1063.
[http://dx.doi.org/10.1021/ja00342a073]
[48]
Braverman, S.; Segev, D. A novel cyclization of diallenic sulfones. J. Am. Chem. Soc., 1974, 96, 1245-1247.
[http://dx.doi.org/10.1021/ja00811a060]
[49]
Billeter, O. Ueber organische Sulfocyanverbindungen. Ber. Dtsch. Chem. Ges., 1875, 8, 462-466.
[http://dx.doi.org/10.1002/cber.187500801144]
[50]
Gerlich, G. Ueber pseudopropyl- und allylrhodanür. Justus Liebigs Ann. Chem., 1875, 178, 80-91.
[http://dx.doi.org/10.1002/jlac.18751780106]
[51]
Hansen, H-J. Otto billeter oder wie die älteste [3,3]-sigmatrope umlagerung nach neuenburg kam, Teil 1. Chimia (Aarau), 1999, 53, 163-173.
[52]
Hansen, H-J. Otto billeter oder wie die älteste [3,3]-sigmatrope umlagerung nach neuenburg kam, Teil 2. Chimia (Aarau), 2000, 54, 105-119.
[53]
Billeter, O. Notice sur la transposition des thiocyanates en sénévols. Helv. Chim. Acta, 1925, 8, 337-338.
[http://dx.doi.org/10.1002/hlca.19250080152]
[54]
Mumm, O.; Richter, H. Versuche zur Theorie der Allyl-Umlagerung (IV. Mitteil.): Allylrhodanid → Allylsenföl. Ber. Dtsch. Chem. Ges., 1940, 73, 843-860.
[http://dx.doi.org/10.1002/cber.19400730803]
[55]
DeWolfe, R.H.; Young, W.G. Substitution and rearrangement reactions of allylic compounds. Chem. Rev., 1956, 56, 753-901.
[56]
Smith, P.A.S.; Emerson, D.W. The isomerization of alkyl thiocyanates to isothiocyanates. J. Am. Chem. Soc., 1960, 82, 3076-3082.
[http://dx.doi.org/10.1021/ja01497a025]
[57]
Iliceto, A.; Fava, A.; Mazzucato, U. Thiocyanates and isothiocyanates. Equilibrium, kinetics and mechanisms of isomerization. Tetrahedron Lett., 1960, 1(32), 27-35.
[http://dx.doi.org/10.1016/S0040-4039(01)84076-4]
[58]
Emerson, D.W.; Klapprodt, B.J. The preparation and isomerization of 3-thiocyanocyclohexene. J. Org. Chem., 1965, 30, 2480-2481.
[http://dx.doi.org/10.1021/jo01018a520]
[59]
Fava, A. Chapter 3 - Isomerization of organic thiocyanates. Org. Sulfur Compd, 1966, 2, 73-91.
[60]
Ferrier, R.J.; Vethaviyaser, N. Unsaturated carbohydrates. Part XVI. Isomerisation of allylic 4-azides and 4-thiocyanates and the subsequent synthesis of 2-acetamido-2-deoxyhexopyranoside derivatives. J. Chem. Soc. C, 1971, 1907-1913.
[http://dx.doi.org/10.1039/j39710001907]
[61]
Guthrie, R.D.; Williams, G.J. 2,6-Diamino-2,3,4,6-tetradeoxy-D-threo-hexose (‘D-epi-purpurosamine’). J. Chem. Soc. (D). Chem. Commun., 1971, (16), 923-924.
[http://dx.doi.org/10.1039/C29710000923]
[62]
Huber, S.; Stamouli, P.; Jenny, T.; Neier, R. 1,3-Butadienyl-thiocyanate in der Diels-Alder-Reaktion mit anschliessender [3,3]-sigmatroper Umlagerung. Helv. Chim. Acta, 1986, 69, 1898-1915.
[http://dx.doi.org/10.1002/hlca.19860690817]
[63]
Henry, L. Ueber die propargylverbindungen. Ber. Dtsch. Chem. Ges., 1873, 6, 728-730.
[http://dx.doi.org/10.1002/cber.187300601226]
[64]
Midtgaard, T.; Gundersen, G.; Nielsen, C.J. Vibrational spectra, molecular structure and conformation of gaseous 3-thiocyanatopropyne (propargylthiocyanate). J. Mol. Struct., 1988, 176, 159-179.
[http://dx.doi.org/10.1016/0022-2860(88)80239-4]
[65]
Yura, Y. Studies on acetylenic compounds. XXVI. Ring closure. (6). New synthetic method of heterocyclic compounds from α-substituted acetylenic compounds. Chem. Pharm. Bull. (Tokyo), 1962, 10, 1094-1098.
[http://dx.doi.org/10.1248/cpb.10.1094] [PMID: 14002923]
[66]
Meijer, J.; Vermeer, P.; Bos, H.J.T.; Brandsma, L. Chemistry of acetylenic ethers, 104. Thermal rearrangement of 1-alkynyl 2-alkynyl sulfides in the presence of dialkylamines or dialkylphosphines. A new type of thio-Claisen rearrangement. Recl. Trav. Chim. Pays Bas, 1974, 93, 26-29.
[http://dx.doi.org/10.1002/recl.19740930112]
[67]
Austin, P.W. (Imperial Chemical Industries PLC). Preparation of substituted alkynic thiocyanates as industrial microbicides. Eur. Pat. Appl, EP 244962. 1986.
[68]
Banert, K.; Hückstädt, H.; Vrobel, K. Rearrangement reactions, part 1. Synthesis and reactions of isothiocyanate-substituted allenes and 1,3-butadienes. Angew. Chem. Int. Ed. Engl., 1992, 31, 90-92.
[http://dx.doi.org/10.1002/anie.199200901]
[69]
Banert, K.; Groth, S.; Hückstädt, H.; Vrobel, K. Rearrangement reactions, part 4. Synthesis and reactions of new vinyl isothiocyanates. Phosphorus Sulfur Silicon Relat. Elem., 1994, 95-96, 323-324.
[http://dx.doi.org/10.1080/10426509408545359]
[70]
Banert, K.; Groth, S.; Hückstädt, H.; Lehmann, J.; Schlott, J.; Vrobel, K. Rearrangement reactions, part 12. Synthesis and reactions of isothiocyanate substituted allenes. Synthesis, 2002, (10), 1423-1433.
[http://dx.doi.org/10.1055/s-2002-33109]
[71]
Banert, K.; Jawabrah Al-Hourani, B.; Groth, S.; Vrobel, K. Rearrangement reactions, part 14. Synthesis of functionalized thiazoles via attack of het-eroatom nucleophiles on allenyl isothiocyanates. Synthesis, 2005, (17), 2920-2926.
[72]
Richter, F.; Dathe, R.; Seifert, J.; Banert, K. [3,3]-Sigmatropic rearrangement of low-volatile propargyl thiocyanates to allenyl isothiocyanates using solution spray flash vacuum pyrolysis. J. Flow Chem., 2017, 7, 4-8.
[http://dx.doi.org/10.1556/1846.2016.00036]
[73]
Banert, K.; Richter, F.; Hagedorn, M. Explosion hazard during the distillation of propargyl thiocyanate. Org. Process Res. Dev., 2015, 19, 1068-1070.
[http://dx.doi.org/10.1021/acs.oprd.5b00182]
[74]
Brandsma, L. Synthesis of acetylenes, allenes and cumulenes, methods and techniques; Elsevier: Amsterdam, 2004, p. 394.
[75]
Brandsma, L.; Verkruijsse, H.D. Synthesis of Acetylenes, Allenes and Cumulenes, a Laboratory Manual; Elsevier: Amsterdam, 1981, p. 227.
[76]
Banert, K.; Hagedorn, M.; Müller, A. Rearrangement reactions, part 9. Synthesis of new vinyl thiocyanates by [3,3]-sigmatropic rearrangement of isothiocyanates. Eur. J. Org. Chem., 2001, 1089-1103.
[http://dx.doi.org/10.1002/1099-0690(200103)2001:6<1089:AID-EJOC1089>3.0.CO;2-N]
[77]
Banert, K.; Fendel, W.; Schlott, J. Rearrangement reactions, part 7. Synthesis of 1,2-difunctionalized 1,3-butadienes through a sequence of sigmatropic rearrangements. Angew. Chem. Int. Ed. Engl., 1998, 37(23), 3289-3292.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981217)37:23<3289:AID-ANIE3289>3.0.CO;2-K] [PMID: 29711425]
[78]
Banert, K.; Seifert, J. Steric hindrance classified: treatment of isothiocyanatoallene with secondary amines bearing bulky substituents to generate 2-aminothiazoles. Org. Chem. Front., 2019, 6, 3517-3522.
[http://dx.doi.org/10.1039/C9QO00312F]
[79]
Jawabrah Al-Hourani, B.; Richter, F.; Vrobel, K.; Banert, K.; Korb, M.; Rüffer, T.; Walfort, B.; Lang, H. Synthesis of unexpected bifunctionalized thiazoles by nucleophilic attack on allenyl isothiocyanates. Eur. J. Org. Chem., 2014, 2899-2906.
[http://dx.doi.org/10.1002/ejoc.201301851]
[80]
Gebhardt, W. Zur Geschichte der secundären Amine I. Ber. Dtsch. Chem. Ges., 1884, 17, 2088-2095.
[http://dx.doi.org/10.1002/cber.188401702108]
[81]
Banert, K.; Fink, K.; Hagedorn, M.; Richter, F. Synthesis of triacetonamine N-alkyl derivatives reinvestigated. ARKIVOC, 2012, (iii), 379-390.
[82]
Klages, F.; Sitz, H. Sterische Hinderung bei Reaktionen des Di-tert.-butylamins. Chem. Ber., 1963, 96, 2394-2398.
[http://dx.doi.org/10.1002/cber.19630960917]
[83]
Back, T.G.; Barton, D.H.R. Chemistry of hindered amines: Synthesis and properties of di-t-butylamine and related compounds. J. Chem. Soc., Perkin Trans. 1, 1977, (8), 924-927.
[http://dx.doi.org/10.1039/p19770000924]
[84]
Jawabrah Al-Hourani, B.; Banert, K.; Gomaa, N.; Vrobel, K. Synthesis of functionalized thiazoles via attack of heterocyclic nucleophiles on allenyl isothiocynates. Tetrahedron, 2008, 64(23), 5590-5597.
[85]
Jawabrah Al-Hourani, B.; Banert, K.; Rüffer, T.; Walfort, B.; Lang, H. Rearrangements reactions, part 16. Regio- and stereoselective synthesis of thiazole substituted histamine and adenine derivatives by nucleophilic attack at allenyl isothiocyanate. Heterocycles, 2008, 75, 2667-2679.
[http://dx.doi.org/10.3987/COM-08-11430]
[86]
Faure, R.; Galy, J-P.; Vincent, E-J.; Elguero, J. Etude de l’équilibre azido ⇌ tétrazole dans la série du thiazolo[2,3-e]-tétrazole. III. Effets des substituants (I). J. Heterocycl. Chem., 1977, 14, 1299-1304.
[http://dx.doi.org/10.1002/jhet.5570140802]
[87]
Faure, R.; Galy, J-P.; Vincent, E-J.; Elguero, J. Etudes d’hétérocycles pentagonaux polyhétéroatomiques par résonance magnétique nucléaire du 13C. Thiazoles et thiazolo[2,3-e]-tétrazoles. Can. J. Chem., 1978, 56, 46-55.
[http://dx.doi.org/10.1139/v78-009]
[88]
Lieber, E.; Pillai, C.N.; Hites, R.D. The reaction of nitrous acid with 4-substituted-thiosemicarbazides. Can. J. Chem., 1957, 35, 832-842.
[http://dx.doi.org/10.1139/v57-116]
[89]
Hoff, S.; Blok, A.P. Cycloaddition of isothiocyanates with diazomethane and hydrazoic acid. Recl. Trav. Chim. Pays Bas, 1974, 93, 317-319.
[http://dx.doi.org/10.1002/recl.19740931205]
[90]
Lieber, E.; Ramachandran, J. Isomeric 5-(substituted)aminothiatriazole and 1-substituted-tetrazolinethiones. Can. J. Chem., 1959, 37, 101-109.
[http://dx.doi.org/10.1139/v59-015]
[91]
Richter, F.; Seifert, J.; Korb, M.; Lang, H.; Banert, K. Real multicomponent reactions: Synthesis of highly substituted 2-aminothiazoles. Eur. J. Org. Chem., 2018, (34), 4673-4682.
[http://dx.doi.org/10.1002/ejoc.201800701]
[92]
Seifert, J. Synthese neuer Allenylisothiocyanate und ihre Folgereaktionen zu 2-Amino-1,3-thiazolen. PhD Thesis, Chemnitz University of Technology: Chemnitz, April 2019.
[93]
Das, D.; Sikdar, P.; Bairagi, M. Recent developments of 2-aminothiazoles in medicinal chemistry. Eur. J. Med. Chem., 2016, 109, 89-98.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.022] [PMID: 26771245]
[94]
Ghaemmaghami, S.; May, B.C.H.; Renslo, A.R.; Prusiner, S.B. Discovery of 2-aminothiazoles as potent antiprion compounds. J. Virol., 2010, 84(7), 3408-3412.
[http://dx.doi.org/10.1128/JVI.02145-09] [PMID: 20032192]
[95]
Gallardo-Godoy, A.; Gever, J.; Fife, K.L.; Silber, B.M.; Prusiner, S.B.; Renslo, A.R. 2-Aminothiazoles as therapeutic leads for prion diseases. J. Med. Chem., 2011, 54(4), 1010-1021.
[http://dx.doi.org/10.1021/jm101250y] [PMID: 21247166]
[96]
Das, J.; Chen, P.; Norris, D.; Padmanabha, R.; Lin, J.; Moquin, R.V.; Shen, Z.; Cook, L.S.; Doweyko, A.M.; Pitt, S.; Pang, S.; Shen, D.R.; Fang, Q.; de Fex, H.F.; McIntyre, K.W.; Shuster, D.J.; Gillooly, K.M.; Behnia, K.; Schieven, G.L.; Wityak, J.; Barrish, J.C. 2-Aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1-piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J. Med. Chem., 2006, 49(23), 6819-6832.
[http://dx.doi.org/10.1021/jm060727j] [PMID: 17154512]
[97]
Chen, B-C.; Zhao, R.; Wang, B.; Droghini, R.; Lajeunesse, J.; Sirard, P.; Endo, M.; Balasubramanian, B.; Barrish, J.C. A new and efficient preparation of 2-aminothiazole-5-carbamides: applications to the synthesis of the anti-cancer drug dasatinib. ARKIVOC, 2010, 6, 32-38.
[98]
Pieroni, M.; Wan, B.; Cho, S.; Franzblau, S.G.; Costantino, G. Design, synthesis and investigation on the structure-activity relationships of N-substituted 2-aminothiazole derivatives as antitubercular agents. Eur. J. Med. Chem., 2014, 72, 26-34.
[http://dx.doi.org/10.1016/j.ejmech.2013.11.007] [PMID: 24333612]
[99]
Kesicki, E.A.; Bailey, M.A.; Ovechkina, Y.; Early, J.V.; Alling, T.; Bowman, J.; Zuniga, E.S.; Dalai, S.; Kumar, N.; Masquelin, T.; Hipskind, P.A.; Odingo, J.O.; Parish, T. Synthesis and evaluation of the 2-aminothiazoles as anti-tubercular agents. PLoS One, 2016, 11(5)e0155209
[http://dx.doi.org/10.1371/journal.pone.0155209] [PMID: 27171280]
[100]
Kretschmer, S.B.M.; Woltersdorf, S.; Rödl, C.B.; Vogt, D.; Häfner, A-K.; Steinhilber, D.; Stark, H.; Hofmann, B. Development of novel aminothiazole-comprising 5-LO inhibitors. Future Med. Chem., 2016, 8(2), 149-164.
[http://dx.doi.org/10.4155/fmc.15.174] [PMID: 26824797]
[101]
Kretschmer, S.B.M.; Woltersdorf, S.; Vogt, D. Lillich, F.F.; Rühl, M.; Karas, M.; Maucher, I.V.; Roos, J.; Häfner, A.-K.; Kaiser, A.; Wurglics, M.; Schubert-Zsilavecz, M.; Angioni, C.; Geisslinger, G.; Stark, H.; Steinhilber, D.; Hofmann, B. Characterization of the molecular mechanism of 5-lipoxy-genase inhibition by 2-aminothiazoles. Biochem. Pharmacol., 2017, 123, 52-62.
[http://dx.doi.org/10.1016/j.bcp.2016.09.021] [PMID: 27671344]
[102]
Al-Ayed, A.S. One pot synthesis and antimicrobial activity of substituted 2-aminothiazoles. Asian J. Chem., 2015, 27, 4081-4084.
[http://dx.doi.org/10.14233/ajchem.2015.19092]
[103]
Kim, K.S.; Kimball, S.D.; Misra, R.N.; Rawlins, D.B.; Hunt, J.T.; Xiao, H-Y.; Lu, S.; Qian, L.; Han, W-C.; Shan, W.; Mitt, T.; Cai, Z-W.; Poss, M.A.; Zhu, H.; Sack, J.S.; Tokarski, J.S.; Chang, C.Y.; Pavletich, N.; Kamath, A.; Humphreys, W.G. Marathe, P.; Bursuker, I.; Kellar, K.A.; Roongta, U.; Batorsky, R.; Mulheron, J.G.; Bol, D.; Fairchild, C.R.; Lee, F.Y.; Webster, K.R. Discovery of aminothiazole inhibitors of cyclin-dependent kinase 2: Synthesis, X-ray crystallographic analysis, and biological activities. J. Med. Chem., 2002, 45, 3905-3927.
[http://dx.doi.org/10.1021/jm0201520] [PMID: 12190313]
[104]
Misra, R.N.; Xiao, H.Y.; Kim, K.S.; Lu, S.; Han, W-C.; Barbosa, S.A.; Hunt, J.T.; Rawlins, D.B.; Shan, W.; Ahmed, S.Z.; Qian, L.; Chen, B-C.; Zhao, R.; Bednarz, M.S.; Kellar, K.A.; Mulheron, J.G.; Batorsky, R.; Roongta, U.; Kamath, A.; Marathe, P.; Ranadive, S.A.; Sack, J.S.; Tokarski, J.S.; Pavletich, N.P.; Lee, F.Y.; Webster, K.R.; Kimball, S.D.N. -(cyclo-alkylamino)acyl-2-aminothiazole inhibitors of cyclin-dependent kinase 2. N-[5-[[[5-(1,1-dimethylethyl)-2-oxazolyl]methyl]thio]-2-thiazolyl]-4-piperidin-ecarboxamide (BMS-387032), a highly efficacious and selective antitumor agent. J. Med. Chem., 2004, 47(7), 1719-1728.
[http://dx.doi.org/10.1021/jm0305568] [PMID: 15027863]
[105]
Borzilleri, R.M.; Bhide, R.S.; Barrish, J.C.; D’Arienzo, C.J.; Derbin, G.M.; Fargnoli, J.; Hunt, J.T.; Jeyaseelan, R.; Kamath, A.; Kukral, D.W.; Marathe, P.; Mortillo, S.; Qian, L.; Tokarski, J.S.; Wautlet, B.S.; Zheng, X.; Lombardo, L.J. Discovery and evaluation of N-cyclopropyl-2,4-difluoro-5-((2-(pyridin-2-ylamino)thiazol-5-ylmethyl)amino)benzamide (BMS-605541), a selective and orally efficacious inhibitor of vascular endothelial growth factor receptor-2. J. Med. Chem., 2006, 49, 3766-3769.
[http://dx.doi.org/10.1021/jm060347y] [PMID: 16789733]
[106]
Chhabria, M.T.; Patel, S.; Modi, P.; Brahmkshatriya, P.S. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr. Top. Med. Chem., 2016, 16, 2841-2862.
[107]
Gupta, V.; Kant, V. A review on biological activity of imidazole and thiazole moieties and their derivatives. Sci. Int., 2013, 1, 253-260.
[http://dx.doi.org/10.17311/sciintl.2013.253.260]
[108]
Banert, K.; Toth, C. Rearrangement reactions, part 5. Synthesis and reactions of vinyl isoselenocyanates. Angew. Chem. Int. Ed. Engl., 1995, 34, 1627-1629.
[http://dx.doi.org/10.1002/anie.199516271]
[109]
Tarantelli, T.; Leonesi, D. Un nuovo metodo per la preparazione degli Isoselenocianati organici. Isomerizzazione dei selenocianati. Ann. Chim. (Rome), 1963, 53, 1113-1122.
[110]
Rothe, W. Vorläufige Mitteilung über ein neues Antibiotikum. Pharmazie, 1950, 5, 190.
[111]
Hagedorn, I.; Eholzer, U.; Lüttringhaus, A. Beiträge zur Konstitutionsermittlung des Antibiotikums Xanthocillin. Chem. Ber., 1960, 93, 1584-1590.
[http://dx.doi.org/10.1002/cber.19600930720]
[112]
Hagedorn, I.; Eholzer, U. Synthesis of xanthocillin dimethyl ether. Angew. Chem. Int. Ed. Engl., 1962, 1, 212.
[http://dx.doi.org/10.1002/anie.196202122]
[113]
Achenbach, H.; Grisebach, H. Zur Biogenese des Xanthocillins. Z. Naturforsch. B, 1965, 20, 137-140.
[http://dx.doi.org/10.1515/znb-1965-0209] [PMID: 14345161]
[114]
Achenbach, H.; Strittmatter, H.; Kohl, W. Die Strukturen der Xanthocilline Y1 und Y2. Chem. Ber., 1972, 105(9), 3061-3066.
[http://dx.doi.org/10.1002/cber.19721050929] [PMID: 4660271]
[115]
Banert, K.; Groth, S. Rearrangement reactions, part 2. Synthesis of isocyanate-substituted allenes and 1,3-butadienes by [3,3] sigmatropic rearrangements. Angew. Chem. Int. Ed. Engl., 1992, 31, 866-868.
[http://dx.doi.org/10.1002/anie.199208661]
[116]
Christophersen, C.; Holm, A. Alkyl cyanates. XIV. Isomerization of allylic cyanates and allylic thionoderivatives. Acta Chem. Scand., 1970, 24, 1512-1526.
[http://dx.doi.org/10.3891/acta.chem.scand.24-1512]
[117]
Christophersen, C.; Holm, A. Formation of 1-methylallyl and 2-butenyl isocyanate from crotyl bromide and silver cyanate. Acta Chem. Scand., 1970, 24, 1852-1854.
[http://dx.doi.org/10.3891/acta.chem.scand.24-1852]
[118]
Overman, L.E.; Kakimoto, M. Preparation of rearranged allylic isocyanates from the reaction of allylic alkoxides with cyanogen chloride. J. Org. Chem., 1978, 43, 4564-4567.
[http://dx.doi.org/10.1021/jo00418a002]
[119]
Ichikawa, Y. New synthetic method for allylic isocyanates trough [3,3] sigmatropic rearrangement of allylic cyanates. Synlett, 1991, 238-240
[http://dx.doi.org/10.1055/s-1991-20691]
[120]
Ichikawa, Y.; Yamazaki, M.; Isobe, M. Novel, regioselective allylamine construction; first synthesis of geranyllinaloisocyanide, a diterpene from the marine sponge, Halichondria sp. J. Chem. Soc., Perkin Trans. 1, 1993, 2429-2432
[http://dx.doi.org/10.1039/p19930002429]
[121]
Ichikawa, Y.; Kobayashi, C.; Isobe, M. Synthesis of nitrogen-containing unsaturated carbohydrates through an allyl cyanate-to-isocyanate rearrange- ment. Synlett, 1994, 919-921
[http://dx.doi.org/10.1055/s-1994-23048]
[122]
Ichikawa, Y.; Tsuboi, K.; Isobe, M. Stereochemistry of an allyl cyanate-to-isocyanate rearrangement. J. Chem. Soc., Perkin Trans. 1, 1994, (19), 2791-2796.
[http://dx.doi.org/10.1039/p19940002791]
[123]
Ichikawa, Y.; Kobayashi, C.; Isobe, M. Synthesis of nitrogen-containing unsaturated carbohydrates via an allyl cyanate-to-isocyanate rearrangement. J. Chem. Soc., Perkin Trans. 1, 1996, (4), 377-382.
[http://dx.doi.org/10.1039/p19960000377]
[124]
Ichikawa, Y. Synthetic studies of nitrogen-containing terpenes originated from marine organism using sigmatropic rearrangement and Ritter reaction. Yuki Gosei Kagaku Kyokai Shi, 1997, 55, 281-289.
[http://dx.doi.org/10.5059/yukigoseikyokaishi.55.281]
[125]
Ichikawa, Y.; Osada, M.; Ohtani, I.I.; Isobe, M. A new synthetic method for the preparation of amino sugars through an allyl cyanate-to-isocyanate rear- rangement. J. Chem. Soc., Perkin Trans. 1, 1997, 1449-1455.
[http://dx.doi.org/10.1039/a700142h]
[126]
Tagmose, T.M.; Bols, M. Synthesis of the 2-deoxyisomaltose analogue of acarbose by an improved route to chiral valieneamines. Chem. Eur. J., 1997, 3, 453-462.
[http://dx.doi.org/10.1002/chem.19970030318]
[127]
Banert, K.; Melzer, A. Rearrangement reactions, part 11. The first direct observation of an allylic [3,3] sigmatropic cyanate–isocyanate rearrangement. Tetrahedron Lett., 2001, 42, 6133-6135.
[http://dx.doi.org/10.1016/S0040-4039(01)01212-6]
[128]
Zbiral, E. Phosphororganische Verbindungen, 7. Mitt.: Über die oxydation von β-oxo-alkylenphosphoniumsalzen mit bleitetraacetat. Monatsh. Chem., 1966, 97, 180-202.
[http://dx.doi.org/10.1007/BF00905504]
[129]
Zbiral, E.; Hengstberger, H. Reaktionen mit phosphororganischen Verbindungen, 17. Mitt. zur oxydation von β-oxophosphoniumrhodaniden mit Bleitetraacetat. Monatsh. Chem., 1968, 99, 412-428.
[http://dx.doi.org/10.1007/BF00908947]
[130]
Zbiral, E.; Hengstberger, H. Reaktionen mit phosphororganischen Verbindungen, XIX. umsetzung von β-oxoalkylenphosphoranen mit (SCN)2. Ein neuer zugang zu thiazol-derivaten. Liebigs Ann. Chem., 1969, 721, 121-128.
[http://dx.doi.org/10.1002/jlac.19697210117]
[131]
Schuster, P.; Zbiral, E. Modellrechnungen zur umlagerung von allenylrhodaniden in propargylsenföle. Monatsh. Chem., 1969, 100, 1338-1349.
[http://dx.doi.org/10.1007/BF00903469]
[132]
Braverman, S.; Freund, M. A facile and unexpected synthesis of two novel condensed heterocycles: 1,1,4,4-tetramethyl-1H,4H-thieno(3,4-c)thiophene and 1,1,4,4-tetramethyl-1H,4H-selenolo(3,4-c)selenophene. Tetrahedron Lett., 1980, 21, 3617-3620.
[http://dx.doi.org/10.1016/0040-4039(80)80251-6]
[133]
Braverman, S.; Duar, Y.; Freund, M. Synthesis and cycloaromatization of allenyl ethynyl sulfides and selenides. Isr. J. Chem., 1985, 26, 108-114.
[http://dx.doi.org/10.1002/ijch.198500079]
[134]
Braverman, S.; Freund, M. Rearrangements of bridged diallenes. A facile synthesis of novel condensed heterocycles by tandem [3,3]-sigmatropic rearrangement and double intramolecular Michael addition of diallenyl disulfides and diselenides. Isolation of stable diallenyl diselenides. Tetrahedron, 1990, 46, 5759-5776.
[http://dx.doi.org/10.1016/S0040-4020(01)87773-5]
[135]
Austin, P.W. (Imperial Chemical Industries PLC). Biocidal allene thiocyanates. UK Patent Application, GB2203145A 1988.
[136]
Kitamura, T.; Miyake, S.; Kobayashi, S.; Taniguchi, H. Reaction of triarylchloroallenes with nucleophiles under solvolytic conditions. Bull. Chem. Soc. Jpn., 1989, 62, 967-968.
[http://dx.doi.org/10.1246/bcsj.62.967]
[137]
Turuta, A.M.; Kamernitskii, A.V.; Dik Hi, L.; Bogdanov, V.S. Transformed steroids. 190. Influence of Co-complexation on the epoxide ring opening of 17β-ethynyl-16α,17α-epoxyandrost-4-en-one on reacting with pyridine hydrofluoride, pyridine hydrochloride, and pyridine thiocyanate. Bull. Russ. Acad. Sci. Div. Chem. Sci., 1992, 41, 2108-2112.
[138]
Turuta, A.M.; Fadeeva, T.M.; Kamernitskii, A.V.; Korobov, A.A.; Cherepanova, E.G.; Dyk Khu, L. Transformed steroids. 180. Stereospecific transformation of 17β-hydroxy-17α-ethynylsteroids into various 17α-substituted 17β-ethynylsteroids. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1990, 39, 595-601.
[http://dx.doi.org/10.1007/BF00959591]
[139]
Banert, K.; Fendel, W.; Müller, A.; Müller, B.; Schlott, J. Rearrangement reactions, part 8. Synthesis of new 1,3-butadienes with sulfur-containing functional groups by sigmatropic rearrangements. Phosphorus Sulfur Silicon Relat. Elem., 1999, 153-154, 325-326.
[140]
Tomita, K.; Nagano, M. Studies on organo sulfur compounds. IV. The reaction of sodium sec- and tert-α-acetylenyl xanthates with alkyl halide. Chem. Pharm. Bull. (Tokyo), 1968, 16, 1911-1917.
[http://dx.doi.org/10.1248/cpb.16.1911]
[141]
Harusawa, S.; Kase, N.; Yoneda, R.; Kurihara, T. Synthesis of medium-membered heterocyclic allenes by [3,3]-sigmatropic rearrangement and its synthetic application to the antifungal constituent of Sapium japonicum. Tetrahedron Lett., 1994, 35, 1255-1258.
[http://dx.doi.org/10.1016/0040-4039(94)88037-9]
[142]
Harusawa, S.; Moriyama, H.; Ohishi, H.; Yoneda, R.; Kurihara, T. Synthesis of strained 8-membered heterocyclic allenes by [3,3]-sigmatropic rearrangement and their reactivities. Heterocycles, 1994, 38, 1975-1978.
[http://dx.doi.org/10.3987/COM-94-6835]
[143]
Harusawa, S.; Moriyama, H.; Kase, N.; Ohishi, H.; Yoneda, R.; Kurihara, T. [3,3]Sigmatropic ring expansion of cyclic thionocarbonates. 13. Synthesis of medium-membered heterocyclic allenes and synthetic application to antifungal constituent of Sapium japonicum. Tetrahedron, 1995, 51, 6475-6494.
[http://dx.doi.org/10.1016/0040-4020(95)00306-S]
[144]
Banert, K.; Schlott, J. Rearrangement reactions, Part 10. Stereospecific synthesis of 1,2-difunctionalized buta-1,3-dienes via tandem [3,3]–[3,3] sigmatropic rearrangements. Tetrahedron, 2000, 56, 5413-5419.
[http://dx.doi.org/10.1016/S0040-4020(00)00459-2]
[145]
Forster, M.O.; Newman, S.H.; Part, X.V. Triazoethylene (vinylazoimide) and the triazoethyl halides. J. Chem. Soc., 1910, 97, 2570-2579.
[http://dx.doi.org/10.1039/CT9109702570]
[146]
Forster, M.O.; Newman, S.H. Part XVIII. β-Triazoethylamine. J. Chem. Soc., 1911, 99, 1277-1282.
[http://dx.doi.org/10.1039/CT9119901277]
[147]
Smolinsky, G.; Pryde, C.A. The chemistry of vinyl azides.The chemistry of the azido group; Patai, S., Ed.; Wiley-Interscience: London, 1971, pp. 555-585.
[148]
L’abbé, G.; Hassner, A. New methods for the synthesis of vinyl azides. Angew. Chem. Int. Ed. Engl., 1971, 10, 98-104.
[http://dx.doi.org/10.1002/anie.197100981]
[149]
L’abbé, G. Reactions of vinyl azides. Angew. Chem. Int. Ed. Engl., 1975, 14, 775-782.
[http://dx.doi.org/10.1002/anie.197507751]
[150]
Hassner, A. Vinyl azides and nitrenes.Azides and nitrenes, reactivity and utility; Scriven, E.F.V., Ed.; Academic Press: Orlando, 1984, pp. 35-94.
[http://dx.doi.org/10.1016/B978-0-12-633480-7.50006-7]
[151]
Banert, K. Vinyl-azide In: Houben-Weyl, Methoden der Organischen Chemie; 4th ed.; Kropf, H.; Schaumann, E., Eds.; Thieme: Stuttgart; , 1993, 15, p. 818-875.
[152]
Banert, K. The chemistry of vinyl, allenyl, and ethynyl azides. Organic azides, syntheses and applications; Bräse, S; Banert, K., Ed.; Wiley: Chichester, 2010, pp. 115-166.
[153]
L’abbé, G.; Mahy, M.; Bollyn, M.; Germain, G.; Scheefer, G. Approaches towards the synthesis of allenyl azides. Bull. Soc. Chim. Belg., 1983, 92, 881-891.
[http://dx.doi.org/10.1002/bscb.19830921010]
[154]
L’abbé, G. Are azidocumulenes accessible? Bull. Soc. Chim. Belg., 1984, 93, 579-592.
[http://dx.doi.org/10.1002/bscb.19840930706]
[155]
Hassner, A.; Keogh, J. Regiochemistry of halogen azide addition to allenes. J. Org. Chem., 1986, 51, 2767-2770.
[http://dx.doi.org/10.1021/jo00364a027]
[156]
Shiner, V.J., Jr; Humphrey, J.S., Jr Mechanisms of nucleophilic substitution of propargyl and allenyl halides. Base-promoted reactions of 3-bromo-3-methyl-1-butyne and 1-bromo-3-methyl-1,2-butadiene in aqueous ethanol. J. Am. Chem. Soc., 1967, 89, 622-630.
[http://dx.doi.org/10.1021/ja00979a028]
[157]
Banert, K. Reactions of unsaturated azides, part 6. Synthesis of 1,2,3-triazoles from propargyl azides by rearrangement of the azido group. Indication of short-lived allenyl azides and triazafulvenes. Chem. Ber., 1989, 122, 911-918.
[http://dx.doi.org/10.1002/cber.19891220520]
[158]
Banert, K.; Hagedorn, M. Reactions of unsaturated azides, part 9. First isolation of allenyl azides. Angew. Chem. Int. Ed. Engl., 1989, 28, 1675-1676.
[http://dx.doi.org/10.1002/anie.198916751]
[159]
Schöffler, C. Propargylazide als Ausgangsmaterialien für Umlagerungsreaktionen und Heterocyclensynthesen. PhD Thesis, Chemnitz University of Technology: Chemnitz 2000.
[160]
Bhattacharyya, S.; Hatua, K. Theoretical investigation of Banert cascade reaction. R. Soc. Open Sci., 2018, 5(4) 171075
[http://dx.doi.org/10.1098/rsos.171075] [PMID: 29765623]
[161]
Bohle, A. Untersuchungen zur sigmatropen Umlagerung organischer Azide. Diploma Thesis, Chemnitz University of Technology: Chemnitz 2007.
[162]
Burke, L.A.; Leroy, G.; Nguyen, M.T.; Sana, M. Theoretical study of the vinyl azide-ʋ-triazole isomerization. J. Am. Chem. Soc., 1978, 100, 3668-3674.
[http://dx.doi.org/10.1021/ja00480a003]
[163]
Yamabe, T.; Kaminoyama, M.; Minato, T.; Hori, K.; Isomura, K.; Taniguchi, H. Electronic structures of vinylazide, vinylnitrene and 2H-azirine. Mechanism of the reaction from vinylazide to 2H-azirine. Tetrahedron, 1984, 40, 2095-2099.
[http://dx.doi.org/10.1016/S0040-4020(01)88451-9]
[164]
Fukushima, K.; Iwahashi, H. Natural bond orbital analysis of pericyclic and pseudopericyclic 1,5-electrocyclizations of conjugated azides. Heterocycles, 2005, 65, 2605-2618.
[http://dx.doi.org/10.3987/COM-05-10477]
[165]
Smolinsky, G. Formation of azacyclopropenes by pyrolysis of vinyl azides. J. Org. Chem., 1962, 27, 3557-3559.
[http://dx.doi.org/10.1021/jo01057a037]
[166]
Smolinsky, G. Vinyl azene chemistry: Formation of azacyclopropene. J. Am. Chem. Soc., 1961, 83, 4483-4484.
[http://dx.doi.org/10.1021/ja01482a055]
[167]
Hassner, A.; Fowler, F.W. Synthesis and reactions of 1-azirines. J. Am. Chem. Soc., 1968, 90, 2869-2875.
[http://dx.doi.org/10.1021/ja01013a025]
[168]
Hassner, A.; Wiegand, N.H.; Gottlieb, H.E. Kinetics of thermolysis of vinyl azides. Empirical rules for formation of azirines and rearranged nitriles. J. Org. Chem., 1986, 51, 3176-3180.
[http://dx.doi.org/10.1021/jo00366a019]
[169]
L’abbé, G.; Mathys, G. On the mechanism of the thermal decomposition of vinyl azides. J. Org. Chem., 1974, 39, 1778-1780.
[http://dx.doi.org/10.1021/jo00925a047]
[170]
Bock, H.; Dammel, R.; Aygen, S. Gas-phase reactions. 36. Pyrolysis of vinyl azide. J. Am. Chem. Soc., 1983, 105, 7681-7685.
[http://dx.doi.org/10.1021/ja00364a037]
[171]
Henriet, M.; Houtekie, M.; Techy, B.; Touillaux, R.; Ghosez, L. Synthesis of 5-dialkylamino-1,2,3-triazoles and 2-amino-1-azirines from tertiary amides. Tetrahedron Lett., 1980, 21, 223-226.
[http://dx.doi.org/10.1016/S0040-4039(00)71421-3]
[172]
Bernard, C.; Ghosez, L. Synthesis and reactivity of 4H-triazoles. J. Chem. Soc. Chem. Commun., 1980, 940-941
[http://dx.doi.org/10.1039/c39800000940]
[173]
Saalfrank, R.W.; Ackermann, E.; Fischer, M.; Wirth, U. Geminale Vinyldiazide, IV. Substituentenabhängige konkurrenz zwischen 1,5- und 3,5-cyclisierung bei vinylaziden; 1,2,3-triazole und 2H-azirine aus 3,3-diazido-2-cyanacrylsäure-methylester und aminen. Chem. Ber., 1987, 120, 2003-2006.
[http://dx.doi.org/10.1002/cber.19871201211]
[174]
Saalfrank, R.W.; Wirth, U.; Lurz, C.J. Geminal vinyl diazides. 8. Substituent-dependent competition between 1,5- and 1,5′-cyclization of vinyl azides. 1,2,3-Triazoles and 4,5-dihydro-1H-tetrazol-5-ylidenes from methyl 3,3-diazido-2-cyanoacrylate with amines. J. Org. Chem., 1989, 54, 4356-4359.
[http://dx.doi.org/10.1021/jo00279a024]
[175]
Huisgen, R. 1,5-Electrocyclizations – an important principle of heterocyclic chemistry. Angew. Chem. Int. Ed. Engl., 1980, 19, 947-973.
[http://dx.doi.org/10.1002/anie.198009473]
[176]
Meek, J.S.; Fowler, J.S. The isomerization of a vinyl azide to a triazole. J. Am. Chem. Soc., 1967, 89, 1967.
[http://dx.doi.org/10.1021/ja00984a046]
[177]
Meek, J.S.; Fowler, J.S. Nucleophilic addition-elimination reactions of 1,2-di-p-toluenesulfonylethene. J. Org. Chem., 1968, 33, 985-991.
[http://dx.doi.org/10.1021/jo01267a010]
[178]
Woerner, F.P.; Reimlinger, H. 1.5-Dipolare Cyclisierungen, II. v-Triazole aus Vinylaziden sowie durch Addition des Azid-Ions an die CC-Dreifachbindung. Chem. Ber., 1970, 103, 1908-1917.
[http://dx.doi.org/10.1002/cber.19701030630]
[179]
Zefirov, N.S.; Chapovskaya, N.K. Reaction of fumaronitrile with sodium azide. J. Org. Chem. USSR (Engl. Transl.), 1968, 4, 1252.
[180]
Nesmeyanov, A.N.; Rybinskaya, M.I. Reaction of β-aroylethylenesulfonates with azide ion. Dokl. Akad. Nauk SSSR, 1966, 166, 1362-1365.
[181]
Nesmeyanov, A.N.; Rybinskaya, M.I. Effect of the nature of the leaving group in substitution. Reactions of β-substituted phenyl vinyl ketones with azide ion. Dokl. Akad. Nauk SSSR, 1966, 170, 600-603.
[182]
Nesmeyanov, A.N.; Rybinskaya, M.I. The reaction between phenyl ethynyl ketone and the azide ion in various media. Zh. Org. Khim., 1966, 2, 2081-2086.
[183]
Banert, K. Reactions of unsaturated azides, part 8. Azidobutatriene and azidobutenynes. Chem. Ber., 1989, 122, 1175-1178.
[http://dx.doi.org/10.1002/cber.19891220624]
[184]
Banert, K. Reactions of unsaturated azides, part 7. Base-catalyzed formation of allenyl azides from propargyl azides: New syntheses for 1,2,3-triazoles. Chem. Ber., 1989, 122, 1963-1967.
[http://dx.doi.org/10.1002/cber.19891221022]
[185]
Fotsing, J.R.; Banert, K. Reactions of unsaturated azides, part 16. First prop-argyl azides bearing strong acceptor substituents and their effective conver-sion into allenyl azides: Influence of the electronic effects of substituents on the reactivity of propargyl azides. Eur. J. Org. Chem., 2005, 3704-3714.
[http://dx.doi.org/10.1002/ejoc.200500135]
[186]
Banert, K.; Hagedorn, M.; Hemeltjen, C.; Ihle, A.; Weigand, K.; Priebe, H. Synthesis of N-unsubstituted 1,2,3-triazoles via a cascade including proper-gyl azides, allenyl azides, and triazafulvenes. ARKIVOC, 2016, v, 338-361.
[http://dx.doi.org/10.24820/ark.5550190.p009.846]
[187]
Harrison, T.; Owens, A.P.; Williams, B.J.; Swain, C.J.; Williams, A.; Carlson, E.J.; Rycroft, W.; Tattersall, F.D.; Cascieri, M.A.; Chicchi, G.G.; Sadowski, S.; Rupniak, N.M.J.; Hargreaves, R.J. An orally active, water-soluble neurokinin-1 receptor antagonist suitable for both intravenous and oral clinical administration. J. Med. Chem., 2001, 44(24), 4296-4299.
[http://dx.doi.org/10.1021/jm0109558] [PMID: 11708932]
[188]
Owens, A.P. (Merck Sharp and Dohme Limited, UK); Aromatic compounds useful as tachykinin antagonists. WO 9629317, 1996.
[189]
Baker, R.; Elliot, J.; Stevenson, G.I.; Swain, C.J. (Merck Sharp and Dohme Limited); Piperidine and morpholine derivatives and their use as therapeutic agents. WO 9701553, 1997.
[190]
Baker, R.; Elliot, J.; Stevenson, G.I.; Swain, C.J. (Merck Sharp and Dohme Limited); Piperidine and morpholine derivatives and their use as therapeutic agents. WO 9701554, 1997.
[191]
Moseley, J.D.; Swain, C.J.; Williams, B.J. (Merck Sharp and Dohme Limited, UK); N-oxides of morpholine derivatives and their use as therapeutic agents. GB 2302689, 1997.
[192]
Loren, J.C.; Sharpless, K.B. The Banert cascade: A synthetic sequence to polyfunctional NH-1,2,3-triazoles. Synthesis, 2005, 1514-1520.
[193]
Blackaby, W.P.; Atack, J.R.; Bromidge, F.; Lewis, R.; Russell, M.G.N.; Smith, A.; Wafford, K.; McKernan, R.M.; Street, L.J.; Castro, J.L. Pyrazolopyridinones as functionally selective GABAA ligands. Bioorg. Med. Chem. Lett., 2005, 15(22), 4998-5002.
[http://dx.doi.org/10.1016/j.bmcl.2005.08.006] [PMID: 16153832]
[194]
Weide, T.; Saldanha, S.A.; Minond, D.; Spicer, T.P.; Fotsing, J.R.; Spaargaren, M.; Frère, J-M.; Bebrone, C.; Sharpless, K.B.; Hodder, P.S.; Fokin, V.V. NH-1,2,3-triazole inhibitors of the VIM-2 metallo-β-lactamase. ACS Med. Chem. Lett., 2010, 1, 150-154.
[http://dx.doi.org/10.1021/ml900022q] [PMID: 20625539]
[195]
Minond, D.; Saldanha, S.A.; Subramaniam, P.; Spaargaren, M.; Spicer, T.; Fotsing, J.R.; Weide, T.; Fokin, V.V.; Sharpless, K.B.; Galleni, M.; Bebrone, C.; Lassaux, P.; Hodder, P. Inhibitors of VIM-2 by screening pharmacologically active and click-chemistry compound libraries. Bioorg. Med. Chem., 2009, 17(14), 5027-5037.
[http://dx.doi.org/10.1016/j.bmc.2009.05.070] [PMID: 19553129]
[196]
Seward, E.M.; Carlson, E.; Harrison, T.; Haworth, K.R.; Herbert, R.; Kelleher, F.J.; Kurtz, M.M.; Moseley, J.; Owen, S.N.; Owens, A.P.; Sadowski, S.J.; Swain, C.J.; Williams, B.J. Spirocyclic NK (1) antagonists I: [4.5] and [5.5]-spiroketals. Bioorg. Med. Chem. Lett., 2002, 12(18), 2515-2518.
[http://dx.doi.org/10.1016/S0960-894X(02)00506-1] [PMID: 12182850]
[197]
Koszytkowska-Stawińska, M.; Sas, W. Synthesis of novel NH-1,2,3-triazolo-nucleosides by the Banert cascade reaction. Tetrahedron, 2013, 69, 2619-2627.
[http://dx.doi.org/10.1016/j.tet.2013.01.042]
[198]
Wang, T.; Zhou, W.; Yin, H.; Ma, J-A.; Jiao, N. Iron-facilitated oxidative dehydrogenative C-O bond formation by propargylic Csp3-H functionalization. Angew. Chem. Int. Ed. Eng, 2012, 51(43), 10823-10826.
[http://dx.doi.org/10.1002/anie.201205779] [PMID: 23047852]
[199]
Willoughby, C.; Chapman, K.T. (Merck & Co., Inc.). Granzyme B inhibitors, WO2003065987A2. 2003.
[200]
Lee, W.; Kim, M.; Park, Y. The study on the synthesis of triazole derivatives as energetic plasticizer. J. Korean Soc. Propuls. Eng., 2016, 20, 31-38.
[201]
Fotsing, J.R.; Sharpless, K.B.; Fokin, V.V. Carbon-carbon bond formation by the Banert cascade. Poster at the 41st Annual Western Regional Meeting (October 9-13, 2007) San Diego, CA, USA., 2007.https://acs.confex.com/acs/werm07/techprogram/P5 0341.htm
[202]
Weigand, K. Synthesen und Reaktionen neuer, funktionalisierter Azide; PhD Thesis, Chemnitz University of Technology: Chemnitz, 2018.
[203]
Priebe, H. Synthesis of azidobutadienes. Angew. Chem. Int. Ed. Engl., 1984, 23, 736-738.
[http://dx.doi.org/10.1002/anie.198407361]
[204]
Banert, K. Reactions of unsaturated azides, part 2. Synthesis of new bi-2H-azirin-3-yl compounds from diazides. Tetrahedron Lett., 1985, 26, 5261-5264.
[http://dx.doi.org/10.1016/S0040-4039(00)95010-X]
[205]
Banert, K. Reactions of unsaturated azides, part 3. Synthesis, assignments of structures, photolysis, and thermolysis of 2,3-diazido-1,3-butadienes. Chem. Ber., 1987, 120, 1891-1896.
[http://dx.doi.org/10.1002/cber.19871201119]
[206]
Banert, K. Reactions of unsaturated alkyl azides, part 1. Synthesis and reactions of 4-azido-3-methyl-1,2-butadiene. Angew. Chem. Int. Ed. Engl., 1985, 24, 216-217.
[http://dx.doi.org/10.1002/anie.198502161]
[207]
Banert, K. Reactions of unsaturated azides, part 4. [4 + 2] Cycloadditions of 2,3-diazido-1,3-butadienes: A novel entry to vicinal vinyl diazides and 1,4-dicyano compounds. Angew. Chem. Int. Ed. Engl., 1987, 26, 879-885.
[http://dx.doi.org/10.1002/anie.198708791]
[208]
Banert, K. Reactions of unsaturated azides, part 5. Cycloaddition reactions of 2,3-diazido-1,3-butadienes. Chem. Ber., 1989, 122, 123-128.
[http://dx.doi.org/10.1002/cber.19891220120]
[209]
Banert, K.; Ihle, A.; Kuhtz, A.; Penk, E.; Saha, B.; Würthwein, E-U. Reactions of unsaturated azides, part 31. Generation of highly strained 2,3-bridged 2H-azirines via cycloaddition reactions of 2-azidobuta-1,3-dienes and photolysis of the resulting cyclic vinyl azides. Tetrahedron, 2013, 69, 2501-2508.
[http://dx.doi.org/10.1016/j.tet.2012.12.054]
[210]
Banert, K. 1,2-Diazido-1-alkene In: Houben-Weyl, Methoden der Organischen Chemie; 4th ed; Kropf, H.; Schaumann, E., Eds.; Thieme: Stuttgart, 1993, Vol. E15, pp. 1344-1347.
[211]
Banert, K.; Fotsing, J.R.; Hagedorn, M.; Reisenauer, H.P.; Maier, G. Reactions of unsaturated azides, part 23. Photolysis of open-chain 1,2-diazidoalkenes: Generation of 2-azido-2H-azirines, formyl cyanide, and formyl isocyanide. Tetrahedron, 2008, 64, 5645-5648.
[212]
Banert, K.; Hagedorn, M. Reactions of unsaturated azides, part 10. 2-Methylene-2H-azirines by photolysis of 1-azidoallenes. Angew. Chem. Int. Ed. Engl., 1990, 29, 103-105.
[http://dx.doi.org/10.1002/anie.199001031]
[213]
Banert, K.; Hagedorn, M.; Knözinger, E.; Becker, A.; Würthwein, E-U. Reactions of unsaturated azides, part 11. Direct observation of 2-methylene-2H-azirine. J. Am. Chem. Soc., 1994, 116, 60-62.
[http://dx.doi.org/10.1021/ja00080a007]
[214]
Fotsing, J.R.; Banert, K. Reactions of unsaturated azides, part 21. New way to methylene-2H-azirines and their use as powerful intermediates for the stereo- and regioselective synthesis of compounds with vinylamine substructure. Eur. J. Org. Chem., 2006, 16(1), 3617-3625.
[http://dx.doi.org/10.1002/ejoc.200600302]
[215]
Attanasi, O.A.; Caglioti, L. Conjugated azoalkenes, attractive products and versatile intermediates. Org. Prep. Proced. Int., 1986, 18, 299-337.
[http://dx.doi.org/10.1080/00304948609356836]
[216]
Schantl, J.G. 1-Azo-1-alkene In Houben-Weyl, Methoden der Organischen Chemie; 4th ed.; Kropf, H.; Schaumann, E., Eds.; Thieme: Stuttgart, 1993, E15, pp. 909-1083.
[217]
Attanasi, O.A.; Filippone, P.; Serra-Zanetti, F. Polyfunctionalized pyrroles and pyrazoles from conjugated azoalkenes. Prog. Heterocycl. Chem., 1995, 7, 1-20.
[http://dx.doi.org/10.1016/S0959-6380(06)80003-6]
[218]
Schantl, J.G. Hydrazine-derived heterocyles by conversion of azo-alkenes. Molecules, 1996, 1, 212-222.
[http://dx.doi.org/10.1007/s007830050040]
[219]
Attanasi, O.A.; Filippone, P. Searching new routes to pyrazole derivatives. Top. Heterocycl. Syst. Synth. React. Prop., 1996, 1, 157-167.
[220]
Schantl, J.G. Synthetic, structural, reactive and biological aspects of novel tetraazabicyclooctanes. Farmaco, 1995, 50, 379-394.
[221]
Baldwin, J.E.; Brown, J.E.; Höfle, G. Sigmatropic rearrangements of diazenes. J. Am. Chem. Soc., 1971, 93, 788-789.
[http://dx.doi.org/10.1021/ja00732a046]
[222]
Banert, K.; Hagedorn, M.; Schlott, J. Rearrangement reactions, part 13. Synthesis and reactions of the first allenyl azo compounds. Chem. Lett., 2003, 32, 360-361.
[http://dx.doi.org/10.1246/cl.2003.360]
[223]
Bozzini, S.; Gratton, S.; Lisini, A.; Pellizer, G.; Risaliti, A. Reactions of conjugated arylazocycloalkenes with Grignard reagents. Parallel and antiparallel attacks of Grignard hydrocarbon moiety on some arylazocycloalkenes. Tetrahedron, 1982, 38, 1459-1464.
[http://dx.doi.org/10.1016/0040-4020(82)80231-7]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 27
Year: 2019
Page: [3040 - 3063]
Pages: 24
DOI: 10.2174/1385272823666191112102523
Price: $58

Article Metrics

PDF: 23
HTML: 3