Polyphenolic Compounds and Gut Microbiome in Cardiovascular Diseases

Author(s): Lindsay McGrail, Mahdi Garelnabi*

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 7 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


The onset of Cardiovascular Disease (CVD) is known to be associated with multiple risk factors related to exogenous exposures on predisposed genetic makeup. Diet and lifestyle have a cascade effect on microbiota biodiversity, thus impacting inflammation and heart health. Atherosclerosis is a type of CVD where chronic inflammation contributes to plaque buildup in the arteries resulting in narrowed blood vessels, which obstruct blood flow. Polyphenolic compounds, including flavonoids, most commonly consumed in the form of plants, have been identified to have various mechanisms of action to reduce the inflammatory response in the body. Flavonoids provide a variety of nutraceutical functions including antioxidant, antimicrobial, anti-inflammatory, antiangiogenic, antitumor, and improved pharmacokinetic properties. Therefore, the medicinal use of polyphenolic compounds as an intervention for the inflammatory response, especially relating to the gut microbiome, may significantly reduce the risk of atherosclerotic plaque development and disease onset. This review addresses the role of polyphenolic compounds and gut microbiome in cardiovascular disease. Research studies conducted in cells and animals were reviewed. These studies clearly illustrate that dietary polyphenolic compounds influence resident gut microbiota thus they are associated with the prevention of atherosclerosis progression. Further research in this field is warranted to identify potential gut microbiome mediated therapeutic approaches for CVD.

Keywords: Atherosclerosis, inflammation, oxidative stress, flavonoids, gut microbiome, cardiovascular diseases.

CDC, N. Underlying Cause of Death 1999-2013 on CDC WONDER Online Database; 2015
Marín, L.; Gutiérrez-Del-Río, I.; Entrialgo-Cadierno, R.; Villar, C.J.; Lombó, F. De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor. PLoS One, 2018, 13(11)e0207278
[http://dx.doi.org/10.1371/journal.pone.0207278] [PMID: 30440014]
Soliman, G.A. Dietary cholesterol and the lack of evidence in cardiovascular disease. Nutrients, 2018, 10(6)E780
[http://dx.doi.org/10.3390/nu10060780] [PMID: 29914176]
Mahdy Ali, K.; Wonnerth, A.; Huber, K.; Wojta, J. Cardiovascular disease risk reduction by raising HDL cholesterol--current therapies and future opportunities. Br. J. Pharmacol., 2012, 167(6), 1177-1194.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02081.x] [PMID: 22725625]
Jin, J.; Lu, Z.; Li, Y.; Cowart, L.A.; Lopes-Virella, M.F.; Huang, Y. Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis. PLoS One, 2018, 13(2)e0193343
[http://dx.doi.org/10.1371/journal.pone.0193343] [PMID: 29474492]
Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated fatty acids and risk of coronary heart disease: modulation by replacement nutrients. Curr. Atheroscler. Rep., 2010, 12(6), 384-390.
[http://dx.doi.org/10.1007/s11883-010-0131-6] [PMID: 20711693]
Bergheanu, S.C.; Bodde, M.C.; Jukema, J.W. Pathophysiology and treatment of atherosclerosis : Current view and future perspective on lipoprotein modification treatment. Neth. Heart J., 2017, 25(4), 231-242.
[http://dx.doi.org/10.1007/s12471-017-0959-2] [PMID: 28194698]
Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y.; Ali, F. Atherosclerotic cardiovascular disease: a review of initiators and protective factors. Inflammopharmacology, 2016, 24(1), 1-10.
[http://dx.doi.org/10.1007/s10787-015-0255-y] [PMID: 26750181]
Do, R.; Stitziel, N.O.; Won, H.H.; Jørgensen, A.B.; Duga, S.; Angelica Merlini, P.; Kiezun, A.; Farrall, M.; Goel, A.; Zuk, O.; Guella, I.; Asselta, R.; Lange, L.A.; Peloso, G.M.; Auer, P.L.; Girelli, D.; Martinelli, N.; Farlow, D.N.; DePristo, M.A.; Roberts, R.; Stewart, A.F.; Saleheen, D.; Danesh, J.; Epstein, S.E.; Sivapalaratnam, S.; Hovingh, G.K.; Kastelein, J.J.; Samani, N.J.; Schunkert, H.; Erdmann, J.; Shah, S.H.; Kraus, W.E.; Davies, R.; Nikpay, M.; Johansen, C.T.; Wang, J.; Hegele, R.A.; Hechter, E.; Marz, W.; Kleber, M.E.; Huang, J.; Johnson, A.D.; Li, M.; Burke, G.L.; Gross, M.; Liu, Y.; Assimes, T.L.; Heiss, G.; Lange, E.M.; Folsom, A.R.; Taylor, H.A.; Olivieri, O.; Hamsten, A.; Clarke, R.; Reilly, D.F.; Yin, W.; Rivas, M.A.; Donnelly, P.; Rossouw, J.E.; Psaty, B.M.; Herrington, D.M.; Wilson, J.G.; Rich, S.S.; Bamshad, M.J.; Tracy, R.P.; Cupples, L.A.; Rader, D.J.; Reilly, M.P.; Spertus, J.A.; Cresci, S.; Hartiala, J.; Tang, W.H.; Hazen, S.L.; Allayee, H.; Reiner, A.P.; Carlson, C.S.; Kooperberg, C.; Jackson, R.D.; Boerwinkle, E.; Lander, E.S.; Schwartz, S.M.; Siscovick, D.S.; McPherson, R.; Tybjaerg-Hansen, A.; Abecasis, G.R.; Watkins, H.; Nickerson, D.A.; Ardissino, D.; Sunyaev, S.R.; O’Donnell, C.J.; Altshuler, D.; Gabriel, S.; Kathiresan, S.; Kathiresan, S. Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction. Nature, 2015, 518(7537), 102-106.
[http://dx.doi.org/10.1038/nature13917] [PMID: 25487149]
Cardona, F.; Andrés-Lacueva, C.; Tulipani, S.; Tinahones, F.J.; Queipo-Ortuño, M.I. Benefits of polyphenols on gut microbiota and implications in human health. J. Nutr. Biochem., 2013, 24(8), 1415-1422.
[http://dx.doi.org/10.1016/j.jnutbio.2013.05.001] [PMID: 23849454]
Zeka, K.R.K.; Arroo, R.R.J.; Budriesi, R.; Micucci, M. Flavonoids and their metabolites: Prevention in cardiovascular diseases and diabetes. Diseases, 2017, 19
Erdman, J.W., Jr; Balentine, D.; Arab, L.; Beecher, G.; Dwyer, J.T.; Folts, J.; Harnly, J.; Hollman, P.; Keen, C.L.; Mazza, G.; Messina, M.; Scalbert, A.; Vita, J.; Williamson, G.; Burrowes, J. Flavonoids and heart health: proceedings of the ilsi north america flavonoids workshop, May 31–June 1, 2005, Washington, DC. J. Nutr., 2007, 137(3)(Suppl. 1), 718S-737S.
[http://dx.doi.org/10.1093/jn/137.3.718S] [PMID: 17311968]
Salaritabar, A.; Darvishi, B.; Hadjiakhoondi, F.; Manayi, A.; Sureda, A.; Nabavi, S.F.; Fitzpatrick, L.R.; Nabavi, S.M.; Bishayee, A. Therapeutic potential of flavonoids in inflammatory bowel disease: A comprehensive review. World J. Gastroenterol., 2017, 23(28), 5097-5114.
[http://dx.doi.org/10.3748/wjg.v23.i28.5097] [PMID: 28811706]
Garelnabi, M.; Veledar, E.; White-Welkley, J.; Santanam, N.; Abramson, J.; Weintraub, W.; Parthasarathy, S. Vitamin E differentially affects short term exercise induced changes in oxidative stress, lipids, and inflammatory markers. Nutr. Metab. Cardiovasc. Dis., 2012, 22(10), 907-913.
[http://dx.doi.org/10.1016/j.numecd.2011.03.002] [PMID: 21782401]
Litvinov, D.; Mahini, H.; Garelnabi, M. Antioxidant and anti-inflammatory role of paraoxonase 1: implication in arteriosclerosis diseases. N. Am. J. Med. Sci., 2012, 4(11), 523-532.
[http://dx.doi.org/10.4103/1947-2714.103310] [PMID: 23181222]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
Matés, J.M.; Pérez-Gómez, C.; Blanca, M. Chemical and biological activity of free radical ‘scavengers’ in allergic diseases. Clin. Chim. Acta, 2000, 296(1-2), 1-15.
[http://dx.doi.org/10.1016/S0009-8981(00)00215-1] [PMID: 10807967]
Al-Awaida, W.J.; Zihlif, M.A.; Al-Ameer, H.J.; Sharab, A.; Akash, M.; Aburubaiha, Z.A.; Fattash, I.A.; Imraish, A.; Ali, K.H. The effect of green tea consumption on the expression of antioxidant- and inflammation-related genes induced by nicotine. J. Food Biochem., 2019, 43(7)e12874
[http://dx.doi.org/10.1111/jfbc.12874] [PMID: 31353688]
Tu, W.; Wang, H.; Li, S.; Liu, Q.; Sha, H. The anti-inflammatory and anti-oxidant mechanisms of the keap1/nrf2/are signaling pathway in chronic diseases. Aging Dis., 2019, 10(3), 637-651.
[http://dx.doi.org/10.14336/AD.2018.0513] [PMID: 31165007]
Kiokias, S.; Proestos, C.; Oreopoulou, V. Effect of natural food antioxidants against ldl and dna oxidative changes. Antioxidants, 2018, 7(10)E133
[http://dx.doi.org/10.3390/antiox7100133] [PMID: 30282925]
Kim, Y.J.; Kim, H.J.; Lee, J.Y.; Kim, D.H.; Kang, M.S.; Park, W. Anti-inflammatory effect of baicalein on polyinosinic(-) polycytidylic acid-induced raw 264.7 mouse macrophages. Viruses, 2018, 10(5)E224
[http://dx.doi.org/10.3390/v10050224] [PMID: 29701676]
Kim, Y.J.; Park, W. Anti-inflammatory effect of quercetin on raw 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Molecules, 2016, 21(4), 450.
[http://dx.doi.org/10.3390/molecules21040450] [PMID: 27049378]
Sadhukhan, P.; Kundu, M.; Chatterjee, S.; Ghosh, N.; Manna, P.; Das, J.; Sil, P.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy. Mater. Sci. Eng. C, 2019, 100, 129-140.
[http://dx.doi.org/10.1016/j.msec.2019.02.096] [PMID: 30948047]
Morikawa, K.; Nonaka, M.; Narahara, M.; Torii, I.; Kawaguchi, K.; Yoshikawa, T.; Kumazawa, Y.; Morikawa, S. Inhibitory effect of quercetin on carrageenan-induced inflammation in rats. Life Sci., 2003, 74(6), 709-721.
[http://dx.doi.org/10.1016/j.lfs.2003.06.036] [PMID: 14654164]
Jin, D.X.; He, J.F.; Zhang, K.Q.; Luo, X.G.; Zhang, T.C. EtOAc extract of H. attenuatum Choisy inhibits inflammation by suppressing the NF-κB and MAPK pathways and modulating the gut microbiota. Phytomedicine, 2019, 57, 292-304.
[http://dx.doi.org/10.1016/j.phymed.2018.12.037] [PMID: 30802715]
Garelnabi, M.; Mahini, H.; Wilson, T. Quercetin intake with exercise modulates lipoprotein metabolism and reduces atherosclerosis plaque formation. J. Int. Soc. Sports Nutr., 2014, 11, 22.
[http://dx.doi.org/10.1186/1550-2783-11-22] [PMID: 24890098]
Mulvihill, E.E.; Burke, A.C.; Huff, M.W. Citrus flavonoids as regulators of lipoprotein metabolism and atherosclerosis. Annu. Rev. Nutr., 2016, 36, 275-299.
[http://dx.doi.org/10.1146/annurev-nutr-071715-050718] [PMID: 27146015]
Suen, J.; Thomas, J.; Kranz, A.; Vun, S.; Miller, M. Effect of flavonoids on oxidative stress and inflammation in adults at risk of cardiovascular disease: a systematic review. Healthcare (Basel), 2016, 4(3), 224.
[http://dx.doi.org/10.3390/healthcare4030069] [PMID: 27649255]
Bu, J.; Wang, Z. Cross-talk between gut microbiota and heart via the routes of metabolite and immunity. Gastroenterol. Res. Pract., 2018, 20186458094
[http://dx.doi.org/10.1155/2018/6458094] [PMID: 29967639]
Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; Wu, Y.; Schauer, P.; Smith, J.D.; Allayee, H.; Tang, W.H.; DiDonato, J.A.; Lusis, A.J.; Hazen, S.L. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 2011, 472(7341), 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
Koeth, R.A.; Lam-Galvez, B.R.; Kirsop, J.; Wang, Z.; Levison, B.S.; Gu, X.; Copeland, M.F.; Bartlett, D.; Cody, D.B.; Dai, H.J.; Culley, M.K.; Li, X.S.; Fu, X.; Wu, Y.; Li, L.; DiDonato, J.A.; Tang, W.H.W.; Garcia-Garcia, J.C.; Hazen, S.L. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J. Clin. Invest., 2019, 129(1), 373-387.
[http://dx.doi.org/10.1172/JCI94601] [PMID: 30530985]
Qi, J.; You, T.; Li, J.; Pan, T.; Xiang, L.; Han, Y.; Zhu, L. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: a systematic review and meta-analysis of 11 prospective cohort studies. J. Cell. Mol. Med., 2018, 22(1), 185-194.
[http://dx.doi.org/10.1111/jcmm.13307] [PMID: 28782886]
Rath, S.; Heidrich, B.; Pieper, D.H.; Vital, M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome, 2017, 5(1), 54.
[http://dx.doi.org/10.1186/s40168-017-0271-9] [PMID: 28506279]
Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; Smith, J.D.; DiDonato, J.A.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Warrier, M.; Brown, J.M.; Krauss, R.M.; Tang, W.H.; Bushman, F.D.; Lusis, A.J.; Hazen, S.L. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med., 2013, 19(5), 576-585.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; Turroni, S.; Cocolin, L.; Brigidi, P.; Neviani, E.; Gobbetti, M.; O’Toole, P.W.; Ercolini, D. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 2016, 65(11), 1812-1821.
[http://dx.doi.org/10.1136/gutjnl-2015-309957] [PMID: 26416813]
Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y] [PMID: 28388917]
Kasselman, L.J.; Vernice, N.A.; DeLeon, J.; Reiss, A.B. The gut microbiome and elevated cardiovascular risk in obesity and autoimmunity. Atherosclerosis, 2018, 271, 203-213.
[http://dx.doi.org/10.1016/j.atherosclerosis.2018.02.036] [PMID: 29524863]
Kawabata, K.; Yoshioka, Y.; Terao, J. Role of intestinal microbiota in the bioavailability and physiological functions of dietary polyphenols. Molecules, 2019, 24(2)E370
[http://dx.doi.org/10.3390/molecules24020370] [PMID: 30669635]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: an overview. ScientificWorldJournal, 2013, 2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
Fang, Y.; Cao, W.; Xia, M.; Pan, S.; Xu, X. Study of structure and permeability relationship of flavonoids in caco-2 cells. Nutrients, 2017, 9(12)E1301
[http://dx.doi.org/10.3390/nu9121301] [PMID: 29186068]
Choi, M.S.; Kim, J.K.; Kim, D.H.; Yoo, H.H. Effects of gut microbiota on the bioavailability of bioactive compounds from ginkgo leaf extracts. Metabolites, 2019, 9(7)E132
[http://dx.doi.org/10.3390/metabo9070132] [PMID: 31284440]
Lin, W.; Wang, W.; Yang, H.; Wang, D.; Ling, W. Influence of intestinal microbiota on the catabolism of flavonoids in mice. J. Food Sci., 2016, 81(12), H3026-H3034.
[http://dx.doi.org/10.1111/1750-3841.13544] [PMID: 27792839]
Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci. Biotechnol. Biochem., 2018, 82(4), 600-610.
[http://dx.doi.org/10.1080/09168451.2018.1444467] [PMID: 29504827]
Pasinetti, G.M.; Singh, R.; Westfall, S.; Herman, F.; Faith, J.; Ho, L. The role of the gut microbiota in the metabolism of polyphenols as characterized by gnotobiotic mice. J. Alzheimers Dis., 2018, 63(2), 409-421.
[http://dx.doi.org/10.3233/JAD-171151] [PMID: 29660942]
Nam, T.G.; Lim, T.G.; Lee, B.H.; Lim, S.; Kang, H.; Eom, S.H.; Yoo, M.; Jang, H.W.; Kim, D.O. Comparison of anti-inflammatory effects of flavonoid-rich common and tartary buckwheat sprout extracts in lipopolysaccharide-stimulated raw 264.7 and peritoneal macrophages. Oxid. Med. Cell. Longev., 2017, 20179658030
[http://dx.doi.org/10.1155/2017/9658030] [PMID: 28928906]
Ribeiro, D.; Freitas, M.; Lima, J.L.; Fernandes, E. Proinflammatory pathways: The modulation by flavonoids. Med. Res. Rev., 2015, 35(5), 877-936.
[http://dx.doi.org/10.1002/med.21347] [PMID: 25926332]
Molteni, M.; Bosi, A.; Rossetti, C. Natural products with toll-like receptor 4 antagonist activity. Int. J. Inflamm., 2018, 20182859135
[http://dx.doi.org/10.1155/2018/2859135] [PMID: 29686833]
Pamukcu, B.; Lip, G.Y.; Shantsila, E. The nuclear factor--kappa B pathway in atherosclerosis: a potential therapeutic target for atherothrombotic vascular disease. Thromb. Res., 2011, 128(2), 117-123.
[http://dx.doi.org/10.1016/j.thromres.2011.03.025] [PMID: 21636112]
Lingappan, K. NF-κB in Oxidative Stress. Curr. Opin. Toxicol., 2018, 7, 81-86.
[http://dx.doi.org/10.1016/j.cotox.2017.11.002] [PMID: 29862377]
Monaco, C.; Paleolog, E. Nuclear factor kappaB: a potential therapeutic target in atherosclerosis and thrombosis. Cardiovasc. Res., 2004, 61(4), 671-682.
[http://dx.doi.org/10.1016/j.cardiores.2003.11.038] [PMID: 14985064]
Sun, S.C. The non-canonical NF-κB pathway in immunity and inflammation. Nat. Rev. Immunol., 2017, 17(9), 545-558.
[http://dx.doi.org/10.1038/nri.2017.52] [PMID: 28580957]
Shih, V.F.; Tsui, R.; Caldwell, A.; Hoffmann, A. A single NFκB system for both canonical and non-canonical signaling. Cell Res., 2011, 21(1), 86-102.
[http://dx.doi.org/10.1038/cr.2010.161] [PMID: 21102550]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: an overview. J. Nutr. Sci., 2016, 5e47
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
Li, H.; Pan, S.; Xu, X. Structure characteristics of flavonoids for cyclooxygenase-2 mRNA inhibition in lipopolysaccharide-induced inflammatory macrophages. Eur. J. Pharmacol., 2019, 856172416
[http://dx.doi.org/10.1016/j.ejphar.2019.172416] [PMID: 31132359]
Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 986-1000.
[http://dx.doi.org/10.1161/ATVBAHA.110.207449] [PMID: 21508345]
Smith, W.L.; DeWitt, D.L.; Garavito, R.M. Cyclooxygenases: structural, cellular, and molecular biology. Annu. Rev. Biochem., 2000, 69, 145-182.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.145] [PMID: 10966456]
Zhang, X.; Wang, G.; Gurley, E.C.; Zhou, H. Flavonoid apigenin inhibits lipopolysaccharide-induced inflammatory response through multiple mechanisms in macrophages. PLoS One, 2014, 9(9)e107072
[http://dx.doi.org/10.1371/journal.pone.0107072] [PMID: 25192391]
Si, T.L.; Liu, Q.; Ren, Y.F.; Li, H.; Xu, X.Y.; Li, E.H.; Pan, S.Y.; Zhang, J.L.; Wang, K.X. Enhanced anti-inflammatory effects of DHA and quercetin in lipopolysaccharide-induced RAW264.7 macrophages by inhibiting NF-κB and MAPK activation. Mol. Med. Rep., 2016, 14(1), 499-508.
[http://dx.doi.org/10.3892/mmr.2016.5259] [PMID: 27176922]
Yu, Q.; Zeng, K.; Ma, X.; Song, F.; Jiang, Y.; Tu, P.; Wang, X. Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-κB and JNK/p38 MAPK signaling pathways. Int. Immunopharmacol., 2016, 38, 104-114.
[http://dx.doi.org/10.1016/j.intimp.2016.05.010] [PMID: 27261558]
Mao, Z.; Gan, C.; Zhu, J.; Ma, N.; Wu, L.; Wang, L.; Wang, X. Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg. Med. Chem. Lett., 2017, 27(12), 2812-2817.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.076] [PMID: 28479197]
Lo Sasso, G.; Schlage, W.K.; Boué, S.; Veljkovic, E.; Peitsch, M.C.; Hoeng, J. The Apoe(-/-) mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J. Transl. Med., 2016, 14(1), 146.
[http://dx.doi.org/10.1186/s12967-016-0901-1] [PMID: 27207171]
Luo, H.; Wang, J.; Qiao, C.; Ma, N.; Liu, D.; Zhang, W. Pycnogenol attenuates atherosclerosis by regulating lipid metabolism through the TLR4-NF-κB pathway. Exp. Mol. Med., 2015, 47e191
[http://dx.doi.org/10.1038/emm.2015.74] [PMID: 26492950]
Qin, M.; Luo, Y.; Meng, X.B.; Wang, M.; Wang, H.W.; Song, S.Y.; Ye, J.X.; Pan, R.L.; Yao, F.; Wu, P.; Sun, G.B.; Sun, X.B. Myricitrin attenuates endothelial cell apoptosis to prevent atherosclerosis: An insight into PI3K/Akt activation and STAT3 signaling pathways. Vascul. Pharmacol., 2015, 70, 23-34.
[http://dx.doi.org/10.1016/j.vph.2015.03.002] [PMID: 25849952]
Ji, L.; Du, Q.; Li, Y.; Hu, W. Puerarin inhibits the inflammatory response in atherosclerosis via modulation of the NF-κB pathway in a rabbit model. Pharmacol. Rep., 2016, 68(5), 1054-1059.
[http://dx.doi.org/10.1016/j.pharep.2016.06.007] [PMID: 27505855]
Liu, R.; Fan, B.; Cong, H.; Ikuyama, S.; Guan, H.; Gu, J. Pycnogenol reduces toll-like receptor 4 signaling pathway-mediated atherosclerosis formation in apolipoprotein e-deficient mice., 2016.
Lu, X.L.; Zhao, C.H.; Yao, X.L.; Zhang, H. Quercetin attenuates high fructose feeding-induced atherosclerosis by suppressing inflammation and apoptosis via ROS-regulated PI3K/AKT signaling pathway. Biomed. Pharmacother., 2017, 85, 658-671.
[http://dx.doi.org/10.1016/j.biopha.2016.11.077] [PMID: 27919735]
Lin, W.; Wang, W.; Wang, D.; Ling, W. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation. Mol. Nutr. Food Res., 2017, 61(9)
[http://dx.doi.org/10.1002/mnfr.201700031] [PMID: 28457022]
Liu, X.X.; Zhang, X.W.; Wang, K.; Wang, X.Y.; Ma, W.L.; Cao, W.; Mo, D.; Sun, Y.; Li, X.Q. Kuwanon G attenuates atherosclerosis by upregulation of LXRα-ABCA1/ABCG1 and inhibition of NFκB activity in macrophages. Toxicol. Appl. Pharmacol., 2018, 341, 56-63.
[http://dx.doi.org/10.1016/j.taap.2018.01.007] [PMID: 29355567]
Wu, Y.; Wang, F.; Fan, L.; Zhang, W.; Wang, T.; Du, Y.; Bai, X. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways. Biomed. Pharmacother., 2018, 97, 1673-1679.
[http://dx.doi.org/10.1016/j.biopha.2017.12.024] [PMID: 29793330]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 11 November, 2019
Page: [578 - 586]
Pages: 9
DOI: 10.2174/1389201020666191111150239
Price: $65

Article Metrics

PDF: 36