Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

A Review: Synthesis and Medicinal Importance of Coumarins and their Analogues (Part II)

Author(s): Moustafa A. Gouda*, Belal H.M. Hussein, Amr El-Demerdash, Mona E. Ibrahim, Mohammed A. Salem, Mohamed H. Helal and Wafaa S. Hamama

Volume 16, Issue 7, 2020

Page: [993 - 1008] Pages: 16

DOI: 10.2174/1573407215666191111120604

Price: $65

Abstract

Coumarins are a set of polyphenolic compounds isolated from plant product tonka bean, coumarou in 1820. They belong to the family of benzopyrones, which includes benzene ring joined with the aid of a pyrone ring. Coumarins have attracted great attention of medicinal chemists and pharmacologists in recent years as they been confirmed to bear diverse pharmacological activities like antiinflammatory and analgesic, anti oxidant, anticancer, etc. This review highlights the method of preparation, chemical reactivity, and organic properties such as anti-inflammatory, anticoagulant, antioxidant, anticancer and analgesic activities, of coumarins and their analogues.

Keywords: Coumarins, synthesis, anti-inflammatory and analgesic activity, anticoagulant activity, antioxidant and anticancer activity, chloroacetyl chloride.

Graphical Abstract
[1]
Zaffer, A.M.; Ali, M.; Mir, R.S. New sesqui-and diterpenic coumarin ethers from the roots of Aegle marmelos (L.). Corr. Nat. Prod. J., 2012, 2(4), 252-258.
[http://dx.doi.org/10.2174/2210315511202040252]
[2]
Pelkonen, O.; Raunio, H.; Rautio, A.; Pasanen, M.; Lang, M.A. The Metabolism of Coumarin. Coumarins: Biology, Applications and Mode of Action; John Wiley & Sons: Chichester, 1997, pp. 67-92.
[3]
Ashok, D.; Lakshmi, V.B.; Sarasija, M. An efficient microwave-assisted suzuki cross-coupling on coumarin derivatives in water and evaluation of antimicrobial activity. Lett. Org. Chem., 2016, 13(1), 76-84.
[http://dx.doi.org/10.2174/1570178611666151015214156]
[4]
Chaudhari, K.H.; Siddikia, A.A.; Manohara, D.Y. Design and synthesis of novel oxadiazole and diphenyl ether hydrazone derivatives of coumarin as potential antibacterial agents. Curr. Bioact. Compd., 2017, 13(4), 318-325.
[http://dx.doi.org/10.2174/1573407213666161128121435]
[5]
Thomas, V.; Giles, D.; Basavarajaswamy, PMG.; Kumar Das, A.; Patel, A. Coumarin derivatives as anti inflammatory and anticancer agents. Anti-Cancer Agent Me, 2017, 17(3), 415-23.
[6]
Kaur, M.; Kohli, S.; Sandhu, S.; Bansal, Y.; Bansal, G. Coumarin: A promising scaffold for anticancer agents.Anti-Cancer Agent. Me, 2015, 15(8), 1032-48.
[http://dx.doi.org/10.2174/1871520615666150101125503]
[7]
Jamier, V.; Marut, W.; Valente, S.; Chéreau, C.; Chouzenoux, S.; Nicco, C.; Lemaréchal, H.; Weill, B.; Kirsch, G.; Jacob, C.; Batteux, F. Chalcone-Coumarin derivatives as potential anti-cancer drugs: An in vitro and in vivo investigation. Anti-Cancer Agent. Me, 2014, 14(7), 963-74.
[8]
Hadjipavlou-Litina, D.J.; Litinas, K.E.; Kontogiorgis, C. The anti inflammatory effect of coumarin and its derivatives. Antiinflamm. Antiallergy Agents Med. Chem., 2007, 6(4), 293-306.
[http://dx.doi.org/10.2174/187152307783219989]
[9]
Fylaktakidou, K.C.; Hadjipavlou-Litina, D.J.; Litinas, K.E.; Nicolaides, D.N. Natural and synthetic coumarin derivatives with anti inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710]
[10]
Kapoor, S. The anti-neoplastic effects of coumarin: An emerging concept. Cytotechnology, 2013, 65(5), 787-788.
[http://dx.doi.org/10.1007/s10616-013-9538-6]
[11]
Bubols, G.B. Vianna, Dda.R.; Medina-Remon, A.; von Poser, G.; Lamuela-Raventos, R.M.; Eifler-Lima, V.L.; Garcia, S.C. The antioxidant activity of coumarins and flavonoids. Mini Rev. Med. Chem., 2013, 13(3), 318-334.
[12]
Hu, X.L.; Gao, C.; Xu, Z.; Liu, M.L.; Feng, L.S.; Zhang, G.D. Recent development of coumarin derivatives as potential antiplasmodial and antimalarial agents. Curr. Top. Med. Chem., 2018, 18(2), 114-123.
[http://dx.doi.org/10.2174/1568026618666171215101158]
[13]
Kamal, A.; Satyanarayana, M.; Devaiah, V.; Rohini, V.; Yadav, J.S.; Mullick, B.; Nagaraja, V. Synthesis and biological evaluation of coumarin linked fluoroquinolones, phthalimides and naphthalimides as potential DNA gyrase inhibitors. Lett. Drug Des. Discov., 2006, 3(7), 494-502.
[http://dx.doi.org/10.2174/157018006778194862]
[14]
Wang, C.; Xu, F.; Niu, Y.; Wu, Y.; Sun, J.; Peng, Y.; Liang, L.; Xu, P. Synthesis and biological evaluations of 3-benzothiazol-2-yl coumarin derivatives as MEK1 inhibitors. Lett. Drug Des. Discov., 2013, 10(8), 727-732.
[http://dx.doi.org/10.2174/15701808113109990012]
[15]
Kempen, I.; Papapostolou, D.; Thierry, N.; Pochet, L.; Counerotte, S.; Masereel, B.; Foidart, J-M.; Reboud-Ravaux, M.; Noël, A.; Pirotte, B. 3-Bromophenyl 6-acetoxymethyl-2-oxo-2H-1-benzopyran-3-carboxylate inhibits cancer cell invasion in vitro and tumour growth in vivo. Br. J. Cancer, 2003, 88(7), 1111-1118.
[http://dx.doi.org/10.1038/sj.bjc.6600856]
[16]
Musa, M.A.; Zhou, A.; Sadik, O.A. Synthesis and antiproliferative activity of new coumarin-based benzopyranone derivatives against human tumor cell lines. Med. Chem., 2011, 7(2), 112-120.
[http://dx.doi.org/10.2174/157340611794859280]
[17]
Finn, G.J.; Creaven, B.S.; Egan, D.A. Investigation of intracellular signalling events mediating the mechanism of action of 7-hydroxycoumarin and 6-nitro-7-hdroxycoumarin in human renal cells. Cancer Lett., 2004, 205(1), 69-79.
[http://dx.doi.org/10.1016/j.canlet.2003.09.024]
[18]
Pechmann, H.V.; Duisberg, C. Ueber die verbindungen der phenole mit acetessigäther. Ber. Dtsch. Chem. Ges., 1883, 16, 2119.
[http://dx.doi.org/10.1002/cber.188301602117]
[19]
Sahoo, S.S.; Shukla, S.; Nandy, S.; Sahoo, H.B. Synthesis of novel coumarin derivatives and its biological evaluations. Eur. J. Exp. Biol., 2012, 2, 899-908.
[20]
Ajani, O.O.; Nwinyi, O.C. Microwave‐assisted synthesis and evaluation of antimicrobial activity of 3‐ 3‐ (s‐aryl and s‐heteroaromatic) acryloyl-2H‐chromen‐2‐one derivatives. J. Heterocycl. Chem., 2010, 47, 179-187.
[21]
Khode, S.; Maddi, V.; Aragade, P.; Palkar, M.; Ronad, P.K.; Mamledesai, S.; Thippeswamy, A.H.M.; Satyanarayana, D. Synthesis and pharmacological evaluation of a novel series of 5-(substituted)aryl-3-(3-coumarinyl)-1-phenyl-2-pyrazolines as novel anti inflammatory and analgesic agents. Eur. J. Med. Chem., 2009, 44(4), 1682-1688.
[http://dx.doi.org/10.1016/j.ejmech.2008.09.020]
[22]
Kalkhambkar, R.G.; Kulkarni, G.M.; Shivkumar, H.; Rao, R.N. Synthesis of novel triheterocyclic thiazoles as anti inflammatory and analgesic agents. Eur. J. Med. Chem., 2007, 42(10), 1272-1276.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.023]
[23]
Bylov, I.E.; Vasylyev, M.V.; Bilokin, Y.V. Synthesis and anti inflammatory activity of N-substituted 2-oxo-2H-1-benzopyran-3-carboxamides and their 2-iminoanalogues. Eur. J. Med. Chem., 1999, 34(11), 997-1001.
[http://dx.doi.org/10.1016/S0223-5234(99)00119-1]
[24]
Gouda, M.A.; Sherif, Y.E.S.; Elsherbini, M.S. Synthesis, anti inflammatory, and analgesic evaluation of some 2-Amino-5-Selenothiazoles. Phosphorus Sulfur Silicon Relat. Elem., 2014, 189, 1633-1643.
[http://dx.doi.org/10.1080/10426507.2014.884091]
[25]
Helal, M.H.; Salem, M.A.; Gouda, M.A.; Ahmed, N.S.; El-Sherif, A.A. Design, synthesis, characterization, quantum-chemical calculations and anti inflammatory activity of novel series of thiophene derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 147, 73-83.
[http://dx.doi.org/10.1016/j.saa.2015.03.070]
[26]
Gupta, J.K.; Sharma, P.K.; Dudhe, R.; Chaudhary, A.; Verma, P.K. Substituted coumarin derivatives: Synthesis and evaluation of antiproliferative and Src kinase inhibitory activities. Ann. Univ. Buc. Chim., 2010, 19, 9-21.
[27]
Zghab, I.; Trimeche, B.; Mansour, M.B.; Hassine, M.; Touboul, D.; Jannet, H.B. Regiospecific synthesis, antibacterial and anticoagulant activities of novel isoxazoline chromene derivatives. Arab. J. Chem., 2017, 10, S2651-S2658.
[http://dx.doi.org/10.1016/j.arabjc.2013.10.008]
[28]
Al-Ayed, A.S. Synthesis, spectroscopy and electrochemistry of new 3-(5-Aryl-4, 5-Dihydro-1H-Pyrazol-3-yl)-4-Hydroxy-2H-Chromene-2-One 4, 5 as a novel class of potential antibacterial and antioxidant derivatives. Int. J. Org. Chem. (Irvine), 2011, 1, 87-96.
[http://dx.doi.org/10.4236/ijoc.2011.13014]
[29]
Al-Amiery, A.A.; Al-Majedy, Y.K.; Kadhum, A.A.H.; Mohamad, A.B. Hydrogen peroxide scavenging activity of novel coumarins synthesized using different approaches. PLoS One, 2015, 10(7)e0132175
[http://dx.doi.org/10.1371/journal.pone.0132175]
[30]
Osman, H.; Arshad, A.; Lam, C.K.; Bagley, M.C. Microwave-assisted synthesis and antioxidant properties of hydrazinyl thiazolyl coumarin derivatives. Chem. Cent. J., 2012, 6(1), 32-32.
[http://dx.doi.org/10.1186/1752-153X-6-32]
[31]
Tataringa, G.; Stan, C.; Mircea, C.; Jitareanu, A.L.E.X.A.N.D.R.A.; Zbancioc, A.M. Antioxidant evaluation of some coumarin derivatives. Farmacia, 2016, 64, 533-538.
[32]
Nagamallu, R.; Srinivasan, B.; Ningappa, M.B.; Kariyappa, A.K. Synthesis of novel coumarin appended bis(formylpyrazole) derivatives: Studies on their antimicrobial and antioxidant activities. Bioorg. Med. Chem. Lett., 2016, 26(2), 690-694.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.038]
[33]
Gouda, M.A.; El Bialy, S.A.A. Synthesis and antioxidant evaluation of novel sophisticated carboxamides based on 3-(ethoxycarbonyl)-4, 5, 6, 7-tetrahydro-1-benzothiophen-2-amine. Eur. J. Chem., 2014, 5, 644-651.
[http://dx.doi.org/10.5155/eurjchem.5.4.644-651.1125]
[34]
Nishikimi, M.; Appaji, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854.
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3]
[35]
Siddiqui, N.; Arshad, M.F.; Khan, S.A. Synthesis of some new coumarin incorporated thiazolyl semicarbazones as anticonvulsants. Acta Pol. Pharm., 2009, 66(2), 161-167.
[36]
Al-Zaydi, K.M. Microwave assisted synthesis, part 1: Rapid solventless synthesis of 3-substituted coumarins and benzocoumarins by microwave irradiation of the corresponding enaminones. Molecules, 2003, 8, 541-555.
[http://dx.doi.org/10.3390/80700541]
[37]
Gouda, M.A. Synthesis and antioxidant evaluation of some new pyrazolopyridine derivatives. Arch. Pharm. (Weinheim), 2012, 345(2), 155-162.
[http://dx.doi.org/10.1002/ardp.201100171]
[38]
Hamama, W.S.; Berghot, M.A.; Baz, E.A.; Gouda, M.A. Synthesis and antioxidant evaluation of some new 3-substituted coumarins. Arch. Pharm. (Weinheim), 2011, 344(11), 710-718.
[http://dx.doi.org/10.1002/ardp.201000263]
[39]
Gouda, M.A.; Berghot, M.A.; Abd El‐Ghani, G.E.; Khalil, A.E.G.M. Synthesis and antioxidant evaluation of some nicotinonitriles. J. Heterocycl. Chem., 2016, 53(4), 1241-1250.
[http://dx.doi.org/10.1002/jhet.2414]
[40]
El Bialy, S.A.; Gouda, M.A. Cyanoacetamide in heterocyclic chemistry: Synthesis, antitumor and antioxidant activities of some new benzothiophenes. J. Heterocycl. Chem., 2011, 48, 1280-1286.
[http://dx.doi.org/10.1002/jhet.634]
[41]
Gouda, M.A. Synthesis and antioxidant activity of a novel series of pyrazolotriazine, coumarin, oxoazinone, and pyrazinopyrimidine derivatives. Arch. Pharm. (Weinheim), 2013, 346(8), 626-634.
[http://dx.doi.org/10.1002/ardp.201300128]
[42]
Lissi, E.A.; Modak, B.; Torres, R.; Escobar, J.; Urzua, A. Total antioxidant potential of resinous exudates from Heliotropium species, and a comparison of the ABTS and DPPH methods. Free Radic. Res., 1999, 30(6), 471-477.
[http://dx.doi.org/10.1080/10715769900300511]
[43]
Kalaiarasi, G.; Rajkumar, S.R.J.; Dharani, S.; Fronczek, F.R.; Nadar, M.M.; Prabhakaran, R. Cyclometallated ruthenium (II) complexes with 3-acetyl-2 [H]-chromene-2-one derived CNS chelating ligand systems: Synthesis, X-ray characterization and biological evaluation. New J. Chem., 2018, 42, 336-354.
[http://dx.doi.org/10.1039/C7NJ02877F]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy