The Molecular and Enzyme Kinetic Basis for Altered Activity of Three Cytochrome P450 2C19 Variants Found in the Chinese Population

Author(s): Amelia Nathania Dong, Nafees Ahemad, Yan Pan, Uma Devi Palanisamy, Beow Chin Yiap, Chin Eng Ong*

Journal Name: Current Molecular Pharmacology

Volume 13 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: There is a large inter-individual variation in cytochrome P450 2C19 (CYP2C19) activity. The variability can be caused by the genetic polymorphism of CYP2C19 gene. This study aimed to investigate the molecular and kinetics basis for activity changes in three alleles including CYP2C19*23, CYP2C19*24 and CYP2C19*25found in the Chinese population.

Methods: The three variants expressed by bacteria were investigated using substrate (omeprazole and 3- cyano-7-ethoxycoumarin[CEC]) and inhibitor (ketoconazole, fluoxetine, sertraline and loratadine) probes in enzyme assays along with molecular docking.

Results: All alleles exhibited very low enzyme activity and affinity towards omeprazole and CEC (6.1% or less in intrinsic clearance). The inhibition studies with the four inhibitors, however, suggested that mutations in different variants have a tendency to cause enhanced binding (reduced IC50 values). The enhanced binding could partially be explained by the lower polar solvent accessible surface area of the inhibitors relative to the substrates. Molecular docking indicated that G91R, R335Q and F448L, the unique mutations in the alleles, have caused slight alteration in the substrate access channel morphology and a more compact active site cavity hence affecting ligand access and binding. It is likely that these structural alterations in CYP2C19 proteins have caused ligand-specific alteration in catalytic and inhibitory specificities as observed in the in vitro assays.

Conclusion: This study indicates that CYP2C19 variant selectivity for ligands was not solely governed by mutation-induced modifications in the active site architecture, but the intrinsic properties of the probe compounds also played a vital role.

Keywords: Cytochrome P450 2C19, genetic polymorphism, Chinese, site-directed mutagenesis, enzyme assays, molecular docking.

[1]
Ingelman-Sundberg, M. Genetic susceptibility to adverse effects of drugs and environmental toxicants. The role of the CYP family of enzymes. Mutat. Res., 2001, 482(1-2), 11-19.
[http://dx.doi.org/10.1016/S0027-5107(01)00205-6] [PMID: 11535244]
[2]
Cascorbi, I. Genetic basis of toxic reactions to drugs and chemicals. Toxicol. Lett., 2006, 162(1), 16-28.
[http://dx.doi.org/10.1016/j.toxlet.2005.10.015] [PMID: 16310984]
[3]
Chang, K.L.; Weitzel, K.; Schmidt, S. Pharmacogenetics: using genetic information to guide drug therapy. Am. Fam. Physician, 2015, 92(7), 588-594.
[PMID: 26447442]
[4]
Rendic, S.; Guengerich, F.P. Survey of human oxidoreductases and cytochrome P450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem. Res. Toxicol., 2015, 28(1), 38-42.
[http://dx.doi.org/10.1021/tx500444e] [PMID: 25485457]
[5]
Eichelbaum, M.; Ingelman-Sundberg, M.; Evans, W.E. Pharmacogenomics and individualized drug therapy. Annu. Rev. Med., 2006, 57, 119-137.
[http://dx.doi.org/10.1146/annurev.med.56.082103.104724] [PMID: 16409140]
[6]
Dong, A.N.; Tan, B.H.; Pan, Y.; Ong, C.E. Cytochrome P450 genotype-guided drug therapies: An update on current states. Clin. Exp. Pharmacol. Physiol., 2018, 45(10), 991-1001.
[http://dx.doi.org/10.1111/1440-1681.12978] [PMID: 29858511]
[7]
Mills, D.C.; Puri, R.; Hu, C.J.; Minniti, C.; Grana, G.; Freedman, M.D.; Colman, R.F.; Colman, R.W. Clopidogrel inhibits the binding of ADP analogues to the receptor mediating inhibition of platelet adenylate cyclase. Arterioscler. Thromb., 1992, 12(4), 430-436.
[http://dx.doi.org/10.1161/01.ATV.12.4.430] [PMID: 1558834]
[8]
Andersson, T.; Regårdh, C.G.; Lou, Y.C.; Zhang, Y.; Dahl, M.L.; Bertilsson, L. Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Pharmacogenetics, 1992, 2(1), 25-31.
[http://dx.doi.org/10.1097/00008571-199202000-00005] [PMID: 1302040]
[9]
Nielsen, K.K.; Brøsen, K.; Hansen, M.G.; Gram, L.F. Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin. Pharmacol. Ther., 1994, 55(5), 518-527.
[http://dx.doi.org/10.1038/clpt.1994.65] [PMID: 8181196]
[10]
Bouman, H.J.; Schömig, E.; van Werkum, J.W.; Velder, J.; Hackeng, C.M.; Hirschhäuser, C.; Waldmann, C.; Schmalz, H.G.; ten Berg, J.M.; Taubert, D. Paraoxonase-1 is a major determinant of clopidogrel efficacy. Nat. Med., 2011, 17(1), 110-116.
[http://dx.doi.org/10.1038/nm.2281] [PMID: 21170047]
[11]
Ward, S.A.; Helsby, N.A.; Skjelbo, E.; Brøsen, K.; Gram, L.F.; Breckenridge, A.M. The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism--a panel study. Br. J. Clin. Pharmacol., 1991, 31(6), 689-692.
[http://dx.doi.org/10.1111/j.1365-2125.1991.tb05594.x] [PMID: 1867963]
[12]
Qin, X.P.; Xie, H.G.; Wang, W.; He, N.; Huang, S.L.; Xu, Z.H.; Ou-Yang, D.S.; Wang, Y.J.; Zhou, H.H. Effect of the gene dosage of CYP2C19 on diazepam metabolism in Chinese subjects. Clin. Pharmacol. Ther., 1999, 66(6), 642-646.
[http://dx.doi.org/10.1053/cp.1999.v66.103379001] [PMID: 10613621]
[13]
Sim, S.C.; Risinger, C.; Dahl, M.L.; Aklillu, E.; Christensen, M.; Bertilsson, L.; Ingelman-Sundberg, M. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin. Pharmacol. Ther., 2006, 79(1), 103-113.
[http://dx.doi.org/10.1016/j.clpt.2005.10.002] [PMID: 16413245]
[14]
Chung, H.; Lee, H.; Han, H.K.; An, H.; Lim, K.S.; Lee, Y.J.; Cho, J.Y.; Yoon, S.H.; Jang, I.J.; Yu, K.S. A pharmacokinetic comparison of two voriconazole formulations and the effect of CYP2C19 polymorphism on their pharmacokinetic profiles. Drug Des. Devel. Ther., 2015, 9, 2609-2616.
[http://dx.doi.org/10.2147/DDDT.S80066] [PMID: 25999694]
[15]
Shirasaka, Y.; Chaudhry, A.S.; McDonald, M.; Prasad, B.; Wong, T.; Calamia, J.C.; Fohner, A.; Thornton, T.A.; Isoherranen, N.; Unadkat, J.D.; Rettie, A.E.; Schuetz, E.G.; Thummel, K.E. Interindividual variability of CYP2C19-catalyzed drug metabolism due to differences in gene diplotypes and cytochrome P450 oxidoreductase content. Pharmacogenomics J., 2016, 16(4), 375-387.
[http://dx.doi.org/10.1038/tpj.2015.58] [PMID: 26323597]
[16]
Zhou, Q.; Yu, X.M.; Lin, H.B.; Wang, L.; Yun, Q.Z.; Hu, S.N.; Wang, D.M. Genetic polymorphism, linkage disequilibrium, haplotype structure and novel allele analysis of CYP2C19 and CYP2D6 in Han Chinese. Pharmacogenomics J., 2009, 9(6), 380-394.
[http://dx.doi.org/10.1038/tpj.2009.31] [PMID: 19636337]
[17]
Seifert, A.; Tatzel, S.; Schmid, R.D.; Pleiss, J. Multiple molecular dynamics simulations of human p450 monooxygenase CYP2C9: the molecular basis of substrate binding and regioselectivity toward warfarin. Proteins, 2006, 64(1), 147-155.
[http://dx.doi.org/10.1002/prot.20951] [PMID: 16639745]
[18]
Cojocaru, V.; Winn, P.J.; Wade, R.C. The ins and outs of cytochrome P450s. Biochim. Biophys. Acta, 2007, 1770(3), 390-401.
[http://dx.doi.org/10.1016/j.bbagen.2006.07.005] [PMID: 16920266]
[19]
Williams, P.A.; Cosme, J.; Sridhar, V.; Johnson, E.F.; McRee, D.E. Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol. Cell, 2000, 5(1), 121-131.
[http://dx.doi.org/10.1016/S1097-2765(00)80408-6] [PMID: 10678174]
[20]
Lau, P.S.; Leong, K.V.; Ong, C.E.; Dong, A.N.; Pan, Y. In vitro functional characterisation of cytochrome P450 (CYP) 2C19 allelic variants CYP2C19*23 and CYP2C19*24. Biochem. Genet., 2017, 55(1), 48-62.
[http://dx.doi.org/10.1007/s10528-016-9771-8] [PMID: 27578295]
[21]
Pan, Y.; Abd-Rashid, B.A.; Ismail, Z.; Ismail, R.; Mak, J.W.; Pook, P.C.; Er, H.M.; Ong, C.E. In vitro modulatory effects of Andrographis paniculata, Centella asiatica and Orthosiphon stamineus on cytochrome P450 2C19 (CYP2C19). J. Ethnopharmacol., 2011, 133(2), 881-887.
[http://dx.doi.org/10.1016/j.jep.2010.11.026] [PMID: 21093571]
[22]
Pritchard, M.P.; Glancey, M.J.; Blake, J.A.R.; Gilham, D.E.; Burchell, B.; Wolf, C.R.; Friedberg, T. Functional co-expression of CYP2D6 and human NADPH-cytochrome P450 reductase in Escherichia coli. Pharmacogenetics, 1998, 8(1), 33-42.
[http://dx.doi.org/10.1097/00008571-199802000-00005] [PMID: 9511179]
[23]
Omura, T.; Sato, R. The carbon monoxide-binding pigment of liver microsomes: 1. evidence for its hemoprotein nature. J. Biol. Chem., 1964, 239, 2370-2378.
[PMID: 14209971]
[24]
Wang, H.; An, N.; Wang, H.; Gao, Y.; Liu, D.; Bian, T.; Zhu, J.; Chen, C. Evaluation of the effects of 20 nonsynonymous single nucleotide polymorphisms of CYP2C19 on S-mephenytoin 4′-hydroxylation and omeprazole 5′-hydroxylation. Drug Metab. Dispos., 2011, 39(5), 830-837.
[http://dx.doi.org/10.1124/dmd.110.037549] [PMID: 21325430]
[25]
von Moltke, L.L.; Greenblatt, D.J.; Duan, S.X.; Schmider, J.; Wright, C.E.; Harmatz, J.S.; Shader, R.I. Human cytochromes mediating N-demethylation of fluoxetine in vitro. Psychopharmacology (Berl.), 1997, 132(4), 402-407.
[http://dx.doi.org/10.1007/s002130050362] [PMID: 9298519]
[26]
Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J. Chem. Inf. Model., 2009, 49(2), 444-460.
[http://dx.doi.org/10.1021/ci800293n] [PMID: 19434845]
[27]
Gotoh, O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem., 1992, 267(1), 83-90.
[PMID: 1730627]
[28]
Lewis, D.F.V. Homology modelling of human CYP2 family enzymes based on the CYP2C5 crystal structure. Xenobiotica, 2002, 32(4), 305-323.
[http://dx.doi.org/10.1080/00498250110112015] [PMID: 12028664]
[29]
Wang, J.F.; Wei, D.Q.; Li, L.; Zheng, S.Y.; Li, Y.X.; Chou, K.C. 3D structure modeling of cytochrome P450 2C19 and its implication for personalized drug design. Biochem. Biophys. Res. Commun., 2007, 355(2), 513-519.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.185] [PMID: 17307149]
[30]
Lewis, D.F. Essential requirements for substrate binding affinity and selectivity toward human CYP2 family enzymes. Arch. Biochem. Biophys., 2003, 409(1), 32-44.
[http://dx.doi.org/10.1016/S0003-9861(02)00349-1] [PMID: 12464242]
[31]
Takahashi, M.; Saito, T.; Ito, M.; Tsukada, C.; Katono, Y.; Hosono, H.; Maekawa, M.; Shimada, M.; Mano, N.; Oda, A.; Hirasawa, N.; Hiratsuka, M. Functional characterization of 21 CYP2C19 allelic variants for clopidogrel 2-oxidation. Pharmacogenomics J., 2015, 15(1), 26-32.
[http://dx.doi.org/10.1038/tpj.2014.30] [PMID: 25001882]
[32]
Xu, R.A.; Gu, E.M.; Liu, T.H.; Ou-Yang, Q.G.; Hu, G.X.; Cai, J.P. The effects of cytochrome P450 2C19 polymorphism on the metabolism of voriconazole in vitro. Infect. Drug Resist., 2018, 11, 2129-2135.
[http://dx.doi.org/10.2147/IDR.S179078] [PMID: 30464555]
[33]
Lan, T.; Yuan, L.J.; Hu, X.X.; Zhou, Q.; Wang, J.; Huang, X.X.; Dai, D.P.; Cai, J.P.; Hu, G.X. Effects of CYP2C19 variants on methadone metabolism in vitro. Drug Test. Anal., 2017, 9(4), 634-639.
[http://dx.doi.org/10.1002/dta.1997] [PMID: 27199033]
[34]
Blaisdell, J.; Mohrenweiser, H.; Jackson, J.; Ferguson, S.; Coulter, S.; Chanas, B.; Xi, T.; Ghanayem, B.; Goldstein, J.A. Identification and functional characterization of new potentially defective alleles of human CYP2C19. Pharmacogenetics, 2002, 12(9), 703-711.
[http://dx.doi.org/10.1097/00008571-200212000-00004] [PMID: 12464799]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 3
Year: 2020
Page: [233 - 244]
Pages: 12
DOI: 10.2174/1874467212666191111110429
Price: $65

Article Metrics

PDF: 20
HTML: 2