Benign Intracranial Lesions - Radiotherapy: An Overview of Treatment Options, Indications and Therapeutic Results

Author(s): Vasileios Tzikoulis, Areti Gkantaifi, Filippo Alongi, Nikolaos Tsoukalas, Haytham Hamed Saraireh, Nikolaos Charalampakis, Georgios Tzikoulis, Emmanouil Andreou, Konstantinos Tsapakidis, Dimitrios Kardamakis, Konstantinos Tsanadis, George Kyrgias, Maria Tolia*

Journal Name: Reviews on Recent Clinical Trials

Volume 15 , Issue 2 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Radiation Therapy (RT) is an established treatment option for benign intracranial lesions. The aim of this study is to display an update on the role of RT concerning the most frequent benign brain lesions and tumors.

Methods: Published articles about RT and meningiomas, Vestibular Schwannomas (VSs), Pituitary Adenomas (PAs), Arteriovenous Malformations (AVMs) and craniopharyngiomas were reviewed and extracted data were used.

Results: In meningiomas RT is applied as an adjuvant therapy, in case of patientrefusing surgery or in unresectable tumors. The available techniques are External Beam RT (EBRT) and stereotactic ones such as Stereotactic Radiosurgery (SRS), Fractionated Stereotactic RT (FSRT), Intensity Modulated RT (IMRT) and proton-beam therapy. The same indications are considered in PAs, in which SRS and FSRT achieve excellent tumor control rate (92-100%), acceptable hormone remission rates (>50%) and decreased Adverse Radiation Effects (AREs). Upon tumor growth or neurological deterioration, RT emerges as alone or adjuvant treatment against VSs, with SRS, FSRT, EBRT or protonbeam therapy presenting excellent tumor control growth (>90%), facial nerve (84-100%), trigeminal nerve (74-99%) and hearing (>50%) preservation. SRS poses an effective treatment modality of certain AVMs, demonstrating a 3-year obliteration rate of 80%. Lastly, a combination of microsurgery and RT presents equal local control and 5-year survival rate (>90%) but improved toxicity profile compared to total resection in case of craniopharyngiomas.

Conclusion: RT comprises an effective treatment modality of benign brain and intracranial lesions. By minimizing its AREs with optimal use, RT projects as a potent tool against such diseases.

Keywords: Benign, brain, lesions, radiosurgery, radiotherapy, tumors.

[1]
Strowd RE 3rd, Blakeley JO. Common histologically benign tumors of the brain Continuum (Minneap Minn) 2017; 23(6, Neurooncology): 1680-708.
[http://dx.doi.org/10.1212/CON.0000000000000541]
[2]
Ragos V, Yazici O, Guzle Adas Y, et al. Intracranial meningioma: Experience with stereotactic radiotherapy. J BUON 2018; 23(4): 1169-73.
[PMID: 30358227]
[3]
Zhang C, Verma V, Lyden ER, et al. The role of definitive radiotherapy in craniopharyngioma: A SEER Analysis. Am J Clin Oncol 2018; 41(8): 807-12.
[http://dx.doi.org/10.1097/COC.0000000000000378] [PMID: 28263230]
[4]
Greenfield BJ, Okcu MF, Baxter PA, et al. Long-term disease control and toxicity outcomes following surgery and intensity modulated radiation therapy (IMRT) in pediatric craniopharyngioma. Radiother Oncol 2015; 114(2): 224-9.
[http://dx.doi.org/10.1016/j.radonc.2014.11.035] [PMID: 25542650]
[5]
Tripathi M, Batish A, Kumar N, et al. Safety and efficacy of single-fraction gamma knife radiosurgery for benign confined cavernous sinus tumors: Our experience and literature review. Neurosurg Rev 2018.
[http://dx.doi.org/10.1007/s10143-018-0975-8] [PMID: 29633079]
[6]
Morgan TM, Zaenger D, Switchenko JM, et al. Fractionated radiotherapy is associated with lower rates of treatment-related edema than stereotactic radiosurgery in magnetic resonance imaging-defined meningiomas. World Neurosurg 2018; pii: S1878- 8750(18): 32234-4.
[7]
Dutta SW, Peterson JL, Vallow LA, et al. National care among patients with WHO grade I intracranial meningioma. J Clin Neurosci 2018; 55: 17-24.
[http://dx.doi.org/10.1016/j.jocn.2018.06.026] [PMID: 29910033]
[8]
Sidiqi B, Sheth N, Lee A, Safdieh J, Schreiber D. Patterns of stereotactic radiotherapy utilization and fractionation for acoustic neuroma in the United States. J Radiosurg SBRT 2018; 5(3): 201-7.
[PMID: 29988251]
[9]
Rueß D, Pöhlmann L, Hellerbach A, et al. Acoustic neuroma treated with stereotactic radiosurgery: Follow-up of 335 Patients. World Neurosurg 2018; 116: e194-202.
[http://dx.doi.org/10.1016/j.wneu.2018.04.149] [PMID: 29715569]
[10]
Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol 2010; 99(3): 307-14.
[11]
McDowell BD, Wallace RB, Carnahan RM, Chrischilles EA, Lynch CF, Schlechte JA. Demographic differences in incidence for pituitary adenoma. Pituitary 2011; 14(1): 23-30.
[http://dx.doi.org/10.1007/s11102-010-0253-4] [PMID: 20809113]
[12]
Propp JM, McCarthy BJ, Davis FG, Preston-Martin S. Descriptive epidemiology of vestibular schwannomas. Neuro-oncol 2006; 8(1): 1-11.
[http://dx.doi.org/10.1215/S1522851704001097] [PMID: 16443943]
[13]
Laakso A, Hernesniemi J. Arteriovenous malformations: epidemiology and clinical presentation. Neurosurg Clin N Am 2012; 23(1): 1-6.
[http://dx.doi.org/10.1016/j.nec.2011.09.012] [PMID: 22107853]
[14]
Bunin GR, Surawicz TS, Witman PA, Preston-Martin S, Davis F, Bruner JM. The descriptive epidemiology of craniopharyngioma. J Neurosurg 1998; 89(4): 547-51.
[http://dx.doi.org/10.3171/jns.1998.89.4.0547] [PMID: 9761047]
[15]
Li X, Li Y, Cao Y, et al. Safety and efficacy of fractionated stereotactic radiotherapy and stereotactic radiosurgery for treatment of pituitary adenomas: A systematic review and meta-analysis. J Neurol Sci 2017; 372: 110-6.
[http://dx.doi.org/10.1016/j.jns.2016.11.024] [PMID: 28017195]
[16]
Raboud M, Tuleasca C, Maeder P, et al. Gamma knife radiosurgery for arteriovenous malformations: general principles and preliminary results in a Swiss cohort. Swiss Med Wkly 2018; 148 w14602
[PMID: 29611866]
[17]
Losa M, Pieri V, Bailo M, et al. Single fraction and multisession Gamma Knife radiosurgery for craniopharyngioma. Pituitary 2018; 21(5): 499-506.
[http://dx.doi.org/10.1007/s11102-018-0903-5] [PMID: 30043097]
[18]
Wilson HP, Price PM, Ashkan K, et al. CyberKnife Radiosurgery of Skull-base Tumors: A UK Center Experience. Cureus 2018; 10(3) e2380
[http://dx.doi.org/10.7759/cureus.2380] [PMID: 29805949]
[19]
Pinzi V, Bisogno I, Ciusani E, et al. In vitro assessment of radiobiology of meningioma: A pilot study. J Neurosci Methods 2019; 311: 288-94.
[http://dx.doi.org/10.1016/j.jneumeth.2018.11.003] [PMID: 30408557]
[20]
El Shafie RA, Czech M, Kessel KA, et al. Clinical outcome after particle therapy for meningiomas of the skull base: toxicity and local control in patients treated with active rasterscanning. Radiat Oncol 2018; 13(1): 54.
[http://dx.doi.org/10.1186/s13014-018-1002-5] [PMID: 29587795]
[21]
Vlachogiannis P, Gudjonsson O, Montelius A, et al. Hypofractionated high-energy proton-beam irradiation is an alternative treatment for WHO grade I meningiomas. Acta Neurochir (Wien) 2017; 159(12): 2391-400.
[http://dx.doi.org/10.1007/s00701-017-3352-4] [PMID: 29064038]
[22]
Lefranc M, Da Roz LM, Balossier A, Thomassin JM, Roche PH, Regis J. Place of gamma knife stereotactic radiosurgery in grade 4 vestibular schwannoma based on case series of 86 patients with long-term follow-up. World Neurosurg 2018; 114: e1192-8.
[http://dx.doi.org/10.1016/j.wneu.2018.03.175] [PMID: 29614352]
[23]
Daniel RT, Tuleasca C, George M, et al. Preserving normal facial nerve function and improving hearing outcome in large vestibular schwannomas with a combined approach: planned subtotal resection followed by gamma knife radiosurgery. Acta Neurochir (Wien) 2017; 159(7): 1197-211.
[http://dx.doi.org/10.1007/s00701-017-3194-0] [PMID: 28516364]
[24]
Ding D, Starke RM, Kano H, et al. Radiosurgery for unruptured brain arteriovenous malformations: An international multicenter retrospective cohort study. Neurosurgery 2017; 80(6): 888-98.
[http://dx.doi.org/10.1093/neuros/nyx181] [PMID: 28431024]
[25]
Kano H, Flickinger JC, Tonetti D, et al. Estimating the risks of adverse radiation effects after gamma knife radiosurgery for arteriovenous malformations. Stroke 2017; 48(1): 84-90.
[http://dx.doi.org/10.1161/STROKEAHA.116.014825] [PMID: 27899758]
[26]
O’steen L, Indelicato DJ. Advances in the management of craniopharyngioma. F1000 Res 2018; 7pii: F1000
[27]
Eaton DJ, Lee J, Patel R, Millin AE, Paddick I, Walker C. Stereotactic radiosurgery for benign brain tumors: Results of multicenter benchmark planning studies. Pract Radiat Oncol 2018; 8(5): e295-304.
[http://dx.doi.org/10.1016/j.prro.2018.02.006] [PMID: 29884596]
[28]
Lau SKM, Patel K, Kim T, et al. Clinical efficacy and safety of surface imaging guided radiosurgery (SIG-RS) in the treatment of benign skull base tumors. J Neurooncol 2017; 132(2): 307-12.
[http://dx.doi.org/10.1007/s11060-017-2370-7] [PMID: 28120301]
[29]
Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol 2010; 99(3): 307-14.
[http://dx.doi.org/10.1007/s11060-010-0386-3] [PMID: 20821343]
[30]
Whittle IR, Smith C, Navoo P, Collie D. Meningiomas. Lancet 2004; 363(9420): 1535-43.
[http://dx.doi.org/10.1016/S0140-6736(04)16153-9] [PMID: 15135603]
[31]
Claus EB, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M, Black PM. Epidemiology of intracranial meningioma. Neurosurgery 2005; 57(6): 1088-95.
[http://dx.doi.org/10.1227/01.NEU.0000188281.91351.B9] [PMID: 16331155]
[32]
Liu Y, Li F, Zhu S, Liu M, Wu C. Clinical features and treatment of meningiomas in children: report of 12 cases and literature review. Pediatr Neurosurg 2008; 44(2): 112-7.
[http://dx.doi.org/10.1159/000113112] [PMID: 18230924]
[33]
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016; 131(6): 803-20.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[34]
Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS Statistical Report: Primary brain and other central nervous system tumors diagnosed in the united states in 2011-2015. Neuro-oncol 2018; 20(suppl_4): iv1-iv86.
[http://dx.doi.org/10.1093/neuonc/noy131] [PMID: 30445539]
[35]
Yang SY, Park CK, Park SH, Kim DG, Chung YS, Jung HW. Atypical and anaplastic meningiomas: prognostic implications of clinicopathological features. J Neurol Neurosurg Psychiatry 2008; 79(5): 574-80.
[http://dx.doi.org/10.1136/jnnp.2007.121582] [PMID: 17766430]
[36]
Marciscano AE, Stemmer-Rachamimov AO, Niemierko A, et al. Benign meningiomas (WHO Grade I) with atypical histological features: correlation of histopathological features with clinical outcomes. J Neurosurg 2016; 124(1): 106-14.
[http://dx.doi.org/10.3171/2015.1.JNS142228] [PMID: 26274991]
[37]
Umansky F, Shoshan Y, Rosenthal G, Fraifeld S, Spektor S. Radiation-induced meningioma. Neurosurg Focus 2008; 24(5) E7
[http://dx.doi.org/10.3171/FOC/2008/24/5/E7] [PMID: 18447746]
[38]
Braganza MZ, Kitahara CM, Berrington de González A, Inskip PD, Johnson KJ, Rajaraman P. Ionizing radiation and the risk of brain and central nervous system tumors: A systematic review. Neuro-oncol 2012; 14(11): 1316-24.
[http://dx.doi.org/10.1093/neuonc/nos208] [PMID: 22952197]
[39]
Banerjee J, Pääkkö E, Harila M, et al. Radiation-induced meningiomas: A shadow in the success story of childhood leukemia. Neuro-oncol 2009; 11(5): 543-9.
[http://dx.doi.org/10.1215/15228517-2008-122] [PMID: 19179425]
[40]
Bowers DC, Moskowitz CS, Chou JF, et al. Morbidity and mortality associated with meningioma after cranial radiotherapy: A report from the childhood cancer survivor study. J Clin Oncol 2017; 35(14): 1570-6.
[http://dx.doi.org/10.1200/JCO.2016.70.1896] [PMID: 28339329]
[41]
Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: A retrospective cohort study. Lancet 2012; 380(9840): 499-505.
[http://dx.doi.org/10.1016/S0140-6736(12)60815-0] [PMID: 22681860]
[42]
Goutagny S, Kalamarides M. Meningiomas and neurofibromatosis. J Neurooncol 2010; 99(3): 341-7.
[http://dx.doi.org/10.1007/s11060-010-0339-x] [PMID: 20714782]
[43]
Blankenstein MA, Verheijen FM, Jacobs JM, Donker TH, van Duijnhoven MW, Thijssen JH. Occurrence, regulation, and significance of progesterone receptors in human meningioma. Steroids 2000; 65(10-11): 795-800.
[http://dx.doi.org/10.1016/S0039-128X(00)00193-8] [PMID: 11108890]
[44]
Niedermaier T, Behrens G, Schmid D, Schlecht I, Fischer B, Leitzmann MF. Body mass index, physical activity, and risk of adult meningioma and glioma: A meta-analysis. Neurology 2015; 85(15): 1342-50.
[http://dx.doi.org/10.1212/WNL.0000000000002020] [PMID: 26377253]
[45]
Vernooij MW, Ikram MA, Tanghe HL, et al. Incidental findings on brain MRI in the general population. N Engl J Med 2007; 357(18): 1821-8.
[http://dx.doi.org/10.1056/NEJMoa070972] [PMID: 17978290]
[46]
Englot DJ, Magill ST, Han SJ, Chang EF, Berger MS, McDermott MW. Seizures in supratentorial meningioma: A systematic review and meta-analysis. J Neurosurg 2016; 124(6): 1552-61.
[http://dx.doi.org/10.3171/2015.4.JNS142742] [PMID: 26636386]
[47]
Buerki RA, Horbinski CM, Kruser T, Horowitz PM, James CD, Lukas RV. An overview of meningiomas. Future Oncol 2018; 14(21): 2161-77.
[http://dx.doi.org/10.2217/fon-2018-0006] [PMID: 30084265]
[48]
Gardner PA, Kassam AB, Thomas A, et al. Endoscopic endonasal resection of anterior cranial base meningiomas. Neurosurgery 2008; 63(1): 36-52.
[http://dx.doi.org/10.1227/01.NEU.0000335069.30319.1E] [PMID: 18728567]
[49]
Nanda A, Bir SC, Maiti TK, Konar SK, Missios S, Guthikonda B. Relevance of Simpson grading system and recurrence-free survival after surgery for World Health Organization Grade I meningioma. J Neurosurg 2017; 126(1): 201-11.
[http://dx.doi.org/10.3171/2016.1.JNS151842] [PMID: 27058201]
[50]
Rogers L, Barani I, Chamberlain M, et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg 2015; 122(1): 4-23.
[http://dx.doi.org/10.3171/2014.7.JNS131644] [PMID: 25343186]
[51]
Goldsmith BJ, Wara WM, Wilson CB, Larson DA. Postoperative irradiation for subtotally resected meningiomas. A retrospective analysis of 140 patients treated from 1967 to 1990. J Neurosurg 1994; 80(2): 195-201.
[http://dx.doi.org/10.3171/jns.1994.80.2.0195] [PMID: 8283256]
[52]
Sanford NN, Yeap BY, Larvie M, et al. Prospective, randomized study of radiation dose escalation with combined proton-photon therapy for benign meningiomas. Int J Radiat Oncol Biol Phys 2017; 99(4): 787-96.
[http://dx.doi.org/10.1016/j.ijrobp.2017.07.008] [PMID: 28865924]
[53]
Korah MP, Nowlan AW, Johnstone PA, Crocker IR. Radiation therapy alone for imaging-defined meningiomas. Int J Radiat Oncol Biol Phys 2010; 76(1): 181-6.
[http://dx.doi.org/10.1016/j.ijrobp.2009.01.066] [PMID: 19406587]
[54]
Lee CC, Trifiletti DM, Sahgal A, et al. Stereotactic Radiosurgery for Benign (World Health Organization Grade I) Cavernous Sinus Meningiomas-International Stereotactic Radiosurgery Society (ISRS) Practice Guideline: A systematic review. Neurosurgery 2018; 83(6): 1128-42.
[http://dx.doi.org/10.1093/neuros/nyy009] [PMID: 29554317]
[55]
Pollock BE, Stafford SL, Link MJ, Garces YI, Foote RL. Single-fraction radiosurgery for presumed intracranial meningiomas: efficacy and complications from a 22-year experience. Int J Radiat Oncol Biol Phys 2012; 83(5): 1414-8.
[http://dx.doi.org/10.1016/j.ijrobp.2011.10.033] [PMID: 22209154]
[56]
Milker-Zabel S, Zabel A, Schulz-Ertner D, Schlegel W, Wannenmacher M, Debus J. Fractionated stereotactic radiotherapy in patients with benign or atypical intracranial meningioma: long-term experience and prognostic factors. Int J Radiat Oncol Biol Phys 2005; 61(3): 809-16.
[http://dx.doi.org/10.1016/j.ijrobp.2004.07.669] [PMID: 15708260]
[57]
Leroy HA, Tuleasca C, Reyns N, Levivier M. Radiosurgery and fractionated radiotherapy for cavernous sinus meningioma: A systematic review and meta-analysis. Acta Neurochir (Wien) 2018; 160: 2367-78.
[http://dx.doi.org/10.1007/s00701-018-3711-9]
[58]
Halasz LM, Bussière MR, Dennis ER, et al. Proton stereotactic radiosurgery for the treatment of benign meningiomas. Int J Radiat Oncol Biol Phys 2011; 81(5): 1428-35.
[http://dx.doi.org/10.1016/j.ijrobp.2010.07.1991] [PMID: 20934263]
[59]
Yamanaka R, Abe E, Sato T, Hayano A, Takashima Y. Secondary intracranial tumors following radiotherapy for pituitary adenomas: A systematic review. Cancers (Basel) 2017; 9(8) E103
[http://dx.doi.org/10.3390/cancers9080103] [PMID: 28786923]
[60]
Lee CC, Sheehan JP. Advances in Gamma Knife radiosurgery for pituitary tumors. Curr Opin Endocrinol Diabetes Obes 2016; 23(4): 331-8.
[http://dx.doi.org/10.1097/MED.0000000000000269] [PMID: 27341278]
[61]
Narayan V, Mohammed N, Bir SC, et al. Long-Term outcome of nonfunctioning and hormonal active pituitary adenoma after gamma knife radiosurgery. World Neurosurg 2018; 114: e824-32.
[http://dx.doi.org/10.1016/j.wneu.2018.03.094] [PMID: 29574220]
[62]
Lian W, Wang RZ, Xing B, Yao Y. Curative effects of head γ-SRT for the treatment of functional pituitary macroadenoma. Oncol Lett 2016; 12(2): 893-6.
[http://dx.doi.org/10.3892/ol.2016.4712] [PMID: 27446365]
[63]
Minniti G, Flickinger J, Tolu B, Paolini S. Management of nonfunctioning pituitary tumors: radiotherapy. Pituitary 2018; 21(2): 154-61.
[http://dx.doi.org/10.1007/s11102-018-0868-4] [PMID: 29372392]
[64]
Zhao K, Liu X, Liu D, et al. Fractionated Gamma Knife surgery for giant pituitary adenomas. Clin Neurol Neurosurg 2016; 150: 139-42.
[http://dx.doi.org/10.1016/j.clineuro.2016.09.009] [PMID: 27665202]
[65]
Mehta GU, Ding D, Patibandla MR, et al. Stereotactic radiosurgery for cushing disease: Results of an international, multicenter study. J Clin Endocrinol Metab 2017; 102(11): 4284-91.
[http://dx.doi.org/10.1210/jc.2017-01385] [PMID: 28938462]
[66]
Brochier S, Galland F, Kujas M, et al. Factors predicting relapse of nonfunctioning pituitary macroadenomas after neurosurgery: A study of 142 patients. Eur J Endocrinol 2010; 163(2): 193-200.
[http://dx.doi.org/10.1530/EJE-10-0255] [PMID: 20460423]
[67]
O’Sullivan EP, Woods C, Glynn N, et al. The natural history of surgically treated but radiotherapy-naïve nonfunctioning pituitary adenomas. Clin Endocrinol (Oxf) 2009; 71(5): 709-14.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03583.x] [PMID: 19302582]
[68]
Sheehan JP, Pouratian N, Steiner L, Laws ER, Vance ML. Gamma Knife surgery for pituitary adenomas: Factors related to radiological and endocrine outcomes. J Neurosurg 2011; 114(2): 303-9.
[http://dx.doi.org/10.3171/2010.5.JNS091635] [PMID: 20540596]
[69]
Wattson DA, Tanguturi SK, Spiegel DY, et al. Outcomes of proton therapy for patients with functional pituitary adenomas. Int J Radiat Oncol Biol Phys 2014; 90(3): 532-9.
[http://dx.doi.org/10.1016/j.ijrobp.2014.06.068] [PMID: 25194666]
[70]
Voges J, Kocher M, Runge M, et al. Linear accelerator radiosurgery for pituitary macroadenomas: A 7-year follow-up study. Cancer 2006; 107(6): 1355-64.
[http://dx.doi.org/10.1002/cncr.22128] [PMID: 16894526]
[71]
Minniti G, Clarke E, Scaringi C, Enrici RM. Stereotactic radiotherapy and radiosurgery for non-functioning and secreting pituitary adenomas. Rep Pract Oncol Radiother 2016; 21(4): 370-8.
[http://dx.doi.org/10.1016/j.rpor.2014.09.004] [PMID: 27330422]
[72]
Minniti G, Osti MF, Niyazi M. Target delineation and optimal radiosurgical dose for pituitary tumors. Radiat Oncol 2016; 11(1): 135.
[http://dx.doi.org/10.1186/s13014-016-0710-y] [PMID: 27729088]
[73]
Barber SM, Teh BS, Baskin DS. Fractionated stereotactic radiotherapy for pituitary adenomas: Single-center experience in 75 consecutive patients. Neurosurgery 2016; 79(3): 406-17.
[http://dx.doi.org/10.1227/NEU.0000000000001155] [PMID: 26657072]
[74]
Liscák R, Vladyka V, Marek J, Simonová G, Vymazal J. Gamma knife radiosurgery for endocrine-inactive pituitary adenomas. Acta Neurochir (Wien) 2007; 149(10): 999-1006.
[http://dx.doi.org/10.1007/s00701-007-1253-7] [PMID: 17676409]
[75]
Erridge SC, Conkey DS, Stockton D, et al. Radiotherapy for pituitary adenomas: Long-term efficacy and toxicity. Radiother Oncol 2009; 93(3): 597-601.
[http://dx.doi.org/10.1016/j.radonc.2009.09.011] [PMID: 19900729]
[76]
Pai HH, Thornton A, Katznelson L, et al. Hypothalamic/pituitary function following high-dose conformal radiotherapy to the base of skull: Demonstration of a dose-effect relationship using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 2001; 49(4): 1079-92.
[http://dx.doi.org/10.1016/S0360-3016(00)01387-0] [PMID: 11240250]
[77]
Leenstra JL, Tanaka S, Kline RW, et al. Factors associated with endocrine deficits after stereotactic radiosurgery of pituitary adenomas. Neurosurgery 2010; 67(1): 27-32.
[http://dx.doi.org/10.1227/01.NEU.0000370978.31405.A9] [PMID: 20559089]
[78]
Cifarelli CP, Schlesinger DJ, Sheehan JP. Cranial nerve dysfunction following Gamma Knife surgery for pituitary adenomas: long-term incidence and risk factors. J Neurosurg 2012; 116(6): 1304-10.
[http://dx.doi.org/10.3171/2012.2.JNS111630] [PMID: 22424563]
[79]
Tishler RB, Loeffler JS, Lunsford LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys 1993; 27(2): 215-21.
[http://dx.doi.org/10.1016/0360-3016(93)90230-S] [PMID: 8407394]
[80]
Parsons JT, Bova FJ, Fitzgerald CR, Mendenhall WM, Million RR. Radiation optic neuropathy after megavoltage external-beam irradiation: analysis of time-dose factors. Int J Radiat Oncol Biol Phys 1994; 30(4): 755-63.
[http://dx.doi.org/10.1016/0360-3016(94)90346-8] [PMID: 7960976]
[81]
Brada M, Rajan B, Traish D, et al. The long-term efficacy of conservative surgery and radiotherapy in the control of pituitary adenomas. Clin Endocrinol (Oxf) 1993; 38(6): 571-8.
[http://dx.doi.org/10.1111/j.1365-2265.1993.tb02137.x] [PMID: 8334743]
[82]
Gheorghiu ML. Updates in outcomes of stereotactic radiation therapy in acromegaly. Pituitary 2017; 20(1): 154-68.
[http://dx.doi.org/10.1007/s11102-016-0783-5] [PMID: 28210908]
[83]
Park MJ, Park HJ, Chung JW, et al. Factors affecting hearing deterioration in vestibular schwannoma patients treated with gamma knife radiosurgery: the Asan Medical Center experience. Acta Otolaryngol 2018; 138(2): 96-104.
[http://dx.doi.org/10.1080/00016489.2017.1386800] [PMID: 29069961]
[84]
Slane BG, Goyal U, Grow JL, et al. Radiotherapeutic management of vestibular schwannomas using size- and location-adapted fractionation regimens to maximize the therapeutic ratio. Pract Radiat Oncol 2017; 7(3): e233-41.
[http://dx.doi.org/10.1016/j.prro.2016.10.016] [PMID: 28089525]
[85]
Nguyen T, Duong C, Sheppard JP, et al. Hypo-fractionated stereotactic radiotherapy of five fractions with linear accelerator for vestibular schwannomas: A systematic review and meta-analysis. Clin Neurol Neurosurg 2018; 166: 116-23.
[http://dx.doi.org/10.1016/j.clineuro.2018.01.005] [PMID: 29414150]
[86]
Edwards CG, Schwartzbaum JA, Lönn S, Ahlbom A, Feychting M. Exposure to loud noise and risk of acoustic neuroma. Am J Epidemiol 2006; 163(4): 327-33.
[http://dx.doi.org/10.1093/aje/kwj044] [PMID: 16357108]
[87]
Sughrue ME, Yeung AH, Rutkowski MJ, Cheung SW, Parsa AT. Molecular biology of familial and sporadic vestibular schwannomas: implications for novel therapeutics. J Neurosurg 2011; 114(2): 359-66.
[http://dx.doi.org/10.3171/2009.10.JNS091135] [PMID: 19943731]
[88]
Schneider AB, Ron E, Lubin J, et al. Acoustic neuromas following childhood radiation treatment for benign conditions of the head and neck. Neuro-oncol 2008; 10(1): 73-8.
[http://dx.doi.org/10.1215/15228517-2007-047] [PMID: 18079359]
[89]
Bäcklund LM, Grandér D, Brandt L, Hall P, Ekbom A. Parathyroid adenoma and primary CNS tumors. Int J Cancer 2005; 113(6): 866-9.
[http://dx.doi.org/10.1002/ijc.20743] [PMID: 15515018]
[90]
Fisher JL, Pettersson D, Palmisano S, et al. Loud noise exposure and acoustic neuroma. Am J Epidemiol 2014; 180(1): 58-67.
[http://dx.doi.org/10.1093/aje/kwu081] [PMID: 24786799]
[91]
Noonan KY, Rang C, Callahan K, Simmons NE, Erkmen K, Saunders JE. Nervus Intermedius Symptoms following Surgical or Radiation Therapy for Vestibular Schwannoma. Otolaryngol Head Neck Surg 2016; 155(4): 657-62.
[http://dx.doi.org/10.1177/0194599816655144] [PMID: 27301896]
[92]
Rueß D, Pöhlmann L, Grau S, et al. Long-term follow-up after stereotactic radiosurgery of intracanalicular acoustic neurinoma. Radiat Oncol 2017; 12(1): 68.
[http://dx.doi.org/10.1186/s13014-017-0805-0] [PMID: 28427410]
[93]
Tuleasca C, George M, Faouzi M, et al. Acute clinical adverse radiation effects after Gamma Knife surgery for vestibular schwannomas. J Neurosurg 2016; 125(Suppl. 1): 73-82.
[http://dx.doi.org/10.3171/2016.7.GKS161496] [PMID: 27903185]
[94]
Gallogly JA, Jumaily M, Faraji F, Mikulec AA. Stereotactic radiotherapy in three weekly fractions for the management of vestibular schwannomas. Am J Otolaryngol 2018; 39(5): 561-6.
[http://dx.doi.org/10.1016/j.amjoto.2018.06.017] [PMID: 29961654]
[95]
Persson O, Bartek J Jr, Shalom NB, Wangerid T, Jakola AS, Förander P. Stereotactic radiosurgery vs. fractionated radiotherapy for tumor control in vestibular schwannoma patients: a systematic review. Acta Neurochir (Wien) 2017; 159(6): 1013-21.
[http://dx.doi.org/10.1007/s00701-017-3164-6] [PMID: 28409393]
[96]
Darrouzet V, Martel J, Enée V, Bébéar JP, Guérin J. Vestibular schwannoma surgery outcomes: our multidisciplinary experience in 400 cases over 17 years. Laryngoscope 2004; 114(4): 681-8.
[http://dx.doi.org/10.1097/00005537-200404000-00016] [PMID: 15064624]
[97]
Anderson DE, Leonetti J, Wind JJ, Cribari D, Fahey K. Resection of large vestibular schwannomas: facial nerve preservation in the context of surgical approach and patient-assessed outcome. J Neurosurg 2005; 102(4): 643-9.
[http://dx.doi.org/10.3171/jns.2005.102.4.0643] [PMID: 15871506]
[98]
Putz F, Müller J, Wimmer C, et al. Stereotactic radiotherapy of vestibular schwannoma : Hearing preservation, vestibular function, and local control following primary and salvage radiotherapy. Strahlenther Onkol 2017; 193(3): 200-12.
[http://dx.doi.org/10.1007/s00066-016-1086-5] [PMID: 27928625]
[99]
Murphy ES, Suh JH. Radiotherapy for vestibular schwannomas: a critical review. Int J Radiat Oncol Biol Phys 2011; 79(4): 985-97.
[http://dx.doi.org/10.1016/j.ijrobp.2010.10.010] [PMID: 21353158]
[100]
Patel MA, Marciscano AE, Hu C, et al. Long-term treatment response and patient outcomes for vestibular schwannoma patients treated with hypofractionated stereotactic radiotherapy. Front Oncol 2017; 7: 200.
[http://dx.doi.org/10.3389/fonc.2017.00200] [PMID: 28929084]
[101]
Schmidt MA, Wells EJ, Davison K, Riddell AM, Welsh L, Saran F. Stereotactic radiosurgery planning of vestibular schwannomas: Is MRI at 3 Tesla geometrically accurate? Med Phys 2017; 44(2): 375-81.
[http://dx.doi.org/10.1002/mp.12068] [PMID: 28019663]
[102]
Wong RX, Low HYT, Tan DYH. Local experience with radiosurgery for vestibular schwannomas and recommendations for management. Singapore Med J 2018; 59(11): 590-6.
[http://dx.doi.org/10.11622/smedj.2018107] [PMID: 30182129]
[103]
Combs SE, Welzel T, Schulz-Ertner D, Huber PE, Debus J. Differences in clinical results after LINAC-based single-dose radiosurgery versus fractionated stereotactic radiotherapy for patients with vestibular schwannomas. Int J Radiat Oncol Biol Phys 2010; 76(1): 193-200.
[http://dx.doi.org/10.1016/j.ijrobp.2009.01.064] [PMID: 19604653]
[104]
Hasegawa T, Kida Y, Kato T, Iizuka H, Kuramitsu S, Yamamoto T. Long-term safety and efficacy of stereotactic radiosurgery for vestibular schwannomas: evaluation of 440 patients more than 10 years after treatment with Gamma Knife surgery. J Neurosurg 2013; 118(3): 557-65.
[http://dx.doi.org/10.3171/2012.10.JNS12523] [PMID: 23140152]
[105]
Pollock BE, Link MJ, Stafford SL, Parney IF, Garces YI, Foote RL. The Risk of Radiation-Induced Tumors or Malignant Transformation After Single-Fraction Intracranial Radiosurgery: Results Based on a 25-Year Experience. Int J Radiat Oncol Biol Phys 2017; 97(5): 919-23.
[http://dx.doi.org/10.1016/j.ijrobp.2017.01.004] [PMID: 28333013]
[106]
Weber DC, Chan AW, Bussiere MR, et al. Proton beam radiosurgery for vestibular schwannoma: tumor control and cranial nerve toxicity. Neurosurgery 2003; 53(3): 577-86.
[http://dx.doi.org/10.1227/01.NEU.0000079369.59219.C0] [PMID: 12943574]
[107]
Sylvester MJ, Shastri DN, Patel VM, et al. Outcomes of vestibular schwannoma surgery among the elderly. Otolaryngol Head Neck Surg 2017; 156(1): 166-72.
[http://dx.doi.org/10.1177/0194599816677522] [PMID: 28045630]
[108]
Pulec JL. Acoustic neuroma surgery in geriatric patients. Ear Nose Throat J 1999; 78(6): 429-430, 433-436, 438-440 passim.
[http://dx.doi.org/10.1177/014556139907800612] [PMID: 10388194]
[109]
Thenier-Villa JL, Galárraga-Campoverde RA, Martínez Rolán RM, et al. Linear accelerator stereotactic radiosurgery of central nervous system arteriovenous malformations: A 15-year analysis of outcome-related factors in a single tertiary center. World Neurosurg 2017; 103: 291-302.
[http://dx.doi.org/10.1016/j.wneu.2017.04.081] [PMID: 28435119]
[110]
Kuo CY, Tsai YC, Shiau AC, et al. Evaluation of clinical application and dosimetric comparison of treatment plans of gamma knife and cyberknife in treating arteriovenous malformations. Stereotact Funct Neurosurg 2017; 95(3): 142-8.
[http://dx.doi.org/10.1159/000460259] [PMID: 28486221]
[111]
Mohr JP, Kejda-Scharler J, Pile-Spellman J. Diagnosis and treatment of arteriovenous malformations. Curr Neurol Neurosci Rep 2013; 13(2): 324.
[http://dx.doi.org/10.1007/s11910-012-0324-1] [PMID: 23307509]
[112]
Vlaskou Badra E, Ermiş E, Mordasini P, Herrmann E. Radiosurgery and radiotherapy for arteriovenous malformations: outcome predictors and review of the literature. J Neurosurg Sci 2018; 62(4): 490-504.
[PMID: 29582976]
[113]
Ding D, Starke RM, Sheehan JP. Radiosurgery for the management of cerebral arteriovenous malformations. Handb Clin Neurol 2017; 143: 69-83.
[http://dx.doi.org/10.1016/B978-0-444-63640-9.00007-2] [PMID: 28552160]
[114]
Hasegawa H, Hanakita S, Shin M, et al. A Comprehensive Study of Symptomatic Late Radiation-Induced Complications After Radiosurgery for Brain Arteriovenous Malformation: Incidence, Risk Factors, and Clinical Outcomes. World Neurosurg 2018; 116: e556-65.
[http://dx.doi.org/10.1016/j.wneu.2018.05.038] [PMID: 29772363]
[115]
Bharatha A, Faughnan ME, Kim H, et al. Brain arteriovenous malformation multiplicity predicts the diagnosis of hereditary hemorrhagic telangiectasia: Quantitative assessment. Stroke 2012; 43(1): 72-8.
[http://dx.doi.org/10.1161/STROKEAHA.111.629865] [PMID: 22034007]
[116]
Garcin B, Houdart E, Porcher R, et al. Epileptic seizures at initial presentation in patients with brain arteriovenous malformation. Neurology 2012; 78(9): 626-31.
[http://dx.doi.org/10.1212/WNL.0b013e3182494d40] [PMID: 22345217]
[117]
Huang YJ, Hsu SW, Lee TF, Ho JT, Chen WF. Consistency between Targets Delineated by Angiography, Computed Tomography, and Magnetic Resonance Imaging in Stereotactic Radiosurgery for Arteriovenous Malformation. Stereotact Funct Neurosurg 2017; 95(4): 236-42.
[http://dx.doi.org/10.1159/000469667] [PMID: 28746939]
[118]
Friedlander RM. Clinical practice. Arteriovenous malformations of the brain. N Engl J Med 2007; 356(26): 2704-12.
[http://dx.doi.org/10.1056/NEJMcp067192] [PMID: 17596605]
[119]
Schaller C, Schramm J, Haun D. Significance of factors contributing to surgical complications and to late outcome after elective surgery of cerebral arteriovenous malformations. J Neurol Neurosurg Psychiatry 1998; 65(4): 547-54.
[http://dx.doi.org/10.1136/jnnp.65.4.547] [PMID: 9771782]
[120]
Lenck S, Schwartz M, Hengwei J, et al. Management of Residual Brain Arteriovenous Malformations After Stereotactic Radiosurgery. World Neurosurg 2018; 116: e1105-13.
[http://dx.doi.org/10.1016/j.wneu.2018.05.180] [PMID: 29864564]
[121]
Sun DQ, Carson KA, Raza SM, et al. The radiosurgical treatment of arteriovenous malformations: obliteration, morbidities, and performance status. Int J Radiat Oncol Biol Phys 2011; 80(2): 354-61.
[http://dx.doi.org/10.1016/j.ijrobp.2010.01.049] [PMID: 20400239]
[122]
Ding C, Hrycushko B, Whitworth L, et al. Multistage stereotactic radiosurgery for large cerebral arteriovenous malformations using the Gamma Knife platform. Med Phys 2017; 44(10): 5010-9.
[http://dx.doi.org/10.1002/mp.12455] [PMID: 28681423]
[123]
Ilyas A, Ding D, Robert Hixson H, Xu Z, Starke RM, Sheehan JP. Volume-staged stereotactic radiosurgery for large intracranial arteriovenous malformations. J Clin Neurosci 2017; 43: 202-7.
[http://dx.doi.org/10.1016/j.jocn.2017.04.020] [PMID: 28495425]
[124]
Kurita H, Kawamoto S, Sasaki T, et al. Results of radiosurgery for brain stem arteriovenous malformations. J Neurol Neurosurg Psychiatry 2000; 68(5): 563-70.
[http://dx.doi.org/10.1136/jnnp.68.5.563] [PMID: 10766883]
[125]
Lunsford LD, Kondziolka D, Flickinger JC, et al. Stereotactic radiosurgery for arteriovenous malformations of the brain. J Neurosurg 1991; 75(4): 512-24.
[http://dx.doi.org/10.3171/jns.1991.75.4.0512] [PMID: 1885968]
[126]
Pollock BE, Meyer FB. Radiosurgery for arteriovenous malformations. J Neurosurg 2004; 101(3): 390-2.
[http://dx.doi.org/10.3171/jns.2004.101.3.0390] [PMID: 15352594]
[127]
Flickinger JC, Pollock BE, Kondziolka D, Lunsford LD. A dose response analysis of arteriovenous malformation obliteration after radiosurgery. Int J Radiat Oncol Biol Phys 1996; 36(4): 873-9.
[http://dx.doi.org/10.1016/S0360-3016(96)00316-1] [PMID: 8960516]
[128]
Karlsson B, Lindquist C, Steiner L. Prediction of obliteration after gamma knife surgery for cerebral arteriovenous malformations. Neurosurgery 1997; 40(3): 425-30.
[PMID: 9055280]
[129]
Flickinger JC, Kondziolka D, Lunsford LD, et al. A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. Int J Radiat Oncol Biol Phys 1999; 44(1): 67-74.
[http://dx.doi.org/10.1016/S0360-3016(98)00518-5] [PMID: 10219796]
[130]
Fabrikant JI, Levy RP, Steinberg GK, Phillips MH, Frankel KA, Silverberg GD. Stereotactic charged-particle radiosurgery: clinical results of treatment of 1200 patients with intracranial arteriovenous malformations and pituitary disorders. Clin Neurosurg 1992; 38: 472-92.
[PMID: 1537198]
[131]
Ding D, Yen CP, Xu Z, Starke RM, Sheehan JP. Radiosurgery for patients with unruptured intracranial arteriovenous malformations. J Neurosurg 2013; 118(5): 958-66.
[http://dx.doi.org/10.3171/2013.2.JNS121239] [PMID: 23530863]
[132]
Skjøth-Rasmussen J, Roed H, Ohlhues L, Jespersen B, Juhler M. Complications following linear accelerator based stereotactic radiation for cerebral arteriovenous malformations. Int J Radiat Oncol Biol Phys 2010; 77(2): 542-7.
[http://dx.doi.org/10.1016/j.ijrobp.2009.05.048] [PMID: 19796884]
[133]
Flickinger JC, Kondziolka D, Lunsford LD, et al. Arteriovenous Malformation Radiosurgery Study Group. Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Int J Radiat Oncol Biol Phys 2000; 46(5): 1143-8.
[http://dx.doi.org/10.1016/S0360-3016(99)00513-1] [PMID: 10725624]
[134]
Miyawaki L, Dowd C, Wara W, et al. Five year results of LINAC radiosurgery for arteriovenous malformations: outcome for large AVMS. Int J Radiat Oncol Biol Phys 1999; 44(5): 1089-106.
[http://dx.doi.org/10.1016/S0360-3016(99)00102-9] [PMID: 10421543]
[135]
Barr JC, Ogilvy CS. Selection of treatment modalities or observation of arteriovenous malformations. Neurosurg Clin N Am 2012; 23(1): 63-75.
[http://dx.doi.org/10.1016/j.nec.2011.09.010] [PMID: 22107859]
[136]
Jane JA Jr, Laws ER. Craniopharyngioma. Pituitary 2006; 9(4): 323-6.
[http://dx.doi.org/10.1007/s11102-006-0413-8] [PMID: 17080265]
[137]
Garrè ML, Cama A. Craniopharyngioma: Modern concepts in pathogenesis and treatment. Curr Opin Pediatr 2007; 19(4): 471-9.
[http://dx.doi.org/10.1097/MOP.0b013e3282495a22] [PMID: 17630614]
[138]
Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Eds. ‘’WHO Classification of Tumours of the Central Nervous System. 4th ed. Lyon: IARC 2016.
[139]
Duff J, Meyer FB, Ilstrup DM, Laws ER Jr, Schleck CD, Scheithauer BW. Long-term outcomes for surgically resected craniopharyngiomas. Neurosurgery 2000; 46(2): 291-302.
[http://dx.doi.org/10.1097/00006123-200002000-00007] [PMID: 10690718]
[140]
Khan RB, Merchant TE, Boop FA, et al. Headaches in children with craniopharyngioma. J Child Neurol 2013; 28(12): 1622-5.
[http://dx.doi.org/10.1177/0883073812464817] [PMID: 23143722]
[141]
Garnett MR, Puget S, Grill J, Sainte-Rose C. Craniopharyngioma. Orphanet J Rare Dis 2007; 2: 18.
[http://dx.doi.org/10.1186/1750-1172-2-18] [PMID: 17425791]
[142]
Honegger J, Tatagiba M. Craniopharyngioma surgery. Pituitary 2008; 11(4): 361-73.
[http://dx.doi.org/10.1007/s11102-008-0137-z] [PMID: 18636330]
[143]
Lober RM, Harsh GR IV. A perspective on craniopharyngioma. World Neurosurg 2013; 79(5-6): 645-6.
[http://dx.doi.org/10.1016/j.wneu.2012.10.064] [PMID: 23111221]
[144]
Minniti G, Esposito V, Amichetti M, Enrici RM. The role of fractionated radiotherapy and radiosurgery in the management of patients with craniopharyngioma. Neurosurg Rev 2009; 32(2): 125-32.
[http://dx.doi.org/10.1007/s10143-009-0186-4] [PMID: 19165514]
[145]
O′ steen L, Indelicato DJ. Advances in the management of craniopharyngioma. F1000 Res 2018; 7: pii: F1000. [Faculty Rev-.].
[146]
Lee CC, Yang HC, Chen CJ, et al. Gamma Knife surgery for craniopharyngioma: report on a 20-year experience. J Neurosurg 2014; 121(Suppl.): 167-78.
[http://dx.doi.org/10.3171/2014.8.GKS141411] [PMID: 25434950]
[147]
Jalali R, Gupta T, Goda JS, et al. Efficacy of stereotactic conformal radiotherapy vs conventional radiotherapy on benign and Low-Grade Brain Tumors: A Randomized Clinical Trial. JAMA Oncol 2017; 3(10): 1368-76.
[http://dx.doi.org/10.1001/jamaoncol.2017.0997] [PMID: 28570730]
[148]
Varlotto JM, Flickinger JC, Kondziolka D, Lunsford LD, Deutsch M. External beam irradiation of craniopharyngiomas: Long-term analysis of tumor control and morbidity. Int J Radiat Oncol Biol Phys 2002; 54(2): 492-9.
[http://dx.doi.org/10.1016/S0360-3016(02)02965-6] [PMID: 12243827]
[149]
Lin LL, El Naqa I, Leonard JR, et al. Long-term outcome in children treated for craniopharyngioma with and without radiotherapy. J Neurosurg Pediatr 2008; 1(2): 126-30.
[http://dx.doi.org/10.3171/PED/2008/1/2/126] [PMID: 18352781]
[150]
Stripp DC, Maity A, Janss AJ, et al. Surgery with or without radiation therapy in the management of craniopharyngiomas in children and young adults. Int J Radiat Oncol Biol Phys 2004; 58(3): 714-20.
[http://dx.doi.org/10.1016/S0360-3016(03)01570-0] [PMID: 14967425]
[151]
Lo AC, Howard AF, Nichol A, et al. Long-term outcomes and complications in patients with craniopharyngioma: The British Columbia Cancer Agency experience. Int J Radiat Oncol Biol Phys 2014; 88(5): 1011-8.
[http://dx.doi.org/10.1016/j.ijrobp.2014.01.019] [PMID: 24661653]
[152]
Hoffmann A, Bootsveld K, Gebhardt U, Daubenbüchel AM, Sterkenburg AS, Müller HL. Nonalcoholic fatty liver disease and fatigue in long-term survivors of childhood-onset craniopharyngioma. Eur J Endocrinol 2015; 173(3): 389-97.
[http://dx.doi.org/10.1530/EJE-15-0422] [PMID: 26088821]
[153]
Özyurt J, Müller HL, Thiel CM. A systematic review of cognitive performance in patients with childhood craniopharyngioma. J Neurooncol 2015; 125(1): 9-21.
[http://dx.doi.org/10.1007/s11060-015-1885-z] [PMID: 26369768]
[154]
Lipton J, Megerian JT, Kothare SV, et al. Melatonin deficiency and disrupted circadian rhythms in pediatric survivors of craniopharyngioma. Neurology 2009; 73(4): 323-5.
[http://dx.doi.org/10.1212/WNL.0b013e3181af78a5] [PMID: 19636054]
[155]
Dolson EP, Conklin HM, Li C, Xiong X, Merchant TE. Predicting behavioral problems in craniopharyngioma survivors after conformal radiation therapy. Pediatr Blood Cancer 2009; 52(7): 860-4.
[http://dx.doi.org/10.1002/pbc.21947] [PMID: 19191345]
[156]
Liu AK, Bagrosky B, Fenton LZ, et al. Vascular abnormalities in pediatric craniopharyngioma patients treated with radiation therapy. Pediatr Blood Cancer 2009; 52(2): 227-30.
[http://dx.doi.org/10.1002/pbc.21787] [PMID: 18937328]
[157]
Lo AC, Howard AF, Nichol A, et al. A cross-sectional cohort study of cerebrovascular disease and late effects after radiation therapy for craniopharyngioma. Pediatr Blood Cancer 2016; 63(5): 786-93.
[http://dx.doi.org/10.1002/pbc.25889] [PMID: 26756999]
[158]
Enchev Y, Ferdinandov D, Kounin G, Encheva E, Bussarsky V. Radiation-induced gliomas following radiotherapy for craniopharyngiomas: a case report and review of the literature. Clin Neurol Neurosurg 2009; 111(7): 591-6.
[http://dx.doi.org/10.1016/j.clineuro.2009.03.009] [PMID: 19447544]
[159]
Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose-volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys 2010; 76(3)(Suppl.): S28-35.
[http://dx.doi.org/10.1016/j.ijrobp.2009.07.1753] [PMID: 20171514]
[160]
Hiniker SM, Modlin LA, Choi CY, et al. Dose-Response modeling of the visual pathway tolerance to single-fraction and hypofractionated stereotactic radiosurgery. Semin Radiat Oncol 2016; 26(2): 97-104.
[http://dx.doi.org/10.1016/j.semradonc.2015.11.008] [PMID: 27000505]
[161]
Iwata H, Sato K, Tatewaki K, et al. Hypofractionated stereotactic radiotherapy with CyberKnife for nonfunctioning pituitary adenoma: high local control with low toxicity. Neuro-oncol 2011; 13(8): 916-22.
[http://dx.doi.org/10.1093/neuonc/nor055] [PMID: 21665918]
[162]
Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD. Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery 2008; 62(Suppl. 2): 733-43.
[http://dx.doi.org/10.1227/01.neu.0000316277.14748.63] [PMID: 18596432]
[163]
Minutoli F, Amato E, Sindoni A, et al. Peptide receptor radionuclide therapy in patients with inoperable meningiomas: Our experience and review of the literature. Cancer Biother Radiopharm 2014; 29(5): 193-9.
[http://dx.doi.org/10.1089/cbr.2013.1599] [PMID: 24811687]
[164]
Seystahl K, Stoecklein V, Schüller U, et al. Somatostatin receptor-targeted radionuclide therapy for progressive meningioma: benefit linked to 68Ga-DOTATATE/-TOC uptake. Neuro-oncol 2016; 18(11): 1538-47.
[http://dx.doi.org/10.1093/neuonc/now060] [PMID: 27106404]
[165]
Ansari SF, Moore RJ, Boaz JC, Fulkerson DH. Efficacy of phosphorus-32 brachytherapy without external-beam radiation for long-term tumor control in patients with craniopharyngioma. J Neurosurg Pediatr 2016; 17(4): 439-45.
[http://dx.doi.org/10.3171/2015.8.PEDS15317] [PMID: 26684761]
[166]
Lin AJ, Hui C, Dahiya S, et al. Radiologic response and disease control of recurrent intracranial meningiomas treated with reirradiation. Int J Radiat Oncol Biol Phys 2018; 102(1): 194-203.
[http://dx.doi.org/10.1016/j.ijrobp.2018.05.011] [PMID: 29970312]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 2
Year: 2020
Page: [93 - 121]
Pages: 29
DOI: 10.2174/1574887114666191111100635
Price: $65

Article Metrics

PDF: 29
HTML: 1