Effect of Tumor Suppressor MiR-34a Loaded on ZSM-5 Nanozeolite in Hepatocellular Carcinoma: In Vitro and In Vivo Approach

Author(s): Zeinab Salah*, Eman M. Abd El Azeem, Hanan F. Youssef, Amira M. Gamal-Eldeen*, Abdel R. Farrag, Emad El-Meliegy, Bangly Soliman, Mahmoud Elhefnawi*

Journal Name: Current Gene Therapy

Volume 19 , Issue 5 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: MicroRNA modulation therapy has shown great promise to treat hepatocellular carcinoma (HCC), however Efficient tissue-specific and safe delivery remains a major challenge.

Objective: We sought to develop an inorganic-organic hybrid vehicle for the systemic delivery of the tumor suppressor miR-34a, and to investigate the efficiency of the delivered miR-34a in the treatment of HCC in vitro and in vivo.

Methods: In the present study, pEGP-miR cloning and expression vector, expressing miR-34a, was electrostatically bound to polyethyleneimine (PEI), and then loaded onto ZSM-5 zeolite nanoparticles (ZNP). Qualitative and quantitative assessment of the transfection efficiency of miR-34a construct in HepG2 cells was applied by GFP screening and qRT-PCR, respectively. The expression of miR-34a target genes was investigated by qRT-PCR in vitro and in vivo.

Results: ZNP/PEI/miR-34a nano-formulation could efficiently deliver into HepG2 cells with low cytotoxicity, indicating good biocompatibility of generated nanozeolite. Furthermore, five injected doses of ZNP/PEI/miR-34a nano-formulation in HCC induced male Balb-c mice, significantly inhibited tumor growth, and demonstrated improved cell structure, in addition to a significant decrease in alphafetoprotein level and liver enzymes activities, as compared to the positive control group. Moreover, injected ZNP/PEI/miR-34a nano-formulation led to a noticeable decrease in the CD44 and c-Myc levels. Results also showed that ZNP/PEI/miR-34a nano-formulation inhibited several target oncogenes including AEG-1, and SOX-9, in vitro and in vivo.

Conclusion: Our results suggested that miR-34a is a powerful candidate in HCC treatment and that AEG-1 and SOX-9 are novel oncotargets of miR-34a in HCC. Results also demonstrated that our nano-formulation may serve as a candidate approach for miR-34a restoration for HCC therapy, and generally for safe gene delivery.

Keywords: Hepatocellular carcinoma, tumor suppressor miRNA, replacement therapy, nanozeolite, gene delivery, oncotargets.

Mansy SS, El-Ahwany E, Mahmoud S, et al. Potential ultrastructure predicting factors for hepatocellular carcinoma in HCV infected patients. Ultrastruct Pathol 2017; 41(3): 209-26.
[http://dx.doi.org/10.1080/01913123.2017.1316330] [PMID: 28494215]
Bolhassani A, Saleh T. In: Wei M, Ed Challenges in advancing the field of cancer gene therapy: An overview of the multi-functional nanocarriers. IntechOpen 2013.
Rothschild SI. microRNA therapies in cancer. Mol Cell Ther 2014; 2(7): 7.
[http://dx.doi.org/10.1186/2052-8426-2-7] [PMID: 26056576]
Amer M, Elhefnawi M, El-Ahwany E, et al. Hsa-miR-195 targets PCMT1 in hepatocellular carcinoma that increases tumor life span. Tumour Biol 2014; 35(11): 11301-9.
[http://dx.doi.org/10.1007/s13277-014-2445-4] [PMID: 25119594]
ElHefnawi M, Soliman B, Abu-Shahba N, Amer M. An integrative meta-analysis of microRNAs in hepatocellular carcinoma. Genomics Proteomics Bioinformatics 2013; 11(6): 354-67.
[http://dx.doi.org/10.1016/j.gpb.2013.05.007] [PMID: 24287119]
Roy G, Roy P. MicroRNAs in hepatocellular carcinoma-therapeutics and beyond: A systematic review. IJS Short Reports 2017; 2(2): 10-6.
Wang XP, Zhou J, Han M, et al. MicroRNA-34 a regulates liver regeneration and the development of liver cancer in rats by targeting Notch signaling pathway. Oncotarget 2017; 8(8): 13264-76.
[http://dx.doi.org/10.18632/oncotarget.14807] [PMID: 28129650]
Cai H, Zhou H, Miao Y, Li N, Zhao L, Jia L. MiRNA expression profiles reveal the involvement of miR-26a, miR-548l and miR-34a in hepatocellular carcinoma progression through regulation of ST3GAL5. Lab Invest 2017; 97(5): 530-42.
[http://dx.doi.org/10.1038/labinvest.2017.12] [PMID: 28218742]
Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet 2012; 3: 120.
[http://dx.doi.org/10.3389/fgene.2012.00120] [PMID: 22783274]
Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D. Systemic delivery of a miR34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 2014; 13(10): 2352-60.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0209] [PMID: 25053820]
Liu Y, Zhang W, Liu K, Liu S, Ji B, Wang Y. miR-138 suppresses cell proliferation and invasion by inhibiting SOX9 in hepatocellular carcinoma. Am J Transl Res 2016; 8(5): 2159-68.
[PMID: 27347323]
Yan JJ, Chang Y, Zhang YN, Lin JS, He XX, Huang HJ. miR-195 inhibits cell proliferation via targeting AEG-1 in hepatocellular carcinoma. Oncol Lett 2017; 13(5): 3118-26.
[http://dx.doi.org/10.3892/ol.2017.5826] [PMID: 28529562]
Ben-Shushan D, Markovsky E, Gibori H, Tiram G, Scomparin A, Satchi-Fainaro R. Overcoming obstacles in microRNA delivery towards improved cancer therapy. Drug Deliv Transl Res 2014; 4(1): 38-49.
[http://dx.doi.org/10.1007/s13346-013-0160-0] [PMID: 25786616]
Cevher E, Sezer AD, Çağlar E. Gene delivery systems: Recent progress in viral and non-viral therapy Recent advances in novel drug carrier systems. IntechOpen 2012; pp. 437-70.
Appelbe OK, Kim BK, Rymut N, Wang J, Kron SJ, Yeo Y. Radiation-enhanced delivery of plasmid DNA to tumors utilizing a novel PEI polyplex. Cancer Gene Ther 2018; 25(7-8): 196-206.
[http://dx.doi.org/10.1038/s41417-017-0004-z] [PMID: 29255216]
Zhou Y, Quan G, Wu Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 2018; 8(2): 165-77.
[http://dx.doi.org/10.1016/j.apsb.2018.01.007] [PMID: 29719777]
Kim TH, Kim M, Eltohamy M, Yun YR, Jang JH, Kim HW. Efficacy of mesoporous silica nanoparticles in delivering BMP-2 plasmid DNA for in vitro osteogenic stimulation of mesenchymal stem cells. J Biomed Mater Res A 2013; 101(6): 1651-60.
[http://dx.doi.org/10.1002/jbm.a.34466] [PMID: 23184619]
Guo YP, Long T, Song ZF, Zhu ZA. Hydrothermal fabrication of ZSM-5 zeolites: Biocompatibility, drug delivery property, and bactericidal property. J Biomed Mater Res B Appl Biomater 2014; 102(3): 583-91.
[http://dx.doi.org/10.1002/jbm.b.33037] [PMID: 24123971]
Pearce ME, Mai HQ, Lee N, Larsen SC, Salem AK. Silicalite nanoparticles that promote transgene expression. Nanotechnology 2008; 19(17)175103
[http://dx.doi.org/10.1088/0957-4484/19/17/175103] [PMID: 21825661]
Youssef H, Ibrahim D, Komarneni S. Microwave-assisted versus conventional synthesis of zeolite A from metakaolinite. Microporous Mesoporous Mater 2008; 115(3): 527-34.
Petushkov A, Intra J, Graham JB, Larsen SC, Salem AK. Effect of crystal size and surface functionalization on the cytotoxicity of silicalite-1 nanoparticles. Chem Res Toxicol 2009; 22(7): 1359-68.
[http://dx.doi.org/10.1021/tx900153k] [PMID: 19580308]
Stockert JC, Horobin RW, Colombo LL, Blázquez-Castro A. Tetrazolium salts and formazan products in cell biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem 2018; 120(3): 159-67.
[http://dx.doi.org/10.1016/j.acthis.2018.02.005] [PMID: 29496266]
Cho S, Jang I, Jun Y, et al. MiRGator v3.0: A microRNA portal for deep sequencing, expression profiling and mRNA targeting. Nucleic Acids Res 2013; 41: D252-7.
[PMID: 23193297]
Dweep H, Gretz N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat Methods 2015; 12(8): 697.
[http://dx.doi.org/10.1038/nmeth.3485] [PMID: 26226356]
Luo M, Yang F, Huang SX, et al. Two-stage model of chemically induced hepatocellular carcinoma in mouse. Oncol Res 2013; 20(11): 517-28.
[http://dx.doi.org/10.3727/096504013X13747716581336] [PMID: 24063282]
Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 1957; 28(1): 56-63.
[http://dx.doi.org/10.1093/ajcp/28.1.56] [PMID: 13458125]
Carleton HM, Drury RA, Wallington EA. Carleton’s histological technique. USA: Oxford University Press 1980.
Fuhrich DG, Lessey BA, Savaris RF. Comparison of HSCORE assessment of endometrial β3 integrin subunit expression with digital HSCORE using computerized image analysis. Anal Quant Cytopathol Histpathol 2013; 35(4): 210-6.
[PMID: 24341124]
Anderson TD, Cheville NF, Meador VP. Pathogenesis of placentitis in the goat inoculated with Brucella abortus. II. Ultrastructural studies. Vet Pathol 1986; 23(3): 227-39.
[http://dx.doi.org/10.1177/030098588602300302] [PMID: 3088810]
Sun XY, Nong J, Qin K, et al. MSC(TRAIL)-mediated HepG2 cell death in direct and indirect co-cultures. Anticancer Res 2011; 31(11): 3705-12.
[PMID: 22110190]
Thomas MB, Zhu AX. Hepatocellular carcinoma: The need for progress. J Clin Oncol 2005; 23(13): 2892-9.
[http://dx.doi.org/10.1200/JCO.2005.03.196] [PMID: 15860847]
Henry JC, Azevedo-Pouly AC, Schmittgen TD. MicroRNA replacement therapy for cancer. Pharm Res 2011; 28(12): 3030-42.
[http://dx.doi.org/10.1007/s11095-011-0548-9] [PMID: 21879389]
Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010; 18(9): 1650-6.
[http://dx.doi.org/10.1038/mt.2010.136] [PMID: 20606648]
Karagöz U, Kotmakçı M, Akbaba H, et al. Preparation and characterization of non-viral gene delivery systems with pEGFP-C1 Plasmid DNA. Braz J Pharm Sci 2018; 54(1)e00265
Ghiamkazemi S, Amanzadeh A, Dinarvand R, et al. Synthesis, and characterization, and evaluation of cellular effects of the FOL-PEG-g-PEI-GAL nanoparticles as a potential non-viral vector for gene delivery. J Nanomater 2010; 2010: 1-10.
Couvreur P, Vauthier C. Nanotechnology: Intelligent design to treat complex disease. Pharm Res 2006; 23(7): 1417-50.
[http://dx.doi.org/10.1007/s11095-006-0284-8] [PMID: 16779701]
Hendriks FC, Valencia D, Bruijnincx PC, Weckhuysen BM. Zeolite molecular accessibility and host-guest interactions studied by adsorption of organic probes of tunable size. Phys Chem Chem Phys 2017; 19(3): 1857-67.
[http://dx.doi.org/10.1039/C6CP07572J] [PMID: 28000819]
Zheng K, Yang H, Wang L, et al. Amino-functionalized mesoporous silica nanoparticles: Adsorption and protection for pcDNA3. 1 (+)-PKB-HA. J Porous Mater 2013; 20(5): 1003-8.
Miyata K, Gouda N, Takemoto H, et al. Enhanced transfection with silica-coated polyplexes loading plasmid DNA. Biomaterials 2010; 31(17): 4764-70.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.033] [PMID: 20304483]
Cotrim AP, Baum BJ. Gene therapy: Some history, applications, problems, and prospects. Toxicol Pathol 2008; 36(1): 97-103.
[http://dx.doi.org/10.1177/0192623307309925] [PMID: 18337227]
Hunter AC. Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev 2006; 58(14): 1523-31.
[http://dx.doi.org/10.1016/j.addr.2006.09.008] [PMID: 17079050]
Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A. A two-stage poly(ethylenimine)-mediated cytotoxicity: Implications for gene transfer/therapy. Mol Ther 2005; 11(6): 990-5.
[http://dx.doi.org/10.1016/j.ymthe.2005.02.010] [PMID: 15922971]
Kloeckner J, Bruzzano S, Ogris M, Wagner E. Gene carriers based on hexanediol diacrylate linked oligoethylenimine: Effect of chemical structure of polymer on biological properties. Bioconjug Chem 2006; 17(5): 1339-45.
[http://dx.doi.org/10.1021/bc060133v] [PMID: 16984145]
Xia T, Kovochich M, Liong M, Zink JI, Nel AE. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2008; 2(1): 85-96.
[http://dx.doi.org/10.1021/nn700256c] [PMID: 19206551]
Shmueli RB, Bhise NS, Green JJ. Evaluation of polymeric gene delivery nanoparticles by nanoparticle tracking analysis and high-throughput flow cytometry. J Vis Exp 2013; 1(73)e50176
[http://dx.doi.org/10.3791/50176] [PMID: 23486314]
Soliman B, Salem A, Ghazy M, Abu-Shahba N, El Hefnawi M. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumour Biol 2018; 40(5)1010428318773675
[http://dx.doi.org/10.1177/1010428318773675] [PMID: 29775159]
Xu X, Chen W, Miao R, et al. miR-34a induces cellular senescence via modulation of telomerase activity in human hepatocellular carcinoma by targeting FoxM1/c-Myc pathway. Oncotarget 2015; 6(6): 3988-4004.
[http://dx.doi.org/10.18632/oncotarget.2905] [PMID: 25686834]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [342 - 354]
Pages: 13
DOI: 10.2174/1566523219666191108103739
Price: $65

Article Metrics

PDF: 36