Secondary Metabolite Produced by Diaporthe terebinthifolli LGMF658 – Bioactivity and Chemical Structure Relationship

Author(s): Fabiana Tonial*, Charise D. Bertol, Beatriz H.L.N. Sales Maia, Josiane A.G. Figueiredo, Kielli C.F. Guerra, Chirlei Glienke

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 7 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Motivated by the need for bioprospecting new drug studies have revealed a variety of secondary metabolites with biological activity. In particular, antimicrobial research confronts the growing reality of resistance of microorganisms to currently available drugs. Modifications in the chemical structure of secondary metabolites may be important in the development of a product to improve the efficacy of these compounds. Being cognizant of the fact that modifications in the chemical structure could enhance the biological activity and improve the compound characteristics for the development of a product, the present study aimed to verify, if there is the possibility of a significant difference in the bioactivity of verbanol in relation to verbenol.

Methods: The biological activity was evaluated by agar diffusion assay and microdilution.

Results: Verbanol is a bioactive secondary metabolite produced by the endophytic fungus Diaporthe terebinthifolli LGMF658. This compound has bactericidal activity against Staphylococcus aureus and fungicide against Candida albicans according to the microdilution assay.

Discussion: In contrast, verbenol, a byproduct of verbanol, did not control the development of the bacterium and showed fungistatic activity against yeast.

Conclusion: The results demonstrated that the presence of the double bond, which increased the polarity of the compound, reduced its bioactivity, corroborating with other studies that report the importance of lipophilicity for antimicrobial action.

Keywords: Bioprospection, double bond, microdilution, antimicrobial, verbanol, verbenol.

World Health Organization. 10 facts on antimicrobial resistance ce/en/2018.
Otter, J.A.; Burgess, P.; Davies, F.; Mookerjee, S.; Singleton, J.; Gilchrist, M.; Parsons, D.; Brannigan, E.T.; Robotham, J.; Holmes, A.H. Counting the cost of an outbreak of carbapenemase-producing Enterobacteriaceae: An economic evaluation from a hospital perspective. Clin. Microbiol. Infect., 2017, 23(3), 188-196.
Wright, G.D. Antibiotic adjuvants: Rescuing antibiotics from resistance. Trends Microbiol., 2016, 24(11), 862-871.
Chandra, H.; Bishnoi, P.; Yadav, A.; Patni, B.; Mishra, A.P.; Nautiyal, A.R. Antimicrobial resistance and the alternative resources with special enphasis on plant-based antimicrobials -A review. Plants (Basel), 2017, 6(2), 16.
Martinez-Klimova, E.; Rodríguez-Peña, K.; Sánchez, S. Endophytes as sources of antibiotics. Biochem. Pharmacol., 2017, 134, 1-17.
Mollica, A.; Costante, R.; Mirzaie, S.; Carradori, S.; Macedonio, G.; Stefanucci, A.; Novellino, E. Preparation of constrained unnatural aromatic amino acids via unsaturated diketopiperazine intermediate. J. Heterocycl. Chem., 2016, 53, 2106-2110.
Stefanucci, A.; Angeli, A.; Dimmito, M.P.; Luisi, G.; Del Prete, S.; Capasso, C.; Donald, W.A.; Mollica, A.; Supuran, C.T. Activation of β- and γ-carbonic anhydrases from pathogenic bacteria with tripeptides. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 945-950.
Mollica, A.; Macedonio, G.; Stefanucci, A.; Costante, R.; Carradori, S.; Cataldi, V.; Di Giulio, M.; Cellini, L.; Silvestri, R.; Giordano, C.; Scipioni, A.; Morosetti, S.; Punzi, P.; Mirzaie, S. Arginine- and lysinerich peptides: Synthesis, characterization and antimicrobial activity. Lett. Drug Des. Discov., 2017, 14, 1-7.
Tonial, F.; Maia, B.H.L.N.S.; Sobottka, A.M.; Savi, D.C.; Vicente, V.A.; Gomes, R.R.; Glienke, C. Biological activity of Diaporthe terebinthifolii extracts against Phyllosticta citricarpa. FEMS Microbiol. Lett., 2017, 364(5), fnx026.
Simakova, I.L.; Semikolenov, V.A. The catalytic method of verbanol preparation with controlled isomer distribution starting from renewable material α-pinene. Chem. Sustein. Dev., 2003, 1, 271-275.
Adams, R.P. Identification of essential oil components by gas chromatography, mass spectroscopy 4th ed; Allured: Carol Stream; , 2007.
Clinical and Laboratory Standards Institute. Padronização dos testes de sensibilidade a antimicrobianos por disco-difusão: norma aprovada – M2-A8 [Acessed September 19, 2019].
Clinical and Laboratory Standards Institute. Metodologia dos testes de sensibilidade a agentes antimicrobianos por diluição para bactéria de crescimento aeróbico: norma aprovada – M7-A6 [Accessed September 19, 2019].
Tong, S.Y.C.; Davis, J.S.; Eichenberger, E.; Holland, T.L.; Fowler, V.G. Jr Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev., 2015, 28(3), 603-661.
Wilson, B.A.; Garud, N.R.; Feder, A.F.; Assaf, Z.J.; Pennings, P.S. The population genetics of drug resistance evolution in natural populations of viral, bacterial and eukaryotic pathogens. Mol. Ecol., 2016, 25(1), 42-66.
Cowen, L.E.; Sanglard, D.; Howard, S.J.; Rogers, P.D.; Perlin, D.S. Mechanisms of antifungal drug resistance. Cold Spring Harb. Perspect. Med., 2014, 5(7)a019752
World Health Organization WHO publishes list of bacteria for which new antibiotics are urgently needed, [Accessed September 19, 2019].
Mohsenipour, Z.; Hassanshahian, M. Antibacterial activity of Euphorbia hebecarpa alcoholic extracts against six human pathogenic bacteria in planktonic and biofilm forms. Jundishapur J. Microbiol., 2016, 9(6), e34701.
Burrows, L.L.; Stark, M.; Chan, C.; Glukhov, E.; Sinnadurai, S.; Deber, C.M. Activity of novel non-amphipathic cationic antimicrobial peptides against Candida species. J. Antimicrob. Chemother., 2006, 57(5), 899-907.
Schreier, S.; Malheiros, S.V.P.; de Paula, E. Surface active drugs: Self-association and interaction with membranes and surfactants. Physicochemical and biological aspects. Biochim. Biophys. Acta, 2000, 1508(1-2), 210-234.
Caneschi, C.A.; Almeida, A.M.; Martins, F.J.; Hyaric, M.L.; Oliveira, M.M.E.; Macedo, G.C.; Almeida, M.V.; Raposo, N.R.B. In vitro antifungal activity of organic compounds derived from amino alcohols against onychomycosis. Braz. J. Microbiol., 2017, 48(3), 476-482.
de Almeida, A.M.; Nascimento, T.; Ferreira, B.S.; de Castro, P.P.; Silva, V.L.; Diniz, C.G.; Le Hyaric, M. Synthesis and antimicrobial activity of novel amphiphilic aromatic amino alcohols. Bioorg. Med. Chem. Lett., 2013, 23(10), 2883-2887.
Klimesová, V.; Koci, J.; Palát, K.; Stolariková, J.; Dahse, H.M.; Möllmann, U. Structure-activity relationships of 2-benzylsulfanylbenzothiazoles: Synthesis and selective antimycobacterial properties. Med. Chem., 2012, 8(2), 281-292.
Falciani, C.; Lozzi, L.; Pollini, S.; Luca, V.; Carnicelli, V.; Brunetti, J.; Lelli, B.; Bindi, S.; Scali, S.; Di Giulio, A.; Rossolini, G.M.; Mangoni, M.L.; Bracci, L.; Pini, A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One, 2012, 7(10), e46259.
Sanghvi, H.; Mishra, S. Structure-activity relationship and antimicrobial evaluation of NPhenylpyrazole curcumin derivatives. Curr. Bioact. Compd., 2019, 15, 1.
Boreiko, S.; Machado, A.T.P.; Stiirmer, J.C.; Silva, M.; Iulek, J. Bactericidal activity and structural studies of the steviol derivative 17- hydroxy-16-hydroxyiminobayeran-19- oic acid. Curr. Bioact. Compd., 2018, 14, 1.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 October, 2020
Page: [1103 - 1107]
Pages: 5
DOI: 10.2174/1573407215666191108092008
Price: $65

Article Metrics

PDF: 8
PRC: 1