Recent Avenues in Novel Patient-Friendly Techniques for the Treatment of Diabetes

Author(s): Sunil Kumar Dubey, Amit Alexander*, K. Sai Pradhyut, Mukta Agrawal, Rupesh Jain, Ranendra Narayana Saha, Gautam Singhvi, Swarnlata Saraf, Shailendra Saraf

Journal Name: Current Drug Delivery

Volume 17 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Diabetes is one of the most common chronic metabolic disorders which affect the quality of human life worldwide. As per the WHO report, between 1980 to 2014, the number of diabetes patients increases from 108 million to 422 million, with a global prevalence rate of 8.5% per year. Diabetes is the prime reason behind various other diseases like kidney failure, stroke, heart disorders, glaucoma, etc. It is recognized as the seventh leading cause of death throughout the world. The available therapies are painful (insulin injections) and inconvenient due to higher dosing frequency. Thus, to find out a promising and convenient treatment, extensive investigations are carried out globally by combining novel carrier system (like microparticle, microneedle, nanocarrier, microbeads etc.) and delivery devices (insulin pump, stimuli-responsive device, inhalation system, bioadhesive patch, insulin pen etc.) for more precise diagnosis and painless or less invasive treatment of disease.

Objective: The review article is made with an objective to compile information about various upcoming and existing modern technologies developed to provide greater patient compliance and reduce the undesirable side effect of the drug. These devices evade the necessity of daily insulin injection and offer a rapid onset of action, which sustained for a prolonged duration of time to achieve a better therapeutic effect.

Conclusion: Despite numerous advantages, various commercialized approaches, like Afrezza (inhalation insulin) have been a failure in recent years. Such results call for more potential work to develop a promising system. The novel approaches range from the delivery of non-insulin blood glucose lowering agents to insulin-based therapy with minimal invasion are highly desirable.

Keywords: Diabetes, Novel drug delivery, insulin, non-invasive, insulin pen, microparticle.

[1]
WHO-News/Fact sheets/Details/Diabetes, 30.10.2018
[2]
(a) Khan, J.; Alexander, A.; Agrawal, M. Ajazuddin; Dubey, S.K.; Siddique, S.; Saraf, S.; Saraf, S. Stem cell-based therapies: a new ray of hope for diabetic patients. Curr. Stem Cell Res. Ther., 2019, 14(2), 146-151.
[http://dx.doi.org/10.2174/1574888X13666181002154110] [PMID: 30280677]
(b) Tol, A.; Alhani, F.; Shojaeazadeh, D.; Sharifirad, G.; Moazam, N. An empowering approach to promote the quality of life and self-management among type 2 diabetic patients. J. Educ. Health Promot., 2015, 4, 13.
[http://dx.doi.org/10.4103/2277-9531.154022] [PMID: 25861658]
(c) Shrivastava, S.R.; Shrivastava, P.S.; Ramasamy, J. Role of self-care in management of diabetes mellitus. J. Diabetes Metab. Disord., 2013, 12(1), 14.
[http://dx.doi.org/10.1186/2251-6581-12-14] [PMID: 23497559]
(d) Kaufman, N.; Khurana, I. Using digital health technology to prevent and treat diabetes. Diabetes Technol. Ther., 2016, 18(Suppl. 1), S56-S68.
[http://dx.doi.org/10.1089/dia.2016.2506] [PMID: 26836430]
(e) Peiris, D.; Sun, L.; Patel, A.; Tian, M.; Essue, B.; Jan, S.; Zhang, P. Systematic medical assessment, referral and treatment for diabetes care in China using lay family health promoters: Protocol for the SMARTDiabetes cluster randomised controlled trial. 2016, 11(1), 116.
(f) Xie, J.; Li, A.; Li, J. Advances in pH-sensitive polymers for smart insulin delivery. Macromol. Rapid Commun., 2017, 38(23)
[http://dx.doi.org/10.1002/marc.201700413]
[3]
Alhabib, S.; Aldraimly, M.; Alfarhan, A. An evolving role of clinical pharmacists in managing diabetes: Evidence from the literature. Saudi Pharm. J., 2016, 24(4), 441-446.
[http://dx.doi.org/10.1016/j.jsps.2014.07.008] [PMID: 27330374]
[4]
Halimi, S.; Schweizer, A.; Minic, B.; Foley, J.; Dejager, S. Combination treatment in the management of type 2 diabetes: Focus on vildagliptin and metformin as a single tablet. Vasc. Health Risk Manag., 2008, 4(3), 481-492.
[PMID: 18827867]
[5]
(a) Basudev, N.; Crosby-Nwaobi, R.; Thomas, S.; Chamley, M.; Murrells, T.; Forbes, A. A prospective randomized controlled study of a virtual clinic integrating primary and specialist care for patients with Type 2 diabetes mellitus. Diabet. Med., 2016, 33(6), 768-776.
[http://dx.doi.org/10.1111/dme.12985] [PMID: 27194175]
(b) George, R.E.; Joseph, S. A review of newer treatment approaches for type-2 diabetes: Focusing safety and efficacy of incretin based therapy. Saudi Pharm. J., 2014, 22(5), 403-410.
[http://dx.doi.org/10.1016/j.jsps.2013.05.005] [PMID: 25473328]
[6]
Brinton, E.A.; Triscari, J.; Brudi, P.; Chen, E.; Johnson-Levonas, A.O.; Sisk, C.M.; Ruck, R.A.; MacLean, A.A.; Maccubbin, D.; Mitchel, Y.B. Effects of extended-release niacin/laropiprant on correlations between apolipoprotein B, LDL-cholesterol and non-HDL-cholesterol in patients with type 2 diabetes. Lipids Health Dis., 2016, 15(1), 116.
[http://dx.doi.org/10.1186/s12944-016-0282-8] [PMID: 27405296]
[7]
(a) American Diabetes Association.Diagnosis and classification of diabetes mellitus. Diabetes Care, 2010, 33(Suppl. 1), S62-S69.
[http://dx.doi.org/10.2337/dc10-S062] [PMID: 20042775]
(b) American Diabetes Association.Diagnosis and classification of diabetes mellitus. Diabetes Care, 2013, 36(Suppl. 1), S67-S74.
[http://dx.doi.org/10.2337/dc13-S067] [PMID: 23264425]
[8]
(a) American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2009, 32(Suppl. 1), S62-S67.
[http://dx.doi.org/10.2337/dc09-S062] [PMID: 19118289]
(b) Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[9]
(a) Lebastchi, J.; Herold, K.C. Immunologic and metabolic biomarkers of β-cell destruction in the diagnosis of type 1 diabetes. Cold Spring Harb. Perspect. Med., 2012, 2(6)a007708
[http://dx.doi.org/10.1101/cshperspect.a007708] [PMID: 22675665]
(b) Taplin, C.E.; Barker, J.M. Autoantibodies in type 1 diabetes. Autoimmunity, 2008, 41(1), 11-18.
[http://dx.doi.org/10.1080/08916930701619169] [PMID: 18176860]
[10]
Association, A.D. American diabetes association. Diagnosis and classification of diabetes mellitus. Diabetes Care, 2014, 37(Suppl. 1), S81-S90.
[http://dx.doi.org/10.2337/dc14-S081] [PMID: 24357215]
[11]
(a) Wilcox, G. Insulin and insulin resistance. Clin. Biochem. Rev., 2005, 26(2), 19-39.
(b) Cerf, M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. (Lausanne), 2013, 4, 37.
[http://dx.doi.org/10.3389/fendo.2013.00037] [PMID: 23542897]
[12]
(a) Wu, Y.; Ding, Y.; Tanaka, Y.; Zhang, W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int. J. Med. Sci., 2014, 11(11), 1185-1200.
[http://dx.doi.org/10.7150/ijms.10001] [PMID: 25249787]
(b) Murea, M.; Ma, L.; Freedman, B.I. Genetic and environmental factors associated with type 2 diabetes and diabetic vascular complications. Rev. Diabet. Stud., 2012, 9(1), 6-22.
[http://dx.doi.org/10.1900/RDS.2012.9.6] [PMID: 22972441]
[13]
Filgueira, G.C.O.; Filgueira, O.A.S.; Carvalho, D.M.; Marques, M.P.; Moisés, E.C.D.; Duarte, G.; Lanchote, V.L.; Cavalli, R.C. Effect of type 2 diabetes mellitus on the pharmacokinetics and transplacental transfer of nifedipine in hypertensive pregnant women. Br. J. Clin. Pharmacol., 2017, 83(7), 1571-1579.
[http://dx.doi.org/10.1111/bcp.13226] [PMID: 28042936]
[14]
Bliss, M. The discovery of insulin; University of Chicago Press: Chicago, 2007.
[15]
Gilroy, C.A.; Luginbuhl, K.M.; Chilkoti, A. Controlled release of biologics for the treatment of type 2 diabetes. J. Control. Release: Off. J. Control. Release Soc., 2016, 240, 151-164.
[http://dx.doi.org/10.1016/j.jconrel.2015.12.002]
[16]
(a) Agrawal, M.; Saraf, S.; Saraf, S.; Antimisiaris, S.G.; Hamano, N.; Li, S.D.; Chougule, M.; Shoyele, S.A.; Gupta, U. Ajazuddin; Alexander, A. Recent advancements in the field of nanotechnology for the delivery of anti-Alzheimer drug in the brain region. Expert Opin. Drug Deliv., 2018, 15(6), 589-617.
[http://dx.doi.org/10.1080/17425247.2018.1471058] [PMID: 29733231]
(b) Alexander, A. Ajazuddin; Patel, R.J.; Saraf, S.; Saraf, S. Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J. Control. Release: Off. J. Control. Release Society, 2016, 241, 110-124.
(c) Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[17]
Gong, R.; Chen, G. Preparation and application of functionalized nano drug carriers. Saudi Pharm. J., 2016, 24(3), 254-257.
[http://dx.doi.org/10.1016/j.jsps.2016.04.010] [PMID: 27275111]
[18]
(a) Alexander, A.; Saraf, S.; Saraf, S.; Agrawal, M.; Patel, R.J.; Agrawal, P.; Khan, J. Ajazuddin; Amalgamation of stem cells with nanotechnology: A unique therapeutic approach. Curr. Stem Cell Res. Ther., 2019, 14(2), 83-92.
[http://dx.doi.org/10.2174/1574888X13666180703143219] [PMID: 29968543]
(b) Pradhan, M.; Alexander, A.; Singh, M.R.; Singh, D.; Saraf, S.; Saraf, S. Ajazuddin; Understanding the prospective of nano-formulations towards the treatment of psoriasis. Biomed. Pharmacother., 2018, (447), 447-463.
(c) Shah, R.B.; Patel, M.; Maahs, D.M.; Shah, V.N. Insulin delivery methods: Past, present and future. Int. J. Pharm. Investig., 2016, 6(1), 1-9.
[http://dx.doi.org/10.4103/2230-973X.176456] [PMID: 27014614]
[19]
Alexander, A.; Ajazuddin, M.; Swarna, M.; Sharma, M.; Tripathi, D.K. Polymers and permeation enhancers: Specialized components of mucoadhesives. J. Pharm. Sci., 2011, 4, 91-95.
[20]
(a) Haggag, Y.; Abdel-Wahab, Y.; Ojo, O.; Osman, M.; El-Gizawy, S.; El-Tanani, M.; Faheem, A.; McCarron, P. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Int. J. Pharm., 2016, 499(1-2), 236-246.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.063] [PMID: 26746800]
(b) Khare, S.; Alexander, A.; Ajaz, A.; Amit, N. Biomedical applications of nanobiotechnology for drug design, delivery and diagnostics. Res. J. Pharm. Technol, 2014, 7, 915-925.
[21]
Giri, T.K.; Kumar, K.; Alexander, A. Ajazuddin; Badwaik, H.; Tripathy, M.; Tripathi, D.K. Novel controlled release solid dispersion for the delivery of diclofenac sodium. Curr. Drug Deliv., 2013, 10(4), 435-443.
[http://dx.doi.org/10.2174/1567201811310040008] [PMID: 23517623]
[22]
(a) Wadher, K.J.; Kakde, R.B.; Umekar, M.J. Study on sustained-release metformin hydrochloride from matrix tablet: Influence of hydrophilic polymers and in vitro evaluation. Int. J. Pharm. Investig., 2011, 1(3), 157-163.
[http://dx.doi.org/10.4103/2230-973X.85966] [PMID: 23071938]
(b) Jain, D.; Raturi, R.; Jain, V.; Bansal, P.; Singh, R. Recent technologies in pulsatile drug delivery systems. Biomatter, 2011, 1(1), 57-65.
[http://dx.doi.org/10.4161/biom.1.1.17717] [PMID: 23507727]
[23]
Gilroy, C.A.; Roberts, S.; Chilkoti, A. Fusion of fibroblast growth factor 21 to a thermally responsive biopolymer forms an injectable depot with sustained anti-diabetic action. J. Control. Release: Off. J. Control. Release Society, 2018, 277, 154-164.
[http://dx.doi.org/10.1016/j.jconrel.2018.03.015]
[24]
Davoodi, P.; Lee, L.Y.; Xu, Q.; Sunil, V.; Sun, Y.; Soh, S.; Wang, C-H. Drug delivery systems for programmed and on-demand release. Adv. Drug Deliv. Rev., 2018, 132, 104-138.
[http://dx.doi.org/10.1016/j.addr.2018.07.002] [PMID: 30415656]
[25]
(a) Yan, B.; Li, B.; Kunecke, F.; Gu, Z.; Guo, L. Polypyrrole-based implantable electroactive pump for controlled drug microinjection. ACS Appl. Mater. Interfaces, 2015, 7(27), 14563-14568.
[http://dx.doi.org/10.1021/acsami.5b04551] [PMID: 26134590]
(b) Timko, B.P.; Arruebo, M.; Shankarappa, S.A.; McAlvin, J.B.; Okonkwo, O.S.; Mizrahi, B.; Stefanescu, C.F.; Gomez, L.; Zhu, J.; Zhu, A.; Santamaria, J.; Langer, R.; Kohane, D.S. Near-infrared-actuated devices for remotely controlled drug delivery. Proc. Natl. Acad. Sci. USA, 2014, 111(4), 1349-1354.
[http://dx.doi.org/10.1073/pnas.1322651111] [PMID: 24474759]
[26]
Rege, N.K.; Phillips, N.F.B.; Weiss, M.A. Development of glucose-responsive ‘smart’ insulin systems. Curr. Opin. Endocrinol. Diabetes Obes., 2017, 24(4), 267-278.
[http://dx.doi.org/10.1097/MED.0000000000000345] [PMID: 28509691]
[27]
Thabit, H.; Hartnell, S.; Allen, J.M.; Lake, A.; Wilinska, M.E.; Ruan, Y.; Evans, M.L.; Coll, A.P.; Hovorka, R. Closed-loop insulin delivery in inpatients with type 2 diabetes: A randomised, parallel-group trial. Lancet Diabetes Endocrinol., 2017, 5(2), 117-124.
[http://dx.doi.org/10.1016/S2213-8587(16)30280-7] [PMID: 27836235]
[28]
Elleri, D.; Allen, J.M.; Kumareswaran, K.; Leelarathna, L.; Nodale, M.; Caldwell, K.; Cheng, P.; Kollman, C.; Haidar, A.; Murphy, H.R.; Wilinska, M.E.; Acerini, C.L.; Dunger, D.B.; Hovorka, R. Closed-loop basal insulin delivery over 36 hours in adolescents with type 1 diabetes: Randomized clinical trial. Diabetes Care, 2013, 36(4), 838-844.
[http://dx.doi.org/10.2337/dc12-0816] [PMID: 23193217]
[29]
Hovorka, R.; Nodale, M.; Haidar, A.; Wilinska, M.E. Assessing performance of closed-loop insulin delivery systems by continuous glucose monitoring: Drawbacks and way forward. Diabetes Technol. Ther., 2013, 15(1), 4-12.
[http://dx.doi.org/10.1089/dia.2012.0185] [PMID: 23046396]
[30]
Laguna Sanz, A.J.; Doyle, F.J., III; Dassau, E. An enhanced model predictive control for the artificial pancreas using a confidence index based on residual analysis of past predictions. J. Diabetes Sci. Technol., 2017, 11(3), 537-544.
[http://dx.doi.org/10.1177/1932296816680632] [PMID: 28745095]
[31]
Muheem, A.; Shakeel, F.; Jahangir, M.A.; Anwar, M.; Mallick, N.; Jain, G.K.; Warsi, M.H.; Ahmad, F.J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J., 2016, 24(4), 413-428.
[http://dx.doi.org/10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[32]
(a) Kesavadev, J.; Das, A.K.; Unnikrishnan, R.; Joshi, S.R.; Ramachandran, A.; Shamsudeen, J.; Krishnan, G.; Jothydev, S.; Mohan, V. Use of insulin pumps in India: Suggested guidelines based on experience and cultural differences. Diabetes Technol. Ther., 2010, 12(10), 823-831.
[http://dx.doi.org/10.1089/dia.2010.0027] [PMID: 20807118]
(b) McAdams, B.H.; Rizvi, A.A. An Overview of Insulin Pumps and Glucose Sensors for the Generalist. J. Clin. Med., 2016, 5(1)E5
[http://dx.doi.org/10.3390/jcm5010005] [PMID: 26742082]
[33]
Boizel, R.; Pinget, M.; Lachgar, K.; Parkin, C.G.; Grulet, H.; Guillon-Metz, F.; Weissmann, J. Clinical evaluation of the use of a multifunctional remotely controlled insulin pump: Multicenter observational study. J. Diabetes Sci. Technol., 2014, 8(6), 1145-1150.
[http://dx.doi.org/10.1177/1932296814545670] [PMID: 25107708]
[34]
Yeoh, E.; Choudhary, P. Technology to reduce Hypoglycemia. J. Diabetes Sci. Technol., 2015, 9(4), 911-916.
[http://dx.doi.org/10.1177/1932296815574547] [PMID: 25883167]
[35]
Martín-Timón, I.; Del Cañizo-Gómez, F.J. Mechanisms of hypoglycemia unawareness and implications in diabetic patients. World J. Diabetes, 2015, 6(7), 912-926.
[http://dx.doi.org/10.4239/wjd.v6.i7.912] [PMID: 26185599]
[36]
Hovorka, R.; Elleri, D.; Thabit, H.; Allen, J.M.; Leelarathna, L.; El-Khairi, R.; Kumareswaran, K.; Caldwell, K.; Calhoun, P.; Kollman, C.; Murphy, H.R.; Acerini, C.L.; Wilinska, M.E.; Nodale, M.; Dunger, D.B. Overnight closed-loop insulin delivery in young people with type 1 diabetes: A free-living, randomized clinical trial. Diabetes Care, 2014, 37(5), 1204-1211.
[http://dx.doi.org/10.2337/dc13-2644] [PMID: 24757227]
[37]
(a) Wright, B.M.; Bellone, J.M.; McCoy, E.K. A review of insulin pen devices and use in the elderly diabetic population. Clin. Med. Insights Endocrinol. Diabetes, 2010, 3, 53-63.
[http://dx.doi.org/10.4137/CMED.S5534] [PMID: 22879787]
(b) Selam, J.L. Evolution of diabetes insulin delivery devices. J. Diabetes Sci. Technol., 2010, 4(3), 505-513.
[http://dx.doi.org/10.1177/193229681000400302] [PMID: 20513314]
[38]
Ahmann, A.; Szeinbach, S.L.; Gill, J.; Traylor, L.; Garg, S.K. Comparing patient preferences and healthcare provider recommendations with the pen versus vial-and-syringe insulin delivery in patients with type 2 diabetes. Diabetes Technol. Ther., 2014, 16(2), 76-83.
[http://dx.doi.org/10.1089/dia.2013.0172] [PMID: 24266497]
[39]
(a) Klafke, A.; Duncan, B.B.; Stevens, A. Rosa, Rdos.S.; de Moura, L.; Malta, D.; Schmidt, M.I. The decline in mortality due to acute complications of diabetes mellitus in Brazil, 1991-2010. BMC Public Health, 2015, 15, 772.
[http://dx.doi.org/10.1186/s12889-015-2123-5] [PMID: 26259708]
(b) Bratlie, K.M.; York, R.L.; Invernale, M.A.; Langer, R.; Anderson, D.G. Materials for diabetes therapeutics. Adv. Healthc. Mater., 2012, 1(3), 267-284.
[http://dx.doi.org/10.1002/adhm.201200037] [PMID: 23184741]
[40]
Ajazuddin; Alexander, A.; Amarji, B.; Kanaujia, P. Synthesis, characterization and in vitro studies of pegylated melphalan conjugates. Drug Dev. Ind. Pharm., 2013, 39(7), 1053-1062.
[http://dx.doi.org/10.3109/03639045.2012.702346] [PMID: 22779444]
[41]
(a) Deng, C.C.; Brooks, W.L.A.; Abboud, K.A.; Sumerlin, B.S. Boronic acid-based hydrogels undergo self-healing at neutral and acidic pH. ACS Macro Lett., 2015, 4(2), 220-224.
[http://dx.doi.org/10.1021/acsmacrolett.5b00018]
(b) Springsteen, G.; Wang, B. A detailed examination of boronic acid-diol complexation. Tetrahedron, 2002, 58(26), 5291-5300.
[http://dx.doi.org/10.1016/S0040-4020(02)00489-1]
[42]
(a) Yesilyurt, V.; Webber, M.J.; Appel, E.A.; Godwin, C.; Langer, R.; Anderson, D.G. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater., (Deerfield Beach, Fla.), 2016, 28(1), 86-91.
[http://dx.doi.org/10.1002/adma.201502902]
(b) Kesavan, S.; Prud’homme, R.K. Rheology of guar and (hydroxypropyl) guar crosslinked by borate. Macromolecules, 1992, 25(7), 2026-2032.
[http://dx.doi.org/10.1021/ma00033a029]
[43]
Zhao, F.; Wu, D.; Yao, D.; Guo, R.; Wang, W.; Dong, A.; Kong, D.; Zhang, J. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery. Acta Biomater., 2017, 64, 334-345.
[http://dx.doi.org/10.1016/j.actbio.2017.09.044] [PMID: 28974477]
[44]
a)García-Pérez, L.E.; Alvarez, M.; Dilla, T.; Gil-Guillén, V.; Orozco-Beltrán, D. Adherence to therapies in patients with type 2 diabetes. Diabetes Ther., 2013, 4(2), 175-194.
[http://dx.doi.org/10.1007/s13300-013-0034-y] [PMID: 23990497]
b)Jin, J.; Sklar, G.E.; Min Sen Oh, V.; Chuen Li, S. Factors affecting therapeutic compliance: A review from the patient’s perspective. Ther. Clin. Risk Manag., 2008, 4(1), 269-286.
[PMID: 18728716]
[45]
(a)Soares, S.; Costa, A.; Sarmento, B. Novel non-invasive methods of insulin delivery. Expert Opin. Drug Deliv., 2012, 9(12), 1539-1558.
[http://dx.doi.org/10.1517/17425247.2012.737779] [PMID: 23098366]
(b)Verma, A.; Kumar, N.; Malviya, R.; Sharma, P.K. Emerging Trends in Noninvasive Insulin Delivery. J. Pharm. (Cairo), 2014.2014378048
[http://dx.doi.org/10.1155/2014/378048] [PMID: 26556194]
[46]
(a) Shaikh, R.; Raj Singh, T.R.; Garland, M.J.; Woolfson, A.D.; Donnelly, R.F. Mucoadhesive drug delivery systems. J. Pharm. Bioallied Sci., 2011, 3(1), 89-100.
[http://dx.doi.org/10.4103/0975-7406.76478] [PMID: 21430958]
(b) Nguyen, S.; Hiorth, M. Advanced drug delivery systems for local treatment of the oral cavity. Ther. Deliv., 2015, 6(5), 595-608.
[http://dx.doi.org/10.4155/tde.15.5] [PMID: 26001175]
(c) Alexander, A.; Sharma, S.; Ajaz, A.; Khan, J. Swarna, Theories and factors affecting mucoadhesive drug delivery systems. Int. J. Res. Ayurveda Pharm., 2011, 2, 1155-1161.
[47]
(a) Hashemi, M.; Ramezani, V.; Seyedabadi, M.; Ranjbar, A.M.; Jafari, H.; Honarvar, M.; Fanaei, H. Formulation and optimization of oral mucoadhesive patches of myrtus communis by Box Behnken design. Adv. Pharm. Bull., 2017, 7(3), 441-450.
[http://dx.doi.org/10.15171/apb.2017.053] [PMID: 29071227]
(b) Kotagale, N.R.; Patel, C.J.; Parkhe, A.P.; Khandelwal, H.M.; Taksande, J.B.; Umekar, M.J. Carbopol 934-Sodium alginate-gelatin mucoadhesive ondansetron tablets for buccal delivery: Effect of pH modifiers. Indian J. Pharm. Sci., 2010, 72(4), 471-479.
[http://dx.doi.org/10.4103/0250-474X.73912] [PMID: 21218058]
[48]
Gupta, V.; Hwang, B.H.; Doshi, N.; Banerjee, A.; Anselmo, A.C.; Mitragotri, S. Delivery of exenatide and insulin using mucoadhesive intestinal devices. Ann. Biomed. Eng., 2016, 44(6), 1993-2007.
[http://dx.doi.org/10.1007/s10439-016-1558-x] [PMID: 26864536]
[49]
Rave, K.; Potocka, E.; Heinemann, L.; Heise, T.; Boss, A.H.; Marino, M.; Costello, D.; Chen, R. Pharmacokinetics and linear exposure of AFRESA compared with the subcutaneous injection of regular human insulin. Diabetes Obes. Metab., 2009, 11(7), 715-720.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01039.x] [PMID: 19476477]
[50]
(a) Pfützner, A.; Forst, T. Pulmonary insulin delivery by means of the Technosphere drug carrier mechanism. Expert Opin. Drug Deliv., 2005, 2(6), 1097-1106.
[http://dx.doi.org/10.1517/17425247.2.6.1097] [PMID: 16296812]
(b) Lilly Announces Update on Regulatory Submission Timing for Basal Insulin Peglispro. Eli Lilly and Company, 2015.
[51]
Heinemann, L.; Jacques, Y. Oral insulin and buccal insulin: A critical reappraisal. J. Diabetes Sci. Technol., 2009, 3(3), 568-584.
[http://dx.doi.org/10.1177/193229680900300323] [PMID: 20144297]
[52]
(a) Bernstein, G. Delivery of insulin to the buccal mucosa utilizing the RapidMist system. Expert Opin. Drug Deliv., 2008, 5(9), 1047-1055.
[http://dx.doi.org/10.1517/17425247.5.9.1047] [PMID: 18754753]
(b) Cernea, S.; Kidron, M.; Wohlgelernter, J.; Modi, P.; Raz, I. Comparison of pharmacokinetic and pharmacodynamic properties of single-dose oral insulin spray and subcutaneous insulin injection in healthy subjects using the euglycemic clamp technique. Clin. Ther., 2004, 26(12), 2084-2091.
[http://dx.doi.org/10.1016/j.clinthera.2004.12.001] [PMID: 15823772]
[53]
(a) Corporation, G.B. Generex Provides Update on Buccal Insulin Formulation Enhancement Project., 2015.
(b) Modi, P.; Mihic, M.; Lewin, A. The evolving role of oral insulin in the treatment of diabetes using a novel RapidMist System. Diabetes Metab. Res. Rev., 2002, 18(Suppl. 1), S38-S42.
[http://dx.doi.org/10.1002/dmrr.208] [PMID: 11921428]
[54]
Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed. Engl., 2006, 45(20), 3216-3251.
[http://dx.doi.org/10.1002/anie.200503075] [PMID: 16676373]
[55]
Balas, F.; Manzano, M.; Horcajada, P.; Vallet-Regí, M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J. Am. Chem. Soc., 2006, 128(25), 8116-8117.
[http://dx.doi.org/10.1021/ja062286z] [PMID: 16787058]
[56]
Lai, C.Y.; Trewyn, B.G.; Jeftinija, D.M.; Jeftinija, K.; Xu, S.; Jeftinija, S.; Lin, V.S. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules. J. Am. Chem. Soc., 2003, 125(15), 4451-4459.
[http://dx.doi.org/10.1021/ja028650l] [PMID: 12683815]
[57]
Sonaje, K.; Lin, Y.H.; Juang, J.H.; Wey, S.P.; Chen, C.T.; Sung, H.W. In vivo evaluation of safety and efficacy of self-assembled nanoparticles for oral insulin delivery. Biomaterials, 2009, 30(12), 2329-2339.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.066] [PMID: 19176244]
[58]
Zhao, X.; Shan, C.; Zu, Y.; Zhang, Y.; Wang, W.; Wang, K.; Sui, X.; Li, R. Preparation, characterization, and evaluation in vivo of Ins-SiO2-HP55 (insulin-loaded silica coating HP55) for oral delivery of insulin. Int. J. Pharm., 2013, 454(1), 278-284.
[http://dx.doi.org/10.1016/j.ijpharm.2013.06.051] [PMID: 23830939]
[59]
Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother., 2019, 109, 1249-1258.
[http://dx.doi.org/10.1016/j.biopha.2018.10.078] [PMID: 30551375]
[60]
Chen, G.; Yu, J.; Gu, Z. Glucose-responsive microneedle patches for diabetes treatment. J. Diabetes Sci. Technol., 2019, 13(1), 41-48.
[http://dx.doi.org/10.1177/1932296818778607] [PMID: 29848105]
[61]
Zhang, Y.; Jiang, G.; Yu, W.; Liu, D.; Xu, B. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater. Sci. Eng. C, 2018, 85, 18-26.
[http://dx.doi.org/10.1016/j.msec.2017.12.006] [PMID: 29407146]
[62]
Tong, Z.; Zhou, J.; Zhong, J.; Tang, Q.; Lei, Z.; Luo, H.; Ma, P.; Liu, X. Glucose- and H2O2-Responsive polymeric vesicles integrated with microneedle patches for glucose-sensitive transcutaneous delivery of insulin in diabetic rats. ACS Appl. Mater. Interfaces, 2018, 10(23), 20014-20024.
[http://dx.doi.org/10.1021/acsami.8b04484] [PMID: 29787231]
[63]
Rini, C.J.; McVey, E.; Sutter, D.; Keith, S.; Kurth, H.J.; Nosek, L.; Kapitza, C.; Rebrin, K.; Hirsch, L.; Pettis, R.J. Intradermal insulin infusion achieves faster insulin action than subcutaneous infusion for 3-day wear. Drug Deliv. Transl. Res., 2015, 5(4), 332-345.
[http://dx.doi.org/10.1007/s13346-015-0239-x] [PMID: 26037035]
[64]
Buchanan, T.A.; Xiang, A.H.; Page, K.A. Gestational diabetes mellitus: Risks and management during and after pregnancy. Nat. Rev. Endocrinol., 2012, 8(11), 639-649.
[http://dx.doi.org/10.1038/nrendo.2012.96] [PMID: 22751341]
[65]
Modak, M.; Dixit, P.; Londhe, J.; Ghaskadbi, S.; Devasagayam, T.P. Indian herbs and herbal drugs used for the treatment of diabetes. J. Clin. Biochem. Nutr., 2007, 40(3), 163-173.
[http://dx.doi.org/10.3164/jcbn.40.163] [PMID: 18398493]
[66]
Rajput, S.D.; Alexander, A.; Jain, V.; Giri, T.K.; Tripathi, D.K.; Ajaz, A. Novel integrated approach for the strategic delivery of hydrophobic drugs by the use of self emulsifying drug delivery system. J. Appl. Sci., 2012, 12, 502-517.
[http://dx.doi.org/10.3923/jas.2012.502.517]
[67]
Yoshida, T.; Lai, T.C.; Kwon, G.S.; Sako, K. pH- and ion-sensitive polymers for drug delivery. Expert Opin. Drug Deliv., 2013, 10(11), 1497-1513.
[http://dx.doi.org/10.1517/17425247.2013.821978] [PMID: 23930949]
[68]
Nayak, A.K.; Pal, D. Blends of jackfruit seed starch-pectin in the development of mucoadhesive beads containing metformin HCl. Int. J. Biol. Macromol., 2013, 62, 137-145.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.020] [PMID: 23994792]
[69]
(a) Pal, D.; Nayak, A.K.; Saha, S. Interpenetrating Polymer Network Hydrogels of Chitosan: Applications in Controlling Drug Release; Cellulose-Based Superabsorbent Hydrogels, 2018, pp. 1-41.
(b) Nayak, A.K.; Pal, D.; Santra, K. Development of pectinate-ispagula mucilage mucoadhesive beads of metformin HCl by central composite design. Int. J. Biol. Macromol., 2014, 66, 203-211.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.023] [PMID: 24560618]
[70]
(a) Uddin, A.N.; Bejugam, N.K.; Gayakwad, S.G.; Akther, P.; D’Souza, M.J. Oral delivery of gastro-resistant microencapsulated typhoid vaccine. J. Drug Target., 2009, 17(7), 553-560.
[http://dx.doi.org/10.1080/10611860903067301] [PMID: 19563303]
(b) Wong, C.Y.; Al-Salami, H.; Dass, C.R. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. Int. J. Pharm., 2018, 537(1-2), 223-244.
[http://dx.doi.org/10.1016/j.ijpharm.2017.12.036] [PMID: 29288095]
[71]
(a) Singh, M.N.; Hemant, K.S.; Ram, M.; Shivakumar, H.G. Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci., 2010, 5(2), 65-77.
[PMID: 21589795]
(b) Onal, S.; Zihnioğlu, F. Encapsulation of insulin in chitosan-coated alginate beads: Oral therapeutic peptide delivery. Artif. Cells Blood Substit. Immobil. Biotechnol., 2002, 30(3), 229-237.
[http://dx.doi.org/10.1081/BIO-120004343] [PMID: 12066877]
(c) Builders, P.F.; Kunle, O.O.; Okpaku, L.C.; Builders, M.I.; Attama, A.A.; Adikwu, M.U. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin. Eur. J. Pharm. Biopharm., 2008, 70(3), 777-783.
[http://dx.doi.org/10.1016/j.ejpb.2008.06.021]
[72]
Sharma, V.K.; Mazumder, B. Gastrointestinal transition and anti-diabetic effect of Isabgol husk microparticles containing gliclazide. Int. J. Biol. Macromol., 2014, 66, 15-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.014] [PMID: 24530641]
[73]
(a) Hoffman, A.; Danenberg, H.D.; Katzhendler, I.; Shuval, R.; Gilhar, D.; Friedman, M. Pharmacodynamic and pharmacokinetic rationales for the development of an oral controlled-release amoxicillin dosage form. J. Control. Release: Off. J. Control. Release Society, 1998, 54(1), 29-37.
[http://dx.doi.org/10.1016/S0168-3659(97)00165-X]
(b) Bose, A.; Wong, T.W.; Singh, N. Formulation development and optimization of sustained release matrix tablet of Itopride HCl by response surface methodology and its evaluation of release kinetics. Saudi Pharm. J.: Off. Publ. Saudi Pharm. Society, 2013, 21(2), 201-213.
[http://dx.doi.org/10.1016/j.jsps.2012.03.006]
[74]
(a) Marín-Peñalver, J.J.; Martín-Timón, I.; Sevillano-Collantes, C.; Del Cañizo-Gómez, F.J. Update on the treatment of type 2 diabetes mellitus. World J. Diabetes, 2016, 7(17), 354-395.
[http://dx.doi.org/10.4239/wjd.v7.i17.354] [PMID: 27660695]
(b) Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and treatment of type 2 diabetes: Perspectives on the past, present, and future. Lancet, 2014, 383(9922), 1068-1083.
[http://dx.doi.org/10.1016/S0140-6736(13)62154-6] [PMID: 24315620]
(c) Kooti, W.; Farokhipour, M.; Asadzadeh, Z.; Ashtary-Larky, D.; Asadi-Samani, M. The role of medicinal plants in the treatment of diabetes: A systematic review. Electron. Physician, 2016, 8(1), 1832-1842.
[http://dx.doi.org/10.19082/1832] [PMID: 26955456]
[75]
(a) Nyholm, B.; Brock, B.; Ørskov, L.; Schmitz, O. Amylin receptor agonists: a novel pharmacological approach in the management of insulin-treated diabetes mellitus. Expert Opin. Investig. Drugs, 2001, 10(9), 1641-1652.
[http://dx.doi.org/10.1517/13543784.10.9.1641] [PMID: 11772274]
(b) Ryan, G.J.; Jobe, L.J.; Martin, R. Pramlintide in the treatment of type 1 and type 2 diabetes mellitus. Clin. Ther., 2005, 27(10), 1500-1512.
[http://dx.doi.org/10.1016/j.clinthera.2005.10.009] [PMID: 16330288]
(c) Zhang, X.X.; Pan, Y.H.; Huang, Y.M.; Zhao, H.L. Neuroendocrine hormone amylin in diabetes. World J. Diabetes, 2016, 7(9), 189-197.
[http://dx.doi.org/10.4239/wjd.v7.i9.189] [PMID: 27162583]
(d) Adeghate, E.; Kalász, H. Amylin analogues in the treatment of diabetes mellitus: Medicinal chemistry and structural basis of its function. Open Med. Chem. J., 2011, 5(Suppl. 2), 78-81.
[http://dx.doi.org/10.2174/1874104501105010078] [PMID: 21966328]
[76]
Qi, F.; Wu, J.; Yang, T.; Ma, G.; Su, Z. Mechanistic studies for monodisperse exenatide-loaded PLGA microspheres prepared by different methods based on SPG membrane emulsification. Acta Biomater., 2014, 10(10), 4247-4256.
[http://dx.doi.org/10.1016/j.actbio.2014.06.018] [PMID: 24952071]
[77]
Alexander, A.; Saraf, S.; Saraf, S. Understanding the role of poloxamer 407 based thermoreversible in situ gelling hydrogel for delivery of PEGylated melphalan conjugate. Curr. Drug Deliv., 2016, 13(4), 621-630.
[http://dx.doi.org/10.2174/1567201813666160204114000] [PMID: 26845559]
[78]
Li, J.K.; Wang, N.; Wu, X.S. Gelatin nanoencapsulation of protein/peptide drugs using an emulsifier-free emulsion method. J. Microencapsul., 1998, 15(2), 163-172.
[http://dx.doi.org/10.3109/02652049809006846] [PMID: 9532522]
[79]
Chen, Y.; Li, Y.; Shen, W.; Li, K.; Yu, L.; Chen, Q.; Ding, J. Controlled release of liraglutide using thermogelling polymers in treatment of diabetes. Sci. Rep., 2016, 6, 31593.
[http://dx.doi.org/10.1038/srep31593] [PMID: 27531588]
[80]
Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D.; Calvo, X.R.; Verhaert, P. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteom., 2014, 4, 58-69.
[http://dx.doi.org/10.1016/j.euprot.2014.05.003]
[81]
Zhang, Y.; Zhong, Y.; Hu, M.; Xiang, N.; Fu, Y.; Gong, T.; Zhang, Z. In vitro and in vivo sustained release of exenatide from vesicular phospholipid gels for type II diabetes. Drug Dev. Ind. Pharm., 2016, 42(7), 1042-1049.
[http://dx.doi.org/10.3109/03639045.2015.1107090] [PMID: 26558908]
[82]
Tiwari, P. Recent trends in therapeutic approaches for diabetes management: A comprehensive update. J. Diabetes Res., 2015, 2015340838
[http://dx.doi.org/10.1155/2015/340838] [PMID: 26273667]
[83]
Shomali, M. Diabetes treatment in 2025: Can scientific advances keep pace with prevalence? Ther. Adv. Endocrinol. Metab., 2012, 3(5), 163-173.
[http://dx.doi.org/10.1177/2042018812465639] [PMID: 23185688]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 1
Year: 2020
Page: [3 - 14]
Pages: 12
DOI: 10.2174/1567201816666191106102020
Price: $65

Article Metrics

PDF: 33
HTML: 6