Effects of IGF-1 on the Cardiovascular System

Author(s): Milan Obradovic, Sonja Zafirovic, Sanja Soskic, Julijana Stanimirovic, Andreja Trpkovic, Danimir Jevremovic, Esma R. Isenovic*

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 35 , 2019

Become EABM
Become Reviewer
Call for Editor


Cardiovascular (CV) diseases are the most common health problems worldwide, with a permanent increase in incidence. Growing evidence underlines that insulin-like growth factor 1 (IGF-1) is a very important hormone responsible for normal CV system physiology. IGF-1 is an anabolic growth hormone, responsible for cell growth, differentiation, proliferation, and survival. Despite systemic effects, IGF-1 exerts a wide array of influences in the CV system affecting metabolic homeostasis, vasorelaxation, cardiac contractility and hypertrophy, autophagy, apoptosis, and antioxidative processes. The vasodilatory effect of IGF-1, is achieved through the regulation of the activity of endothelial nitric oxide synthase (eNOS) and, at least partly, through enhancing inducible NOS (iNOS) activity. Also, IGF-1 stimulates vascular relaxation through regulation of sodium/potassiumadenosine- triphosphatase. Numerous animal studies provided evidence of diverse influences of IGF-1 in the CV system such as vasorelaxation, anti-apoptotic and prosurvival effects. Human studies indicate that low serum levels of free or total IGF-1 contribute to an increased risk of CV and cerebrovascular disease. Large human trials aiming at finding clinical efficacy and outcome of IGF-1-related therapy are of great interest.

We look forward to the development of new IGF 1 therapies with minor side effects. In this review, we discuss the latest literature data regarding the function of IGF-1 in the CV system in the physiological and pathophysiological conditions.

Keywords: Cardiovascular system, cardiovascular disease, IGF-1, vasodilatory effect, anti-apoptotic effect, tissue restructuring effects, antiaging effects.

Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev 1995; 16(1): 3-34.
[PMID: 7758431]
Delafontaine P. Insulin-like growth factor I and its binding proteins in the cardiovascular system. Cardiovasc Res 1995; 30(6): 825-34.
[http://dx.doi.org/10.1016/S0008-6363(95)00163-8] [PMID: 8746194]
Troncoso R, Ibarra C, Vicencio JM, Jaimovich E, Lavandero S. New insights into IGF-1 signaling in the heart. Trends Endocrinol Metab 2014; 25(3): 128-37.
[http://dx.doi.org/10.1016/j.tem.2013.12.002] [PMID: 24380833]
Bake S, Okoreeh A, Khosravian H, Sohrabji F. Insulin-like Growth Factor (IGF)-1 treatment stabilizes the microvascular cytoskeleton under ischemic conditions. Exp Neurol 2019; 311: 162-72.
Clemmons DR. The relative roles of growth hormone and IGF-1 in controlling insulin sensitivity. J Clin Invest 2004; 113(1): 25-7.
[http://dx.doi.org/10.1172/JCI20660] [PMID: 14702105]
Valenciano A, Henríquez-Hernández LA, Moreno M, Lloret M, Lara PC. Role of IGF-1 receptor in radiation response. Transl Oncol 2012; 5(1): 1-9.
[http://dx.doi.org/10.1593/tlo.11265] [PMID: 22348170]
Conti E, Musumeci MB, De Giusti M, et al. IGF-1 and atherothrombosis: relevance to pathophysiology and therapy. Clin Sci (Lond) 2011; 120(9): 377-402.
[http://dx.doi.org/10.1042/CS20100400] [PMID: 21244364]
Delafontaine P, Lou H, Alexander RW. Regulation of insulin-like growth factor I messenger RNA levels in vascular smooth muscle cells. Hypertension 1991; 18(6): 742-7.
[http://dx.doi.org/10.1161/01.HYP.18.6.742] [PMID: 1743755]
Ren J, Samson WK, Sowers JR. Insulin-like growth factor I as a cardiac hormone: physiological and pathophysiological implications in heart disease. J Mol Cell Cardiol 1999; 31(11): 2049-61.
[http://dx.doi.org/10.1006/jmcc.1999.1036] [PMID: 10591031]
Troncoso R, Vicencio JM, Parra V, et al. Energy-preserving effects of IGF-1 antagonize starvation-induced cardiac autophagy. Cardiovasc Res 2012; 93(2): 320-9.
[http://dx.doi.org/10.1093/cvr/cvr321] [PMID: 22135164]
Balakumar P, Maung-U K, Jagadeesh G. Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol Res 2016; 113(Pt A): 600-9.
[http://dx.doi.org/10.1016/j.phrs.2016.09.040] [PMID: 27697647]
Delafontaine P, Song YH, Li Y. Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler Thromb Vasc Biol 2004; 24(3): 435-44.
[http://dx.doi.org/10.1161/01.ATV.0000105902.89459.09] [PMID: 14604834]
Paye JM, Forsten-Williams K. Regulation of insulin-like growth factor-I (IGF-I) delivery by IGF binding proteins and receptors. Ann Biomed Eng 2006; 34(4): 618-32.
[http://dx.doi.org/10.1007/s10439-005-9064-6] [PMID: 16547609]
Bach LA. IGF-binding proteins. J Mol Endocrinol 2018; 61(1): 11-28.
[http://dx.doi.org/10.1530/JME-17-0254] [PMID: 29255001]
Schneider MR, Lahm H, Wu M, Hoeflich A, Wolf E. Transgenic mouse models for studying the functions of insulin-like growth factor-binding proteins. FASEB J 2000; 14(5): 629-40.
[http://dx.doi.org/10.1096/fasebj.14.5.629] [PMID: 10744620]
Watanabe S, Tamura T, Ono K, et al. Insulin-like growth factor axis (insulin-like growth factor-I/insulin-like growth factor-binding protein-3) as a prognostic predictor of heart failure: association with adiponectin. Eur J Heart Fail 2010; 12(11): 1214-22.
[http://dx.doi.org/10.1093/eurjhf/hfq166] [PMID: 20851819]
Di Bona D, Accardi G, Virruso C, Candore G, Caruso C. Association between genetic variations in the insulin/insulin-like growth factor (Igf-1) signaling pathway and longevity: a systematic review and meta-analysis. Curr Vasc Pharmacol 2014; 12(5): 674-81.
[http://dx.doi.org/10.2174/1570161111666131218152807] [PMID: 24350933]
Ren J, Anversa P. The insulin-like growth factor I system: physiological and pathophysiological implication in cardiovascular diseases associated with metabolic syndrome. Biochem Pharmacol 2015; 93(4): 409-17.
[http://dx.doi.org/10.1016/j.bcp.2014.12.006] [PMID: 25541285]
Rinderknecht E, Humbel RE. The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 1978; 253(8): 2769-76.
[PMID: 632300]
Chitnis MM, Yuen JS, Protheroe AS, Pollak M, Macaulay VM. The type 1 insulin-like growth factor receptor pathway 2008.
Le Roith D. The insulin-like growth factor system. Exp Diabesity Res 2003; 4(4): 205-12.
[http://dx.doi.org/10.1155/EDR.2003.205] [PMID: 14668044]
Belfiore A, Frasca F, Pandini G, Sciacca L, Vigneri R. Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocr Rev 2009; 30(6): 586-623.
[http://dx.doi.org/10.1210/er.2008-0047] [PMID: 19752219]
Federici M, Lauro D, D’Adamo M, et al. Expression of insulin/IGF-I hybrid receptors is increased in skeletal muscle of patients with chronic primary hyperinsulinemia. Diabetes 1998; 47(1): 87-92.
[http://dx.doi.org/10.2337/diab.47.1.87] [PMID: 9421379]
Engberding N, San Martín A, Martin-Garrido A, et al. Insulin-like growth factor-1 receptor expression masks the antiinflammatory and glucose uptake capacity of insulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2009; 29(3): 408-15.
[http://dx.doi.org/10.1161/ATVBAHA.108.181727] [PMID: 19122171]
Ibarra C, Vicencio JM, Estrada M, et al. Local control of nuclear calcium signaling in cardiac myocytes by perinuclear microdomains of sarcolemmal insulin-like growth factor 1 receptors. Circ Res 2013; 112(2): 236-45.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.273839] [PMID: 23118311]
Ren J, Walsh MF, Hamaty M, Sowers JR, Brown RA. Altered inotropic response to IGF-I in diabetic rat heart: influence of intracellular Ca2+ and NO. Am J Physiol 1998; 275(3): 823-30.
[PMID: 9724285]
Ren J, Sowers JR, Natavio M, Brown RA. Influence of age on inotropic response to insulin and insulin-like growth factor I in spontaneously hypertensive rats: role of nitric oxide. Proc Soc Exp Biol Med 1999; 221(1): 46-52.
[http://dx.doi.org/10.3181/00379727-221-44383] [PMID: 10320631]
Obradovic M, Stanimirovic J, Panic A, et al. Regulation of Na+/K+-ATPase by Estradiol and IGF-1 in Cardio-Metabolic Diseases. Curr Pharm Des 2017; 23(10): 1551-61.
[http://dx.doi.org/10.2174/1381612823666170203113455] [PMID: 28164755]
Blaustein MP. Sodium ions, calcium ions, blood pressure regulation, and hypertension: a reassessment and a hypothesis. Am J Physiol 1977; 232(5): 165-73.
[http://dx.doi.org/10.1152/ajpcell.1977.232.5.C165] [PMID: 324293]
Lytton J. Insulin affects the sodium affinity of the rat adipocyte (Na+,K+)-ATPase. J Biol Chem 1985; 260(18): 10075-80.
[PMID: 2991273]
Tirupattur PR, Ram JL, Standley PR, Sowers JR. Regulation of Na+,K(+)-ATPase gene expression by insulin in vascular smooth muscle cells. Am J Hypertens 1993; 6(7 Pt 1): 626-9.
[http://dx.doi.org/10.1093/ajh/6.7.626] [PMID: 8398004]
Clausen T, Everts ME. Regulation of the Na,K-pump in skeletal muscle. Kidney Int 1989; 35(1): 1-13.
[http://dx.doi.org/10.1038/ki.1989.1] [PMID: 2540370]
Walsh MF, Barazi M, Pete G, Muniyappa R, Dunbar JC, Sowers JR. Insulin-like growth factor I diminishes in vivo and in vitro vascular contractility: role of vascular nitric oxide. Endocrinology 1996; 137(5): 1798-803.
[http://dx.doi.org/10.1210/endo.137.5.8612517] [PMID: 8612517]
Nishida K, Ohara T, Johnson J, et al. Na+/K(+)-ATPase activity and its alpha II subunit gene expression in rat skeletal muscle: influence of diabetes, fasting, and refeeding. Metabol 1992; 41(1): 56-63.
[http://dx.doi.org/10.1016/0026-0495(92)90191-C] [PMID: 1311403]
Hundal HS, Marette A, Mitsumoto Y, Ramlal T, Blostein R, Klip A. Insulin induces translocation of the alpha 2 and beta 1 subunits of the Na+/K(+)-ATPase from intracellular compartments to the plasma membrane in mammalian skeletal muscle. J Biol Chem 1992; 267(8): 5040-3.
[PMID: 1312081]
Ohara T, Sussman KE, Draznin B. Effect of diabetes on cytosolic free Ca2+ and Na(+)-K(+)-ATPase in rat aorta. Diabetes 1991; 40(11): 1560-3.
[http://dx.doi.org/10.2337/diab.40.11.1560] [PMID: 1657671]
Spieker C, Zidek W, von Bassewitz DB, Heck D. Age-dependent increase in arterial smooth muscle calcium in spontaneously hypertensive rats. Res Exp Med (Berl) 1988; 188(6): 397-403.
[http://dx.doi.org/10.1007/BF01851997] [PMID: 3238174]
Fleckenstein A, Frey M, Zorn J, Fleckenstein-Grün G. The role of calcium in the pathogenesis of experimental arteriosclerosis. Trends Pharmacol Sci 1987; 8(12): 496-501.
Sada T, Koike H, Ikeda M, Sato K, Ozaki H, Karaki H. Cytosolic free calcium of aorta in hypertensive rats. Chronic inhibition of angiotensin converting enzyme. Hypertension 1990; 16(3): 245-51.
[http://dx.doi.org/10.1161/01.HYP.16.3.245] [PMID: 2394484]
Reid IR, Birstow SM, Bolland MJ. Calcium and cardiovascular disease. Endocrinol Metab (Seoul) 2017; 32(3): 339-49.
[http://dx.doi.org/10.3803/EnM.2017.32.3.339] [PMID: 28956363]
Isenovic ER, Meng Y, Jamali N, Milivojevic N, Sowers JR. Ang II attenuates IGF-1-stimulated Na+, K(+)-ATPase activity via PI3K/Akt pathway in vascular smooth muscle cells. Int J Mol Med 2004; 13(6): 915-22.
[http://dx.doi.org/10.3892/ijmm.13.6.915] [PMID: 15138635]
Standley PR, Zhang F, Zayas RM, et al. IGF-I regulation of Na(+)-K(+)-ATPase in rat arterial smooth muscle. Am J Physiol 1997; 273(1 Pt 1): 113-21.
[PMID: 9252487]
Li Z, Langhans SA. Transcriptional regulators of Na,K-ATPase subunits. Front Cell Dev Biol 2015; 3: 66.
[http://dx.doi.org/10.3389/fcell.2015.00066] [PMID: 26579519]
Resh MD. Quantitation and characterization of the (Na+,K+)-adenosine triphosphatase in the rat adipocyte plasma membrane. J Biol Chem 1982; 257(20): 11946-52.
[PMID: 6288705]
Allen JC, Navran SS, Seidel CL, Dennison DK, Amann JM, Jemelka SK. Intracellular Na+ regulation of Na+ pump sites in cultured vascular smooth muscle cells. Am J Physiol 1989; 256(4 Pt 1): 786-92.
[http://dx.doi.org/10.1152/ajpcell.1989.256.4.C786] [PMID: 2539727]
Li Q, Wu S, Li SY, et al. Cardiac-specific overexpression of insulin-like growth factor 1 attenuates aging-associated cardiac diastolic contractile dysfunction and protein damage. Am J Physiol Heart Circ Physiol 2007; 292(3): 1398-403.
[http://dx.doi.org/10.1152/ajpheart.01036.2006] [PMID: 17085535]
Tsukahara H, Gordienko DV, Tonshoff B, Gelato MC, Goligorsky MS. Direct demonstration of insulin-like growth factor-I-induced nitric oxide production by endothelial cells. Kidney Int 1994; 45(2): 598-604.
[http://dx.doi.org/10.1038/ki.1994.78] [PMID: 7513035]
Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin. Direct measurement in vascular endothelial cells. J Clin Invest 1996; 98(4): 894-8.
[http://dx.doi.org/10.1172/JCI118871] [PMID: 8770859]
Isenović E, Muniyappa R, Milivojević N, Rao Y, Sowers JR. Role of PI3-kinase in isoproterenol and IGF-1 induced ecNOS activity. Biochem Biophys Res Commun 2001; 285(4): 954-8.
[http://dx.doi.org/10.1006/bbrc.2001.5246] [PMID: 11467844]
Zeng G, Nystrom FH, Ravichandran LV, et al. Roles for insulin receptor, PI3-kinase, and Akt in insulin-signaling pathways related to production of nitric oxide in human vascular endothelial cells. Circulation 2000; 101(13): 1539-45.
[http://dx.doi.org/10.1161/01.CIR.101.13.1539] [PMID: 10747347]
Higashi Y, Quevedo HC, Tiwari S, et al. Interaction between insulin-like growth factor-1 and atherosclerosis and vascular aging. Front Horm Res 2014; 43: 107-24.
[PMID: 24943302]
Perticone F, Sciacqua A, Perticone M, et al. Low-plasma insulin-like growth factor-I levels are associated with impaired endothelium-dependent vasodilatation in a cohort of untreated, hypertensive Caucasian subjects. J Clin Endocrinol Metab 2008; 93(7): 2806-10.
[http://dx.doi.org/10.1210/jc.2008-0646] [PMID: 18430768]
Isenovic ER, Divald A, Milivojevic N, Grgurevic T, Fisher SE, Sowers JR. Interactive effects of insulin-like growth factor-1 and beta-estradiol on endothelial nitric oxide synthase activity in rat aortic endothelial cells. Metabolism 2003; 52(4): 482-7.
[http://dx.doi.org/10.1053/meta.2003.50079] [PMID: 12701063]
Pete G, Hu Y, Walsh M, Sowers J, Dunbar JC. Insulin-like growth factor-I decreases mean blood pressure and selectively increases regional blood flow in normal rats. Proc Soc Exp Biol Med Soc Exp Biol Med, NY 1996; pp. 1996; 187-92.
Hasdai D, Holmes DR Jr, Richardson DM, Izhar U, Lerman A. Insulin and IGF-I attenuate the coronary vasoconstrictor effects of endothelin-1 but not of sarafotoxin 6c. Cardiovasc Res 1998; 39(3): 644-50.
[http://dx.doi.org/10.1016/S0008-6363(98)00144-8] [PMID: 9861307]
Tivesten A, Bollano E, Andersson I, et al. Liver-derived insulin-like growth factor-I is involved in the regulation of blood pressure in mice. Endocrinology 2002; 143(11): 4235-42.
[http://dx.doi.org/10.1210/en.2002-220524] [PMID: 12399417]
Berryman DE, Glad CA, List EO, Johannsson G. The GH/IGF-1 axis in obesity: pathophysiology and therapeutic considerations. Nat Rev Endocrinol 2013; 9(6): 346-56.
[http://dx.doi.org/10.1038/nrendo.2013.64] [PMID: 23568441]
Juul A, Scheike T, Davidsen M, Gyllenborg J, Jørgensen T. Low serum insulin-like growth factor I is associated with increased risk of ischemic heart disease: a population-based case-control study. Circulation 2002; 106(8): 939-44.
[http://dx.doi.org/10.1161/01.CIR.0000027563.44593.CC] [PMID: 12186797]
Mosca S, Paolillo S, Colao A, et al. Cardiovascular involvement in patients affected by acromegaly: an appraisal. Int J Cardiol 2013; 167(5): 1712-8.
[http://dx.doi.org/10.1016/j.ijcard.2012.11.109] [PMID: 23219077]
Ren J, Brown-Borg HM. Impaired cardiac excitation-contraction coupling in ventricular myocytes from Ames dwarf mice with IGF-I deficiency. Growth Horm IGF Res 2002; 12(2): 99-105.
Akanji AO, Smith RJ. The insulin-like growth factor system, metabolic syndrome, and cardiovascular disease risk. Metab Syndr Relat Disord 2012; 10(1): 3-13.
[http://dx.doi.org/10.1089/met.2011.0083] [PMID: 22103319]
Ren J, Sowers JR, Walsh MF, Brown RA. Reduced contractile response to insulin and IGF-I in ventricular myocytes from genetically obese Zucker rats. Am J Physiol Heart Circ Physiol 2000; 279(4): 1708-14.
[http://dx.doi.org/10.1152/ajpheart.2000.279.4.H1708] [PMID: 11009458]
Yang AL, Yeh CK, Su CT, Lo CW, Lin KL, Lee SD. Aerobic exercise acutely improves insulin- and insulin-like growth factor-1-mediated vasorelaxation in hypertensive rats. Exp Physiol 2010; 95(5): 622-9.
[http://dx.doi.org/10.1113/expphysiol.2009.050146] [PMID: 20139168]
Mangiola A, Vigo V, Anile C, De Bonis P, Marziali G, Lofrese G. Role and importance of IGF-1 in traumatic brain injuries. BioMed Res Int 2015; 2015736104
[http://dx.doi.org/10.1155/2015/736104] [PMID: 26417600]
Dong X, Chang G, Ji XF, Tao DB, Wang YX. The relationship between serum insulin-like growth factor I levels and ischemic stroke risk. PLoS One 2014; 9(4)e94845
[http://dx.doi.org/10.1371/journal.pone.0094845] [PMID: 24728374]
Empen K, Lorbeer R, Völzke H, et al. Association of serum IGF1 with endothelial function: results from the population-based study of health in Pomerania. Eur J Endocrinol 2010; 163(4): 617-23.
[http://dx.doi.org/10.1530/EJE-10-0563] [PMID: 20651065]
Lam CS, Chen MH, Lacey SM, et al. Circulating insulin-like growth factor-1 and its binding protein-3: metabolic and genetic correlates in the community. Arterioscler Thromb Vasc Biol 2010; 30(7): 1479-84.
[http://dx.doi.org/10.1161/ATVBAHA.110.203943] [PMID: 20378848]
Sesti G, Sciacqua A, Cardellini M, et al. Plasma concentration of IGF-I is independently associated with insulin sensitivity in subjects with different degrees of glucose tolerance. Diabetes Care 2005; 28(1): 120-5.
[http://dx.doi.org/10.2337/diacare.28.1.120] [PMID: 15616244]
Imrie H, Abbas A, Viswambharan H, et al. Vascular insulin-like growth factor-I resistance and diet-induced obesity. Endocrinology 2009; 150(10): 4575-82.
[http://dx.doi.org/10.1210/en.2008-1641] [PMID: 19608653]
Puche JE, Castilla-Cortázar I. Human conditions of insulin-like growth factor-I (IGF-I) deficiency. J Transl Med 2012; 10(224): 224.
[http://dx.doi.org/10.1186/1479-5876-10-224] [PMID: 23148873]
Perkel D, Naghi J, Agarwal M, et al. The potential effects of IGF-1 and GH on patients with chronic heart failure. J Cardiovasc Pharmacol Ther 2012; 17(1): 72-8.
[http://dx.doi.org/10.1177/1074248411402078] [PMID: 21454724]
Song CL, Liu B, Diao HY, et al. Down-regulation of microRNA-320 suppresses cardiomyocyte apoptosis and protects against myocardial ischemia and reperfusion injury by targeting IGF-1. Oncotarget 2016; 7(26): 39740-57.
[http://dx.doi.org/10.18632/oncotarget.9240] [PMID: 27175593]
Gallego-Colon E, Sampson RD, Sattler S, Schneider MD, Rosenthal N, Tonkin J. Cardiac-Restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction. Mediators Inflamm 2015; 2015484357
[http://dx.doi.org/10.1155/2015/484357] [PMID: 26491228]
Urbanek K, Rota M, Cascapera S, et al. Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 2005; 97(7): 663-73.
[http://dx.doi.org/10.1161/01.RES.0000183733.53101.11] [PMID: 16141414]
Bilbao D, Luciani L, Johannesson B, Piszczek A, Rosenthal N. Insulin-like growth factor-1 stimulates regulatory T cells and suppresses autoimmune disease. EMBO Mol Med 2014; 6(11): 1423-35.
[http://dx.doi.org/10.15252/emmm.201303376] [PMID: 25339185]
Tarantini S, Giles CB, Wren JD, et al. IGF-1 deficiency in a critical period early in life influences the vascular aging phenotype in mice by altering miRNA-mediated post-transcriptional gene regulation: implications for the developmental origins of health and disease hypothesis. Age (Dordr) 2016; 38(4): 239-58.
[http://dx.doi.org/10.1007/s11357-016-9943-9] [PMID: 27566308]
Higashi Y, Sukhanov S, Shai SY, et al. Insulin-Like growth factor-1 receptor deficiency in macrophages accelerates atherosclerosis and induces an unstable plaque phenotype in apolipoprotein E-Deficient mice. Circulation 2016; 133(23): 2263-78.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021805] [PMID: 27154724]
Aguirre GA, De Ita JR, de la Garza RG, Castilla-Cortazar I. Insulin-like growth factor-1 deficiency and metabolic syndrome. J Transl Med 2016; 14: 3.
[http://dx.doi.org/10.1186/s12967-015-0762-z] [PMID: 26733412]
Wang JC, Bennett M. Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 2012; 111(2): 245-59.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.261388] [PMID: 22773427]
Ungvari Z, Csiszar A. The emerging role of IGF-1 deficiency in cardiovascular aging: recent advances. J Gerontol A Biol Sci Med Sci 2012; 67(6): 599-610.
[http://dx.doi.org/10.1093/gerona/gls072] [PMID: 22451468]
Higashi Y, Sukhanov S, Anwar A, Shai SY, Delafontaine P. Aging, atherosclerosis, and IGF-1. J Gerontol A Biol Sci Med Sci 2012; 67(6): 626-39.
[http://dx.doi.org/10.1093/gerona/gls102] [PMID: 22491965]
Xu X, Hueckstaedt LK, Ren J. Deficiency of insulin-like growth factor 1 attenuates aging-induced changes in hepatic function: role of autophagy. J Hepatol 2013; 59(2): 308-17.
[http://dx.doi.org/10.1016/j.jhep.2013.03.037] [PMID: 23583271]
Li Q, Ren J. Influence of cardiac-specific overexpression of insulin-like growth factor 1 on lifespan and aging-associated changes in cardiac intracellular Ca2+ homeostasis, protein damage and apoptotic protein expression. Aging Cell 2007; 6(6): 799-806.
[http://dx.doi.org/10.1111/j.1474-9726.2007.00343.x] [PMID: 17973971]
Ren J. Attenuated cardiac contractile responsiveness to insulin-like growth factor I in ventricular myocytes from biobreeding spontaneous diabetic rats. Cardiovasc Res 2000; 46(1): 162-71.
[http://dx.doi.org/10.1016/S0008-6363(00)00011-0] [PMID: 10727664]
Norby FL, Wold LE, Duan J, Hintz KK, Ren J. IGF-I attenuates diabetes-induced cardiac contractile dysfunction in ventricular myocytes. Am J Physiol Endocrinol Metab 2002; 283(4): 658-66.
[http://dx.doi.org/10.1152/ajpendo.00003.2002] [PMID: 12217882]
Ren J. Short-term administration of insulin-like growth factor I (IGF-1) does not induce myocardial IGF-1 resistance Growth hormone and IGF research. J Growth Hormone Res Soc Int IGF Res Society 2002.
Norby FL, Aberle NS II, Kajstura J, Anversa P, Ren J. Transgenic overexpression of insulin-like growth factor I prevents streptozotocin-induced cardiac contractile dysfunction and beta-adrenergic response in ventricular myocytes. J Endocrinol 2004; 180(1): 175-82.
[http://dx.doi.org/10.1677/joe.0.1800175] [PMID: 14709156]
Hintz KK, Ren J. Prediabetic insulin resistance is not permissive to the development of cardiac resistance to insulin-like growth factor I in ventricular myocytes. Diabetes Res Clin Pract 2002; 55(2): 89-98.
[http://dx.doi.org/10.1016/S0168-8227(01)00323-0] [PMID: 11796174]
Zhang Y, Yuan M, Bradley KM, Dong F, Anversa P, Ren J. Insulin-like growth factor 1 alleviates high-fat diet-induced myocardial contractile dysfunction: role of insulin signaling and mitochondrial function. Hypertension 2012; 59(3): 680-93.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.181867] [PMID: 22275536]
McCallum RW, Hamilton CA, Graham D, Jardine E, Connell JM, Dominiczak AF. Vascular responses to IGF-I and insulin are impaired in aortae of hypertensive rats. J Hypertens 2005; 23(2): 351-8.
[http://dx.doi.org/10.1097/00004872-200502000-00017] [PMID: 15662223]
McIntyre M, Hamilton CA, Rees DD, Reid JL, Dominiczak AF. Sex differences in the abundance of endothelial nitric oxide in a model of genetic hypertension. Hypertension 1997; 30(6): 1517-24.
[http://dx.doi.org/10.1161/01.HYP.30.6.1517] [PMID: 9403576]
Kerr S, Brosnan MJ, McIntyre M, Reid JL, Dominiczak AF, Hamilton CA. Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 1999; 33(6): 1353-8.
[http://dx.doi.org/10.1161/01.HYP.33.6.1353] [PMID: 10373215]
Hamilton CA, Brosnan MJ, Al-Benna S, Berg G, Dominiczak AF. NAD(P)H oxidase inhibition improves endothelial function in rat and human blood vessels. Hypertension 2002; 40(5): 755-62.
[http://dx.doi.org/10.1161/01.HYP.0000037063.90643.0B] [PMID: 12411473]
Ock S, Lee WS, Ahn J, et al. Deletion of IGF-1 Receptors in Cardiomyocytes Attenuates Cardiac Aging in Male Mice. Endocrinology 2016; 157(1): 336-45.
[http://dx.doi.org/10.1210/en.2015-1709] [PMID: 26469138]
Roof SR, Boslett J, Russell D, et al. Insulin-like growth factor 1 prevents diastolic and systolic dysfunction associated with cardiomyopathy and preserves adrenergic sensitivity. Acta Physiol (Oxf) 2016; 216(4): 421-34.
[http://dx.doi.org/10.1111/apha.12607] [PMID: 26399932]
Fontana L, Vinciguerra M, Longo VD. Growth factors, nutrient signaling, and cardiovascular aging. Circ Res 2012; 110(8): 1139-50.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246470] [PMID: 22499903]
Correll RN, Eder P, Burr AR, et al. Overexpression of the Na+/K+ ATPase α2 but not α1 isoform attenuates pathological cardiac hypertrophy and remodeling. Circ Res 2014; 114(2): 249-56.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.302293] [PMID: 24218169]
Yang AL, Chao JI, Lee SD. Altered insulin-mediated and insulin-like growth factor-1-mediated vasorelaxation in aortas of obese Zucker rats. Int J Obes 2007; 31(1): 72-7.
Zakula Z, Koricanac G, Putnikovic B, Markovic L, Isenovic ER. Regulation of the inducible nitric oxide synthase and sodium pump in type 1 diabetes. Med Hypotheses 2007; 69(2): 302-6.
[http://dx.doi.org/10.1016/j.mehy.2006.11.045] [PMID: 17289286]
Zhang L, Curhan GC, Forman JP. Plasma insulin-like growth factor-1 level and risk of incident hypertension in nondiabetic women. J Hypertens 2011; 29(2): 229-35.
[http://dx.doi.org/10.1097/HJH.0b013e32834103bf] [PMID: 21045735]
Yu XY, Song YH, Geng YJ, et al. Glucose induces apoptosis of cardiomyocytes via microRNA-1 and IGF-1. Biochem Biophys Res Commun 2008; 376(3): 548-52.
[http://dx.doi.org/10.1016/j.bbrc.2008.09.025] [PMID: 18801338]
Shan ZX, Lin QX, Fu YH, et al. Upregulated expression of miR-1/miR-206 in a rat model of myocardial infarction. Biochem Biophys Res Commun 2009; 381(4): 597-601.
[http://dx.doi.org/10.1016/j.bbrc.2009.02.097] [PMID: 19245789]
Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM. MicroRNA-320 expression in myocardial microvascular endothelial cells and its relationship with insulin-like growth factor-1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 2009; 36(2): 181-8.
[http://dx.doi.org/10.1111/j.1440-1681.2008.05057.x] [PMID: 18986336]
Hua Y, Zhang Y, Ren J. IGF-1 deficiency resists cardiac hypertrophy and myocardial contractile dysfunction: role of microRNA-1 and microRNA-133a. J Cell Mol Med 2012; 16(1): 83-95.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01307.x] [PMID: 21418519]
Gao S, Wassler M, Zhang L, et al. MicroRNA-133a regulates insulin-like growth factor-1 receptor expression and vascular smooth muscle cell proliferation in murine atherosclerosis. Atherosclerosis 2014; 232(1): 171-9.
[http://dx.doi.org/10.1016/j.atherosclerosis.2013.11.029] [PMID: 24401233]
Li K, Wang Y, Zhang A, Liu B, Jia L. miR-379 Inhibits cell proliferation, invasion, and migration of vascular smooth muscle cells by targeting insulin-like factor-1. Yonsei Med J 2017; 58(1): 234-40.
[http://dx.doi.org/10.3349/ymj.2017.58.1.234] [PMID: 27873518]
Wang L, Niu X, Hu J, et al. After myocardial ischemia-reperfusion, miR-29a, and Let7 could affect apoptosis through regulating IGF-1. BioMed Res Int 2015; 2015245412
[http://dx.doi.org/10.1155/2015/245412] [PMID: 26844226]
Iekushi K, Seeger F, Assmus B, Zeiher AM, Dimmeler S. Regulation of cardiac microRNAs by bone marrow mononuclear cell therapy in myocardial infarction. Circulation 2012; 125(14): 1765-73.
Abbas A, Grant PJ, Kearney MT. Role of IGF-1 in glucose regulation and cardiovascular disease. Expert Rev Cardiovasc Ther 2008; 6(8): 1135-49.
[http://dx.doi.org/10.1586/14779072.6.8.1135] [PMID: 18793116]
Colao A, Spiezia S, Di Somma C, et al. Circulating insulin-like growth factor-I levels are correlated with the atherosclerotic profile in healthy subjects independently of age. J Endocrinol Invest 2005; 28(5): 440-8.
[http://dx.doi.org/10.1007/BF03347225] [PMID: 16075928]
Janssen JA, Stolk RP, Pols HA, Grobbee DE, Lamberts SW. Serum total IGF-I, free IGF-I, and IGFB-1 levels in an elderly population: relation to cardiovascular risk factors and disease. Arterioscler Thromb Vasc Biol 1998; 18(2): 277-82.
[http://dx.doi.org/10.1161/01.ATV.18.2.277] [PMID: 9484994]
Laughlin GA, Barrett-Connor E, Criqui MH, Kritz-Silverstein D. The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the rancho bernardo study. J Clin Endocrinol Metab 2004; 89(1): 114-20.
[http://dx.doi.org/10.1210/jc.2003-030967] [PMID: 14715837]
Goodman-Gruen D, Barrett-Connor E, Rosen C. IGF-1 and ischemic heart disease in older people. J Am Geriatr Soc 2000; 48(7): 860-1.
[http://dx.doi.org/10.1111/j.1532-5415.2000.tb04774.x] [PMID: 10894338]
van den Beld AW, Bots ML, Janssen JA, Pols HA, Lamberts SW, Grobbee DE. Endogenous hormones and carotid atherosclerosis in elderly men. Am J Epidemiol 2003; 157(1): 25-31.
[http://dx.doi.org/10.1093/aje/kwf160] [PMID: 12505887]
Conti E, Carrozza C, Capoluongo E, et al. Insulin-like growth factor-1 as a vascular protective factor. Circulation 2004; 110(15): 2260-5.
[http://dx.doi.org/10.1161/01.CIR.0000144309.87183.FB] [PMID: 15477425]
Naderi N, Heidarali M, Barzegari F, Ghadrdoost B, Amin A, Taghavi S. Hormonal profile in patients with dilated cardiomyopathy. Res Cardiovasc Med 2015; 4(3)e27631
[http://dx.doi.org/10.5812/cardiovascmed.27631v2] [PMID: 26448916]
Yousefzadeh G, Masoomi M, Emadzadeh A, Shahesmaeili A, Sheikhvatan M. The association of insulin-like growth factor-1 with severity of coronary artery disease. J Cardiovasc Med (Hagerstown) 2013; 14(6): 416-20.
[http://dx.doi.org/10.2459/JCM.0b013e328358c7c7] [PMID: 23160066]
Vasan RS, Sullivan LM, D’Agostino RB, et al. Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the tramingham heart study. Ann Intern Med 2003; 139(8): 642-8.
[http://dx.doi.org/10.7326/0003-4819-139-8-200310210-00007] [PMID: 14568852]
Kaplan RC, McGinn AP, Pollak MN, et al. Association of total insulin-like growth factor-I, insulin-like growth factor binding protein-1 (IGFBP-1), and IGFBP-3 levels with incident coronary events and ischemic stroke. J Clin Endocrinol Metab 2007; 92(4): 1319-25.
[http://dx.doi.org/10.1210/jc.2006-1631] [PMID: 17264182]
Maggio M, Cattabiani C, Lauretani F, et al. Insulin-like growth factor-1 bioactivity plays a prosurvival role in older participants. J Gerontol A Biol Sci Med Sci 2013; 68(11): 1342-50.
[http://dx.doi.org/10.1093/gerona/glt045] [PMID: 23671288]
Guan J, Gluckman PD. IGF-1 derived small neuropeptides and analogues: a novel strategy for the development of pharmaceuticals for neurological conditions. Br J Pharmacol 2009; 157(6): 881-91.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00256.x] [PMID: 19438508]
Guan J, Harris P, Brimble M, et al. The role for IGF-1-derived small neuropeptides as a therapeutic target for neurological disorders. Expert Opin Ther Targets 2015; 19(6): 785-93.
[http://dx.doi.org/10.1517/14728222.2015.1010514] [PMID: 25652713]
Laron Z, Kauli R, Lapkina L, Werner H. IGF-I deficiency, longevity and cancer protection of patients with laron syndrome. Mutat Res Rev Mutat Res 2017; 772: 123-33.
[http://dx.doi.org/10.1016/j.mrrev.2016.08.002] [PMID: 28528685]
Berryman DE, Christiansen JS, Johannsson G, Thorner MO, Kopchick JJ. Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 2008; 18(6): 455-71.
[http://dx.doi.org/10.1016/j.ghir.2008.05.005] [PMID: 18710818]
Janssen JA, Lamberts SW. The role of IGF-I in the development of cardiovascular disease in type 2 diabetes mellitus: is prevention possible? Eur J Endocrinol 2002; 146(4): 467-77.
[http://dx.doi.org/10.1530/eje.0.1460467] [PMID: 11916613]
Bach LA. The insulin-like growth factor system: towards clinical applications. Clin Biochem Rev 2004; 25(3): 155-64.
Varewijck AJ, Lamberts SW, van der Lely AJ, Neggers SJ, Hofland LJ, Janssen JA. The introduction of the IDS-iSYS total IGF-1 assay may have far-reaching consequences for diagnosis and treatment of GH deficiency. J Clin Endocrinol Metab 2015; 100(1): 309-16.
[http://dx.doi.org/10.1210/jc.2014-2558] [PMID: 25337924]
Frystyk J, Dinesen B, Orskov H. Non-competitive time-resolved immunofluorometric assays for determination of human insulin-like growth factor I and II. Growth Regul 1995; 5(4): 169-76.
[PMID: 8745141]
Ketha H, Singh RJ. Clinical assays for quantitation of insulin-like-growth-factor-1 (IGF1). Methods 2015; 81: 93-8.
[http://dx.doi.org/10.1016/j.ymeth.2015.04.029] [PMID: 25937392]
Chanson P, Arnoux A, Mavromati M, et al. Reference values for IGF-I serum concentrations: comparison of six immunoassays. J Clin Endocrinol Metab 2016; 101(9): 3450-8.
[http://dx.doi.org/10.1210/jc.2016-1257] [PMID: 27167056]
Kay R, Halsall DJ, Annamalai AK, et al. A novel mass spectrometry-based method for determining insulin-like growth factor 1: assessment in a cohort of subjects with newly diagnosed acromegaly. Clin Endocrinol (Oxf) 2013; 78(3): 424-30.
[http://dx.doi.org/10.1111/cen.12085] [PMID: 23121616]
Bystrom C, Sheng S, Zhang K, Caulfield M, Clarke NJ, Reitz R. Clinical utility of insulin-like growth factor 1 and 2; determination by high resolution mass spectrometry. PLoS One 2012; 7(9)e43457
[http://dx.doi.org/10.1371/journal.pone.0043457] [PMID: 22984427]

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Published on: 11 December, 2019
Page: [3715 - 3725]
Pages: 11
DOI: 10.2174/1381612825666191106091507
Price: $65

Article Metrics

PDF: 35
PRC: 1