The Anti-Inflammatory Effects of Anacardic Acid on a TNF-α - Induced Human Saphenous Vein Endothelial Cell Culture Model

Author(s): Burak Önal*, Deniz Özen, Bülent Demir, Duygu Gezen Ak, Erdinç Dursun, Caner Demir, Ahmet Gökhan Akkan, Sibel Özyazgan

Journal Name: Current Pharmaceutical Biotechnology

Volume 21 , Issue 8 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background and Objective: Coronary bypass operations are commonly performed for the treatment of ischemic heart diseases. Coronary artery bypass surgery with autologous human saphenous vein maintains its importance as a commonly used therapy for advanced atherosclerosis. Vascular inflammation-related intimal hyperplasia and atherosclerotic progress have major roles in the pathogenesis of saphenous vein graft disease.

Methods: In our study, we investigated the effect of anacardic acid (AA), which is a bioactive phytochemical in the shell of Anacardium occidentale, on atherosclerosis considering its inhibitory effect on NF-κB. We observed relative ICAM-1 and NF-κB mRNA levels by qRT-PCR method in a TNF-α- induced inflammation model of saphenous vein endothelial cell culture after 0.1, 0.5, 1 and 5 μM of AA were applied to the cells. In addition, protein levels of ICAM-1 and NF-κB were evaluated by immunofluorescent staining. The results were compared between different concentrations of AA, and also with the control group.

Results: It was found that 5 μM, 1 μM and 0.5 μM of AA had toxic effects, while cytotoxicity decreased when 0.1 μM of AA was applied both alone and with TNF-α. When AA was applied with TNF-α, there was a decrease and suppression in NF-κB expression compared with the TNF-α group. TNF-α-induced ICAM-1 expression was significantly reduced more in the AA-applied group than in the TNF-α group.

Conclusion: In accordance with our results, it can be said that AA has a protective role in the pathogenesis of atherosclerosis and hence in saphenous vein graft disease.

Keywords: Coronary bypass, anacardic acid, saphenous vein, atherosclerosis, inflammation, NF-κB.

[1]
Ross, R.; Glomset, J.A. The pathogenesis of atherosclerosis (second of two parts). N. Engl. J. Med., 1976, 295(8), 420-425.
[http://dx.doi.org/10.1056/NEJM197608192950805] [PMID: 778621]
[2]
Kessler, W.; Ewers, R.; Krekeler, G. [The complication rate of pretreated and not pretreated patients with hemodialysis, kidney transplantation and radiation therapy]. Dtsch. Zahnarztl. Z., 1979, 34(3), 266-268.
[PMID: 374047]
[3]
Baeuerle, P.A.; Henkel, T. Function and activation of NF-kappa B in the immune system. Annu. Rev. Immunol., 1994, 12, 141-179.
[http://dx.doi.org/10.1146/annurev.iy.12.040194.001041] [PMID: 8011280]
[4]
Collins, T. Endothelial nuclear factor-kappa B and the initiation of the atherosclerotic lesion. Lab. Invest., 1993, 68(5), 499-508.
[PMID: 8497124]
[5]
Zhu, L.; Yang, X.P.; Janic, B.; Rhaleb, N.E.; Harding, P.; Nakagawa, P.; Peterson, E.L.; Carretero, O.A. Ac-SDKP suppresses TNF-α-induced ICAM-1 expression in endothelial cells via inhibition of IκB kinase and NF-κB activation. Am. J. Physiol. Heart Circ. Physiol., 2016, 310(9), H1176-H1183.
[http://dx.doi.org/10.1152/ajpheart.00252.2015] [PMID: 26945075]
[6]
Hemshekhar, M.; Sebastin Santhosh, M.; Kemparaju, K.; Girish, K.S. Emerging roles of anacardic acid and its derivatives: a pharmacological overview. Basic Clin. Pharmacol. Toxicol., 2012, 110(2), 122-132.
[http://dx.doi.org/10.1111/j.1742-7843.2011.00833.x] [PMID: 22103711]
[7]
Sukumari-Ramesh, S.; Singh, N.; Jensen, M.A.; Dhandapani, K.M.; Vender, J.R. Anacardic acid induces caspase-independent apoptosis and radiosensitizes pituitary adenoma cells. J. Neurosurg., 2011, 114(6), 1681-1690.
[http://dx.doi.org/10.3171/2010.12.JNS10588] [PMID: 21275565]
[8]
Sung, B.; Pandey, M.K.; Ahn, K.S.; Yi, T.; Chaturvedi, M.M.; Liu, M.; Aggarwal, B.B. Anacardic acid (6-nonadecyl salicylic acid), an inhibitor of histone acetyltransferase, suppresses expression of nuclear factor-kappaB-regulated gene products involved in cell survival, proliferation, invasion, and inflammation through inhibition of the inhibitory subunit of nuclear factor-kappaBalpha kinase, leading to potentiation of apoptosis. Blood, 2008, 111(10), 4880-4891.
[http://dx.doi.org/10.1182/blood-2007-10-117994] [PMID: 18349320]
[9]
Marwick, C. Coronary bypass grafting economics, including rehabilitation. Curr. Opin. Cardiol., 1994, 9(6), 635-640.
[http://dx.doi.org/10.1097/00001573-199411000-00001] [PMID: 7819621]
[10]
Cooper, G.J.; Underwood, M.J.; Deverall, P.B. Arterial and venous conduits for coronary artery bypass. A current review. Eur. J. Cardiothorac. Surg., 1996, 10(2), 129-140.
[http://dx.doi.org/10.1016/S1010-7940(96)80135-7] [PMID: 8664004]
[11]
Souza, D.S.; Gomes, W.J. The future of saphenous vein graft for coronary artery. Rev. Bras. Cir. Cardiovasc., 2008, 23(3), III-VII.
[http://dx.doi.org/10.1590/S0102-76382008000300002] [PMID: 19082314]
[12]
Sur, S.; Sugimoto, J.T.; Agrawal, D.K. Coronary artery bypass graft: why is the saphenous vein prone to intimal hyperplasia? Can. J. Physiol. Pharmacol., 2014, 92(7), 531-545.
[http://dx.doi.org/10.1139/cjpp-2013-0445] [PMID: 24933515]
[13]
Dursun, E.; Gezen-Ak, D. Vitamin D receptor is present on the neuronal plasma membrane and is co-localized with amyloid precursor protein, ADAM10 or Nicastrin. PLoS One, 2017, 12(11)e0188605
[http://dx.doi.org/10.1371/journal.pone.0188605] [PMID: 29176823]
[14]
Parry, W.L.; Hemstreet, G.P., III Cancer detection by quantitative fluorescence image analysis. J. Urol., 1988, 139(2), 270-274.
[http://dx.doi.org/10.1016/S0022-5347(17)42384-6] [PMID: 3339723]
[15]
Gezen-Ak, D.; Atasoy, I.L.; Candaş, E.; Alaylioglu, M.; Yılmazer, S.; Dursun, E.; Vitamin, D. Vitamin D receptor regulates amyloid beta 1-42 production with protein disulfide isomerase A3. ACS Chem. Neurosci., 2017, 8(10), 2335-2346.
[http://dx.doi.org/10.1021/acschemneuro.7b00245] [PMID: 28707894]
[16]
Atasoy, I.L.; Dursun, E.; Gezen-Ak, D.; Metin-Armağan, D.; Öztürk, M.; Yılmazer, S. Both secreted and the cellular levels of BDNF attenuated due to tau hyperphosphorylation in primary cultures of cortical neurons. J. Chem. Neuroanat., 2017, 80, 19-26.
[http://dx.doi.org/10.1016/j.jchemneu.2016.11.007] [PMID: 27914953]
[17]
Gezen-Ak, D.; Atasoy, I.L.; Candaş, E.; Alaylıoğlu, M.; Dursun, E. The transcriptional regulatory properties of amyloid beta 1-42 may include regulation of genes related to neurodegeneration. Neuromolecular Med., 2018, 20(3), 363-375.
[http://dx.doi.org/10.1007/s12017-018-8498-6] [PMID: 29948923]
[18]
Huang, H.; Hua, X.; Liu, N.; Li, X.; Liu, S.; Chen, X.; Zhao, C.; Lan, X.; Yang, C.; Dou, Q.P.; Liu, J. Anacardic acid induces cell apoptosis associated with induction of ATF4-dependent endoplasmic reticulum stress. Toxicol. Lett., 2014, 228(3), 170-178.
[http://dx.doi.org/10.1016/j.toxlet.2014.05.012] [PMID: 24853302]
[19]
Zhong, X.; Li, X.; Liu, F.; Tan, H.; Shang, D. Omentin inhibits TNF-α-induced expression of adhesion molecules in endothelial cells via ERK/NF-κB pathway. Biochem. Biophys. Res. Commun., 2012, 425(2), 401-406.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.110] [PMID: 22842465]
[20]
Chen, L.F.; Williams, S.A.; Mu, Y.; Nakano, H.; Duerr, J.M.; Buckbinder, L.; Greene, W.C. NF-kappaB RelA phosphorylation regulates RelA acetylation. Mol. Cell. Biol., 2005, 25(18), 7966-7975.
[http://dx.doi.org/10.1128/MCB.25.18.7966-7975.2005] [PMID: 16135789]
[21]
Chello, M.; Mastroroberto, P.; Frati, G.; Patti, G.; D’Ambrosio, A.; Di Sciascio, G.; Covino, E. Pressure distension stimulates the expression of endothelial adhesion molecules in the human saphenous vein graft. Ann. Thorac. Surg., 2003, 76(2), 453-458.
[http://dx.doi.org/10.1016/S0003-4975(03)00433-8] [PMID: 12902083]
[22]
Chester, A.H.; Morrison, K.J.; Yacoub, M.H. Expression of vascular adhesion molecules in saphenous vein coronary bypass grafts. Ann. Thorac. Surg., 1998, 65(6), 1685-1689.
[http://dx.doi.org/10.1016/S0003-4975(98)00274-4] [PMID: 9647082]
[23]
Zhang, W.; An, J.; Jawadi, H.; Siow, D.L.; Lee, J.F.; Zhao, J.; Gartung, A.; Maddipati, K.R.; Honn, K.V.; Wattenberg, B.W.; Lee, M.J. Sphingosine-1-phosphate receptor-2 mediated NFκB activation contributes to tumor necrosis factor-α induced VCAM-1 and ICAM-1 expression in endothelial cells. Prostaglandins Other Lipid Mediat., 2013, 106, 62-71.
[http://dx.doi.org/10.1016/j.prostaglandins.2013.06.001] [PMID: 23770055]
[24]
de Winther, M.P.; Kanters, E.; Kraal, G.; Hofker, M.H. Nuclear factor kappaB signaling in atherogenesis. Arterioscler. Thromb. Vasc. Biol., 2005, 25(5), 904-914.
[http://dx.doi.org/10.1161/01.ATV.0000160340.72641.87] [PMID: 15731497]
[25]
Valen, G.; Yan, Z.Q.; Hansson, G.K. Nuclear factor kappa-B and the heart. J. Am. Coll. Cardiol., 2001, 38(2), 307-314.
[http://dx.doi.org/10.1016/S0735-1097(01)01377-8] [PMID: 11499717]
[26]
Harskamp, R.E.; Lopes, R.D.; Baisden, C.E.; de Winter, R.J.; Alexander, J.H. Saphenous vein graft failure after coronary artery bypass surgery: pathophysiology, management, and future directions. Ann. Surg., 2013, 257(5), 824-833.
[http://dx.doi.org/10.1097/SLA.0b013e318288c38d] [PMID: 23574989]
[27]
Parang, P.; Arora, R. Coronary vein graft disease: pathogenesis and prevention. Can. J. Cardiol., 2009, 25(2), e57-e62.
[http://dx.doi.org/10.1016/S0828-282X(09)70486-6] [PMID: 19214303]
[28]
Springer, T.A. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu. Rev. Physiol., 1995, 57, 827-872.
[http://dx.doi.org/10.1146/annurev.ph.57.030195.004143] [PMID: 7778885]
[29]
Zapolska-Downar, D.; Siennicka, A.; Kaczmarczyk, M.; Kołodziej, B.; Naruszewicz, M. Butyrate inhibits cytokine-induced VCAM-1 and ICAM-1 expression in cultured endothelial cells: the role of NF-kappaB and PPARalpha. J. Nutr. Biochem., 2004, 15(4), 220-228.
[http://dx.doi.org/10.1016/j.jnutbio.2003.11.008] [PMID: 15068815]
[30]
Chen, C.X.; Yang, L.C.; Xu, X.D.; Wei, X.; Gai, Y.T.; Peng, L.; Guo, H.; Hao-Zhou, ; Wang, Y.Q.; Jin, X. Effect of propane-2-sulfonic acid octadec-9-enyl-amide on the expression of adhesion molecules in human umbilical vein endothelial cells. Eur. J. Pharmacol., 2015, 756, 15-21.
[http://dx.doi.org/10.1016/j.ejphar.2015.03.014] [PMID: 25797284]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 21
ISSUE: 8
Year: 2020
Published on: 08 July, 2020
Page: [710 - 719]
Pages: 10
DOI: 10.2174/1389201020666191105154619

Article Metrics

PDF: 22
HTML: 1