Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Unexpected Reactions of Terminal Alkynes in Targeted “Click Chemistry’’ Coppercatalyzed Azide-alkyne Cycloadditions

Author(s): Tammar H. Ali*, Thorsten Heidelberg*, Rusnah S.D. Hussen and Hairul A. Tajuddin

Volume 16, Issue 8, 2019

Page: [1143 - 1148] Pages: 6

DOI: 10.2174/1570179416666191105152714

Price: $65

Abstract

Background: High efficiency in terms of reaction yield and purity has led to the extensive utilization of copper-catalyzed azide-alkyne cycloaddition (CuAAC) in various fields of chemistry. Its compatibility with low molecular weight alcohols promotes the application in surfactant synthesis to tackle the miscibility constraints of the reactants.

Objective: For the tuning of surfactant properties, double click coupling of the antipode precursors was attempted. Failure of the CuAAC to provide the targeted product in combination with unexpected reaction outputs led to an investigation of the side reaction.

Methods: The CuAAC-based coupling of sugar azide with propargyl building block in the presence of copper- (I) catalyst exclusively led to the mono-coupling product in a respectable yield of almost 80%. Besides the unexpected incomplete conversion, the loss of the remaining propargyl group, as indicated by both NMR and MS. On the other hand, application of substantial amounts of CuSO4 under reducing conditions in refluxing toluene/water furnished the alkyne dimer in a moderate yield of 43%, while no change of azide compound was noticed.

Results: The Cu(I)-catalyst applied for azide-alkyne cycloadditions enables the homo-coupling of certain terminal alkynes at a higher temperature. Moreover, aromatic propargyl ethers may be cleaved to furnish the corresponding phenol. The copper-catalyzed coupling appeared highly sensitive towards the alkyne compound. Only selected derivatives of propargyl alcohol were successfully dimerized.

Conclusions: The observed failure of the Huisgen reaction for the synthesis of sugar-based surfactants may indicate non-recognized constrains of the reaction, which could affect its wide application in bioconjugation. The temperature requirement for the alternative dimerization of terminal alkynes renders this side reaction nonrelevant for typical click couplings, while narrow substrate diversity and moderate yield limit its synthetic application.

Keywords: Click Chemistry, Huisgen cycloaddition, alkyne dimerization, aryl-propargyl ether cleavage, Copper azide alkyne cycloaddition (CuAAC), depropargylation.

Graphical Abstract
[1]
Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click chemistry: Diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl., 2001, 40(11), 2004-2021.
[http://dx.doi.org/10.1002/1521-3773(20010601)40:11<2004:AID-ANIE2004>3.0.CO;2-5] [PMID: 11433435]
[2]
Meldal, M.; Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev., 2008, 108(8), 2952-3015.
[http://dx.doi.org/10.1021/cr0783479] [PMID: 18698735]
[3]
Lahann, J. Click Chemistry for Biotechnology and Material Science; John Wiley and Sons PtyLtd: West Sussex, UK, 2009.
[http://dx.doi.org/10.1002/9780470748862]
[4]
Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug Discov. Today, 2003, 8(24), 1128-1137.
[http://dx.doi.org/10.1016/S1359-6446(03)02933-7] [PMID: 14678739]
[5]
Dedola, S.; Nepogodiev, S.A.; Field, R.A. Recent applications of the Cu(I)-catalysed Huisgen azide-alkyne 1,3-dipolar cycloaddition reaction in carbohydrate chemistry. Org. Biomol. Chem., 2007, 5(7), 1006-1017.
[http://dx.doi.org/10.1039/B618048P] [PMID: 17377651]
[6]
(a) Sani, F.A.; Heidelberg, T.; Hashim, R. Alkyl triazole glycosides (ATGs)—A new class of bio-related surfactants. Colloid Surf. B, 2012, 97, 196-200. http://10.1016/j.colsurfb.2012.03.030
(b) Ali, T.H.; Tajuddin, H.A.; Hussen, R.S.D.; Heidelberg, T. Increased emulsion stability for reverse Y‐shaped sugar‐based surfactants. J. Surfactants Deterg., 2015, 18, 881-886. http://10.1007/s11743-015-1710-x
(c) Ng, S.H.; Heidelberg, T.; Salman, A.A. Spacer effect on triazole-linked sugar-based surfactants. J. Disp. Sci. Tech., 2017, 38, 105-109.
[http://dx.doi.org/10.1080/01932691.2016.1144513]
[7]
(a) Oldham, E.D.; Seelam, S.; Lema, C.; Aguilera, R.J.; Fiegel, J.; Rankin, S.E.; Knutson, B.L.; Lehmler, H.J. Synthesis, surface properties, and biocompatibility of 1,2,3-triazole-containing alkyl β-D-xylopyranoside surfactants. Carbohydr. Res., 2013, 379, 68-77.
[http://dx.doi.org/10.1016/j.carres.2013.06.020] [PMID: 23872788]
(b) Oldham, E.D.; Nunes, L.M.; Varela-Ramirez, A.; Rankin, S.E.; Knutson, B.L.; Aguilera, R.J.; Lehmler, H-J. Cytotoxic activity of triazole-containing alkyl β-D-glucopyranosides on a human T-cell leukemia cell line. Chem. Cent. J., 2015, 9, 3.
[http://dx.doi.org/10.1186/s13065-014-0072-1] [PMID: 25705252]
[8]
(a) Schuster, O.; Yang, L.; Raubenheimer, H.G.; Albrecht, M. Beyond conventional N-heterocyclic carbenes: abnormal, remote, and other classes of NHC ligands with reduced heteroatom stabilization. Chem. Rev., 2009, 109(8), 3445-3478.
[http://dx.doi.org/10.1021/cr8005087] [PMID: 19331408]
(b) bAlbrecht, M. C4- bound imidazolylidenes: from curiosities to high-impact carbene ligands. Chem. Commun. (Camb.), 2008, 31(31), 3601-3610.
[http://dx.doi.org/10.1039/b806924g] [PMID: 18665276]
(c) Mathew, P.; Neels, A.; Albrecht, M. 1,2,3-Triazolylidenes as versatile abnormal carbene ligands for late transition metals. J. Am. Chem. Soc., 2008, 130(41), 13534-13535.
[http://dx.doi.org/10.1021/ja805781s] [PMID: 18785741]
(d) Lalrempuia, R.; McDaniel, N.D.; Müller-Bunz, H.; Bernhard, S.; Albrecht, M. Water oxidation catalyzed by strong carbene-type donor-ligand complexes of iridium. Angew. Chem. Int. Ed. Engl., 2010, 49(50), 9765-9768.
[http://dx.doi.org/10.1002/anie.201005260] [PMID: 21064071]
[9]
Karthikeyan, T.; Sankararaman, S. Palladium complexes with abnormal N-heterocyclic carbene ligands derived from 1,2,3-triazolium ions and their application in Suzuki coupling. Tetrahedron Lett., 2009, 50, 5834-5837.
[http://dx.doi.org/10.1016/j.tetlet.2009.08.002]
[10]
Nakamura, T.; Ogata, K.; Fukuzawa, S-I. Synthesis of dichlorobis(1,4-dimesityl-1H-1,2,3-triazol-5-ylidene)palladium [PdCl2(TMes)2] and its application to suzuki-miyaura coupling reaction. Chem. Lett., 2010, 39, 920-922.
[http://dx.doi.org/10.1246/cl.2010.920]
[11]
Stefani, H.A.; Canduzini, H.A.; Manarin, F. Modular synthesis of mono, di, and tri-1,4-disubstituted-1,2,3-triazoles through copper-mediated alkyne–azide cycloaddition. Tetrahedron Lett., 2011, 52, 6086-6090.
[http://dx.doi.org/10.1016/j.tetlet.2011.09.004]
[12]
Kanamanthareddy, S.; Gutsche, S.D. Selective upper rim functionalization and lower rim bridge building with calix[4]arenes and calix[6]arenes. J. Org. Chem., 1996, 61, 2511-2516.
[http://dx.doi.org/10.1021/jo952054a]
[13]
36 Cai, H.; Jiang, G.; Shen, Z.; Fan, X. Effects of dendron generation and salt concentration on phase structures of dendritic-linear block copolymers with a semirigid Dendron containing PEG tails. Macrololecules, 2012, 45, 6176-6184.
[http://dx.doi.org/10.1021/ma300654j]
[14]
Ali, T.H.; Hussen, R.S.D.; Heidelberg, T. New Y-shaped surfactants from renewable resources. Colloids Surf. B Biointerfaces, 2014, 123, 981-985.
[http://dx.doi.org/10.1016/j.colsurfb.2014.10.054] [PMID: 25465761]
[15]
(a) Jang, B.; Kim, S.Y.; Do, J.Y. Due-incorporated water-soluble polymer via click triazole formation. Dyes Pigments, 2012, 94, 217-223. http://10.1016/j.dyepig.2012.01.012
(b) Wang, G.N.; André, S.; Gabius, H.J.; Murphy, P.V. Bi- to tetravalent glycoclusters: synthesis, structure-activity profiles as lectin inhibitors and impact of combining both valency and headgroup tailoring on selectivity. Org. Biomol. Chem., 2012, 10(34), 6893-6907.
[http://dx.doi.org/10.1039/c2ob25870f] [PMID: 22842468]
[16]
Meier, H.; Dullweber, U. Extension of the squaraine chromophore in symmetrical bis(stilbenyl)squaraines. J. Org. Chem., 1997, 62, 4821-4826.
[http://dx.doi.org/10.1021/jo970284e]
[17]
Collinson, J-M.; Wilton-Ely, J.D.E.T.; Díez-González, S. Reusable and highly active supported copper(i)–NHC catalysts for Click chemistry. Chem. Commun., 2013, 49, 11358-11360.
[http://dx.doi.org/10.1039/C3CC44371J]
[18]
Tran, H.A.; Kitov, P.I.; Paszkiewicz, E.; Sadowska, J.M.; Bundle, D.R. Multifunctional multivalency: A focused library of polymeric cholera toxin antagonists. Org. Biomol. Chem., 2011, 9(10), 3658-3671.
[http://dx.doi.org/10.1039/c0ob01089h] [PMID: 21451844]
[19]
Deng, F.; Xu, B.; Gao, Y.; Liu, Z.; Yang, D.; Li, H. Metal- and solvent-free, clickable synthesis and postpolymerization functionalization of poly(triazole)s. J. Polym. Sci. A, 2012, 50, 3767-3774.
[http://dx.doi.org/10.1002/pola.26165]
[20]
Jang, B.; Kim, S.Y.; Do, J.Y. Dye-incorporated water-soluble polymer via click triazole formation. Dyes Pigments, 2012, 94, 217-223.
[http://dx.doi.org/10.1016/j.dyepig.2012.01.012]
[21]
Vieyres, A.; Lam, T.; Gillet, R.; Franc, G.; Castonguay, A.; Kakkar, A. Combined Cu(I)-catalysed alkyne-azide cycloaddition and furan-maleimide Diels-Alder “click” chemistry approach to thermoresponsive dendrimers. Chem. Commun. (Camb.), 2010, 46(11), 1875-1877.
[http://dx.doi.org/10.1039/b924888a] [PMID: 20198238]
[22]
Chernyak, A.Y.; Sharma, G.V.M.; Kononov, L.O.; Krishna, P.R.; Levinskii, A.B.; Kochetkov, N.K.; Rao, A.V.R. 2-azidoethyl glycosides: potentially useful for the preparation of neoglycoconjugates. Carbohydr. Res., 1992, 223, 303-309.
[http://dx.doi.org/10.1016/0008-6215(92)80029-Z]
[23]
Du, Y.; Linhardt, R.J.; Vlahov, L.R. Recent advances in stereoselective c-glycoside synthesis. Tetrahedron, 1998, 54, 9913-9959.
[http://dx.doi.org/10.1016/S0040-4020(98)00405-0]
[24]
Wagner, R.; Richter, L.; Wersig, R.; Schmaucks, G.; Weiland, B.; Weissmüller, J.; Reiners, J. Silicon-modified carbohydrate surfactants I: Synthesis of siloxanyl moieties containing straight-chained glycosides and amides. Appl. Organomet. Chem., 1996, 10, 421-435.
[http://dx.doi.org/10.1002/(SICI)1099-0739(199608)10:6<421:AID-AOC495>3.0.CO;2-C]
[25]
Atkinson, R.S.; Grimshire, M.J. Intramolecular reactions of N-nitrenes with alkynes: Conformational anchoring in spiro-fused 2H-azirines. J. Chem. Soc. Perkin Trans., 1986, I, 1215-1224.
[http://dx.doi.org/10.1039/p19860001215]
[26]
(a) Akhtar, M.; Weedon, B.C.L. The formation of vinylacetylenes from copper acetylides. Proc. Chem. Soc., 1958, 303.
(b) Garwood, R.F.; Oskay, E.; Weedon, B.C.L. Triglyceride studies. Chem. Ind., 1962, 1684. (B) (a) A.S. Batasanov, J.C. Collings, I.J.S. Fairlamb, J.P. Holland, J.A.K. Howard, Z, Lin, T.B. Marder, A.C. Parsons, R.M. Ward, J. Zhu. Requirement for an oxidant in Pd/Cu Co-catalyzed terminal alkyne homocoupling to give symmetrical 1,4-disubstituted 1,3-diynes. J. Org, Chem., 2005, 70, 703-706; (b) I.J.S. Fairlamb, P.S. Baeuerlein, L.R. Marrison, J.M. Dickinson. Pd-catalysed cross coupling of terminal alkynes to diynes in the absence of a stoichiometric additive. Chem. Commun. 2003, 2003, 632-633. (C) Trostyanskaya, I.G.; Beletskaya, I.P. A copper (I or II)/diethylphosphite catalytic system for base-free additive dimerization of alkynes. Tetrahedron, 2017, 73, 148-153. (D) L. Xu, X.-L. Chen, Q. Zhang, L.-B. Qu, W.-Z. Bi, K. Sun, J.-Y. Chen, Z. Xin, Y.-F. Zhao. CuSO4-H-phosphonate catalyzed highly stereo- and regioselective dimerization of terminal alkynes. RSC Adv.,2015, 5, 5004-5009. (E) Masuda, Y.; Sato, K. New type formation of 1,3-enynes (or internal alkynes) via coupling of organoboranes with alkynylcopper compounds mediated by copper(II). Chem. Commun., 1998,1998, 807-808. (F) Zhao, Y.-H. Luo, Y. Wang, H. Wei, H. Guo, T. Tan, H. Yuan, L. Zhang, X.-B. A novel ratiometric and reversible fluorescence probe with a large Stokes shift for Cu2+ based on a new clamp-on unit. Anal. Chim. Acta., 2019, 1065, 134-141. (H) Rawat, D.S.; Zaleski, J.M. Syntheses and thermal reactivities of symmetrically and asymmetrically substituted acyclic enediynes: Steric control of Bergman cyclization temperatures. Chem. Commun. (Camb.), 2000, 2493-2494.
[27]
Arrowsmith, M.; Crimmin, M.R.; Hill, M.S.; Lomas, S.L.; MacDougall, D.J.; Mahon, M.F. Catalytic and stoichiometric cumulene formation within dimeric group 2 acetylides. Organometallics, 2013, 32, 4961-4972.
[http://dx.doi.org/10.1021/om400678d]
[28]
Olivero, S.; Dunach, E. Nickel-catalysed electroreductive cleavage of propargyl compounds. Tetrahedron Lett., 1997, 38, 6193-6196.
[http://dx.doi.org/10.1016/S0040-4039(97)01396-8]
[29]
(a) Pal, M.; Parasuraman, K.; Yeleswarapu, K.R. Palladium-catalyzed cleavage of O/N-propargyl protecting groups in aqueous media under a copper-free condition. Org. Lett., 2003, 5(3), 349-352.
[http://dx.doi.org/10.1021/ol027382t] [PMID: 12556189]
(b) Rambabu, D.; Bhavani, S.; Swamy, N.K.; Rao, M.V.B.; Pal, M. Pd/C-mediated depropargylation of propargyl ethers/amines in water. Tetrahedron Lett., 2013, 54, 1169-1173.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.093]
[30]
Ohmura, T.; Yorozuya, S.; Yamamoto, Y.; Miyaura, N. Iridium-catalyzed dimerization of terminal alkynes to (e)-enynes, (z)-enynes, or 1,2,3-Butatrienes. Organometallics, 2000, 19, 365-367.
[http://dx.doi.org/10.1021/om990912d]
[31]
Ogata, K.; Toyota, A. Iridium(I) complex of chelating pyridine-2-thiolate ligand: Synthesis, reactivity, and application to the catalytic E-selective terminal alkyne dimerization via C–H activation. J. Organomet. Chem., 2007, 692, 4139-4146.
[http://dx.doi.org/10.1016/j.jorganchem.2007.06.030]
[32]
Esteruelas, M.A.; Herrero, J.; Lopez, A.M.; Olivan, M. Alkyne-coupling reactions catalyzed by OsHCl(CO)(PiPr3)2 in the presence of diethylamine. Organometallics, 2001, 20, 3202-3205.
[http://dx.doi.org/10.1021/om010178+]
[33]
Ogoshi, S.; Ueta, M.; Oka, M.A.; Kurosawa, H. Dimerization of terminal alkynes catalyzed by a nickel complex having a bulky phosphine ligand. Chem. Commun. (Camb.), 2004, (23), 2732-2733.
[http://dx.doi.org/10.1039/b409851j] [PMID: 15568090]
[34]
Chen, X.; Xue, P.; Sung, H.H.Y.; Williams, I.D.; Peruzzini, M. Ruthenium-promoted Z-selective head-to-head dimerization of terminal alkynes in organic and aqueous media. Organometallics, 2005, 24, 4330-4332.
[http://dx.doi.org/10.1021/om050355x]
[35]
Weng, W.; Guo, C.; Celenligil-Cetin, R.; Foxman, B.M.; Ozerov, O.V. Skeletal change in the PNP pincer ligand leads to a highly regioselective alkyne dimerization catalyst. Chem. Commun. (Camb.), 2006, (2), 197-199.
[http://dx.doi.org/10.1039/B511148J] [PMID: 16372104]
[36]
Kleinhans, G.; Guisado-Barrios, G.; Liles, D.C.; Bertrand, G.; Bezuidenhout, D.I. A rhodium(I)-oxygen adduct as a selective catalyst for one-pot sequential alkyne dimerization-hydrothiolation tandem reactions. Chem. Commun. (Camb.), 2016, 52(17), 3504-3507.
[http://dx.doi.org/10.1039/C6CC00029K] [PMID: 26838677]
[37]
Fomina, L.; Vazquez, B.; Tkachouk, E.; Fomine, S. The Glaser reaction mechanism. A DFT study. Tetrahedron, 2002, 58, 6741-6747.
[http://dx.doi.org/10.1016/S0040-4020(02)00669-5]
[38]
Björk, J.; Zhang, Y-Q.; Klappenberger, F.; Barth, J.V.; Stafström, S. Unraveling the mechanism of the covalent coupling between terminal alkynes on a noble metal. J. Phys. Chem. C, 2014, 118, 3181-3187.
[http://dx.doi.org/10.1021/jp5002918]
[39]
Hat, A.S. Oxidative coupling of acetylenes. J. Org. Chem., 1962, 27, 3320-3321.
[http://dx.doi.org/10.1021/jo01056a511]
[40]
Suárez, J.R.; Collado-Sanz, D.; Cárdenas, D.J.; Chiara, J.L. Nonafluoro-butanesulfonyl azide as a shelf-stable highly reactive oxidant for the copper-catalyzed synthesis of 1,3-diynes from terminal alkynes. J. Org. Chem., 2015, 80(2), 1098-1106.
[http://dx.doi.org/10.1021/jo5025909] [PMID: 25514331]
[41]
Jiang, J-X.; Su, F.; Niu, H.; Wood, C.D.; Campbell, N.L.; Khimyak, Y.Z.; Cooper, A.I. Conjugated microporous poly(phenylene butadiynylene)s. Chem. Commun. (Camb.), 2008, (4), 486-488.
[http://dx.doi.org/10.1039/B715563H] [PMID: 18188476]
[42]
Straub, B.F. mu-Acetylide and mu-alkenylidene ligands in “click” triazole syntheses. Chem. Commun. (Camb.), 2007, (37), 3868-3870.
[http://dx.doi.org/10.1039/b706926j] [PMID: 18219789]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy