Catalytic Alkyne/Alkene-Carbonyl Metathesis: Towards the Development of Green Organic Synthesis

Author(s): Aniruddha Das, Soumen Sarkar, Baitan Chakraborty, Abhishek Kar, Umasish Jana*

Journal Name: Current Green Chemistry

Volume 7 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The construction of carbon-carbon bond through the metathesis reactions between carbonyls and olefins or alkynes has attracted significant interest in organic chemistry due to its high atomeconomy and efficiency. In this regard, carbonyl–alkyne metathesis is well developed and widely used in organic synthesis for the atom-efficient construction of various carbocycles and heterocycles in the presence of catalytic Lewis acids or Brønsted acids. On the other hand, alkene-carbonyl metathesis is recently developed and has been a topic of great importance in the field of organic chemistry because they possess attractive qualities involving metal-mediated, metal-free intramolecular, photochemical, Lewis acid-mediated ring-closing metathesis, ring-opening metathesis and cross-metathesis. This review covers most of the strategies of carbonyl–alkyne and carbonyl–olefin metathesis reactions in the synthesis of complex molecules, natural products and pharmaceuticals as well as provides an overview of exploration of the metathesis reactions with high atom-economy as well as environmentally and ecologically benign reaction conditions.

Keywords: Alkyne/alkene-carbonyl metathesis, catalysis, environmental friendly, green chemistry, green organic synthesis, metathesis reaction.

[1]
Anastas, P.T.; Warner, J.C. Green Chemistry. Theory and Practice, 1998.
[2]
Tundo, P.; Anastas, P.; Black, D.S.; Breen, J.; Collins, T.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. Synthetic pathways and processes in green chemistry. Introductory overview. Pure Appl. Chem., 2011, 72(7), 1207-1228.
[http://dx.doi.org/10.3762/bjoc.7.71] [PMID: 21647265]
[3]
Grubbs, R.H. Handbook of Metathesis; Weinheim: Wiley-VCH,, 2003.
[4]
Hoveyda, H.; Zhugralin, A.R. The remarkable metal-catalysed olefin metathesis reaction. Nature, 2007, 450(7167), 243-251.
[http://dx.doi.org/10.3762/bjoc.7.71] [PMID: 21647265]
[5]
Fürstner, A. Olefin metathesis and beyond Angew. Chem. Int. Ed. , 2000, 39(17), 3012-3043.
[http://dx.doi.org/10.3762/bjoc.7.71] [PMID: 21647265]
[6]
Deiters, A.; Martin, S.F. Synthesis of oxygen- and nitrogen-containing heterocycles by ring-closing metathesis. Chem. Rev., 2004, 104(5), 2199-2238.
[http://dx.doi.org/10.3762/bjoc.7.71] [PMID: 21647265]
[7]
Davies, P.W. Metathesis in Natural Product Synthesis: Strategies, Substrates and CatalystsCossy, J.; Arseniyadis, S.; Meyer, C.,Eds.; . Wiley-VCH: Weinheim, , 2010, 1, pp. 205-223.
[8]
Liu, L.; Xu, B.; Hammond, G.B. Construction of cyclic enones via gold-catalyzed oxygen transfer reactions. Beilstein J. Org. Chem., 2011, 7, 606-614.
[http://dx.doi.org/10.3762/bjoc.7.71] [PMID: 21647265]
[9]
Satio, A.; Tateishi, K. Synthesis of heterocycles via alkyne-carbonyl metathesis of unactivated alkynes. Heterocycles, 2016, 92(4), 607-630.
[http://dx.doi.org/10.3987/REV-15-836]]
[10]
Ludwig, J.R.; Schindler, C.S. Lewis acid catalyzed carbonyl–olefin metathesis. Synlett, 2017, 28(13), 1501-1509.
[http://dx.doi.org/10.1055/s-0036-1588827] [PMID: 30122808]
[11]
Ravindar, L.; Lekkala, R.; Rakesh, K.P.; Asiri, A.M.; Marwani, H.M.; Qin, H-L. Carbonyl–olefin metathesis: A key review. Org. Chem. Front., 2018, 5(8), 1381-1391.
[http://dx.doi.org/10.1039/C7QO01037K]
[12]
Nicolaou, K.C.; Bulger, P.G.; Sarlah, D. Metathesis reactions in total synthesis. Angew. Chem. Int. Ed. Engl., 2005, 44(29), 4490-4527.
[http://dx.doi.org/10.1002/anie.200500369] [PMID: 16003791]
[13]
Jones, I.I.G.; Schwartz, S.B.; Marton, M.T. Regiospecific thermal cleavage of some oxetan photoadducts: carbonyl–olefin metathesis in sequential photochemical and thermal steps. J. Chem. Soc. Chem. Commun., 1973, 374-375.
[http://dx.doi.org/10.1039/C39730000374]
[14]
Jones, G., II; Acquadro, M.A.; Carmody, M.A. Long-chain enals via carbonyl–olefin metathesis. An application in pheromone synthesis. J. Chem. Soc. Chem. Commun., 1975, 206-207.
[http://dx.doi.org/10.1039/C39750000206]
[15]
Schopov, I.; Jossifov, C. A carbonyl‐olefin exchange reaction-new route to polyconjugated polymers, 1. A new synthesis of polyphenylacetylene. Macromol. Rapid Commun., 1983, 4(10), 659-662.
[http://dx.doi.org/10.1002/marc.1983.030041005]
[16]
Pérez-Ruiz, R.; Gil, S.; Miranda, M.A. Stereodifferentiation in the photochemical cycloreversion of diastereomeric methoxynaphthalene-oxetane dyads. J. Org. Chem., 2005, 70(4), 1376-1381.
[http://dx.doi.org/10.1021/jo048708+] [PMID: 15704973]
[17]
Pérez-Ruiz, R.; Miranda, M.A.; Alle, R.; Meerholz, K.; Griesbeck, A.G. An efficient carbonyl-alkene metathesis of bicyclic oxetanes: photoinduced electron transfer reduction of the Paternò-Büchi adducts from 2,3-dihydrofuran and aromatic aldehydes. Photochem. Photobiol. Sci., 2006, 5(1), 51-55.
[http://dx.doi.org/10.1039/B513875B] [PMID: 16395427]
[18]
Valiulin, R.A.; Kutateladze, A.G. Harvesting the strain installed by a Paternò-Büchi step in a synthetically useful way: high-yielding photoprotolytic oxametathesis in polycyclic systems. Org. Lett., 2009, 11(17), 3886-3889.
[http://dx.doi.org/10.1021/ol901456m] [PMID: 19653669]
[19]
Valiulin, R.A.; Arisco, T.M.; Kutateladze, A.G. Double-tandem [4π+2π]·[2π+2π]·[4π+2π]·[2π+2π] synthetic sequence with photoprotolytic oxametathesis and photoepoxidation in the chromone series. J. Org. Chem., 2011, 76(5), 1319-1332.
[http://dx.doi.org/10.1021/jo102221q] [PMID: 21268619]
[20]
Valiulin, R.A.; Arisco, T.M.; Kutateladze, A.G. Photoinduced intramolecular cyclopentanation vs photoprotolytic oxametathesis in polycyclic alkenes outfitted with conformationally constrained aroylmethyl chromophores. J. Org. Chem., 2013, 78(5), 2012-2025.
[http://dx.doi.org/10.1021/jo301909j] [PMID: 23106813]
[21]
Hong, X.; Liang, Y.; Griffith, A.K.; Lambert, T.H.; Houk, K.N. Distortion-accelerated cycloadditions and strain-release-promoted cycloreversions in the organocatalytic carbonyl-olefin metathesis. Chem. Sci. (Camb.), 2014, 5(2), 471-475.
[http://dx.doi.org/10.1039/C3SC52882K]
[22]
Rainier, J.D.; Allwein, S.P. An iterative approach to fused ether ring systems. J. Org. Chem., 1998, 63(16), 5310-5311.
[http://dx.doi.org/10.1021/jo980996k]
[23]
Rainier, J.D.; Allwein, S.P.; Cox, J.M. C-glycosides to fused polycyclic ethers. A formal synthesis of (+/-)-hemibrevetoxin B. J. Org. Chem., 2001, 66(4), 1380-1386.
[http://dx.doi.org/10.1021/jo001514j] [PMID: 11312970]
[24]
Majumder, U.; Rainier, J.D. Olefinic-ester cyclizations using Takai–Utimoto reduced titanium alkylidenes. Tet. Lett., 2005, 46(42), 7209-7211.
[25]
Heller, S.T.; Kiho, T.; Narayan, A.R.H.; Sarpong, R. Protic-solvent-mediated cycloisomerization of quinoline and isoquinoline propargylic alcohols: syntheses of (±)-3-demethoxyerythratidinone and (±)-cocculidine. Angew. Chem. Int. Ed. Engl., 2013, 52(42), 11129-11133.
[http://dx.doi.org/10.1002/anie.201304687] [PMID: 24009078]
[26]
Hong, B.; Li, H.; Wu, J.; Zhang, J.; Lei, X. Total syntheses of (-)-huperzine Q and (+)-lycopladines B and C. Angew. Chem. Int. Ed. Engl., 2015, 54(3), 1011-1015.
[http://dx.doi.org/10.1002/anie.201409503] [PMID: 25358669]
[27]
(a)Schmalz, H-G. Catalytic ring‐closing metathesis: A new, powerful technique for carbon–carbon coupling in organic synthesis. Angew. Chem. Int. Ed. , 1995, 34(17), 1833-1836.
(a)Schmalz, H-G. Katalytische Ringschluß‐Metathese: ein neues, leistungsfähiges Konzept zur C‐C‐Verknüpfung in der Organischen Synthese. Angew. Chem., 1995, 107(17), 1981-1984.
[http://dx.doi.org/10.1002/ange.19951071706]
[28]
McReynolds, M.D.; Dougherty, J.M.; Hanson, P.R. Synthesis of phosphorus and sulfur heterocycles via ring-closing olefin metathesis. Chem. Rev., 2004, 104(5), 2239-2258.
[http://dx.doi.org/10.1021/cr020109k] [PMID: 15137790]
[29]
Gradillas, A.; Perez-Castells, J. Macrocyclization by ring‐closing metathesis in the total synthesis of natural products: Reaction conditions and limitations. Angew. Chem., Int. Ed., 2006, 45(37), 6086–6101, (Makrocyclisierung durch Ringschlussmetathese bei der Totalsynthese von Naturstoffen: Reaktionsbedingungen und Grenzen. Angew. Chem., 2006, 118(37), 6232-6247.
[http://dx.doi.org/10.1002/ange.200600641]
[30]
Samojłowicz, C.; Bieniek, M.; Grela, K. Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. Chem. Rev., 2009, 109(8), 3708-3742.
[http://dx.doi.org/10.1021/cr800524f] [PMID: 19534492]
[31]
Vougioukalakis, G.C.; Grubbs, R.H. Ruthenium-based heterocyclic carbene-coordinated olefin metathesis catalysts. Chem. Rev., 2010, 110(3), 1746-1787.
[http://dx.doi.org/10.1021/cr9002424] [PMID: 20000700]
[32]
Renata, H.; Engle, K.M. Applications of Domino Transformations in Organic Synthesis 1; Snyder, S.A., Ed.; Thieme, 2016, pp. 135-155.
[33]
Hsung, R.P.; Zificsak, C.A.; Wei, L-L.; Douglas, C.J.; Xiong, H.; Mulder, J.A. Lewis acid promoted hetero [2 + 2] cycloaddition reactions of aldehydes with 10-propynyl-9(10H)-acridone. A highly stereoselective synthesis of acrylic acid derivatives and 1,3-dienes using an electron deficient variant of ynamine. Org. Lett., 1999, 1(8), 1237-1240.
[http://dx.doi.org/10.1021/ol990211c]
[34]
Huang, W-S.; Chan, J.; Jamison, T.F. Highly selective catalytic intermolecular reductive coupling of alkynes and aldehydes. Org. Lett., 2000, 2(26), 4221-4223.
[http://dx.doi.org/10.1021/ol006781q] [PMID: 11150204]
[35]
Viswanathan, G.S.; Li, C-J. A highly stereoselective, novel coupling reaction between alkynes and aldehydes. Tetrahedron Lett., 2002, 43(9), 1613-1615.
[http://dx.doi.org/10.1016/S0040-4039(02)00082-5]
[36]
Curini, M.; Epifano, F.; Maltese, F.; Rosati, O. Ytterbium triflate promoted coupling reaction between aryl alkynes and aldehydes. Synlett, 2003, 552-554.
[http://dx.doi.org/10.1055/s-2003-37515]
[37]
Rhee, J.U.; Krische, M.J. Alkynes as synthetic equivalents to stabilized Wittig reagents: intra- and intermolecular carbonyl olefinations catalyzed by Ag(I), BF3, and HBF4. Org. Lett., 2005, 7(12), 2493-2495.
[http://dx.doi.org/10.1021/ol050838x] [PMID: 15932231]
[38]
Kurtz, K.C.M.; Hsung, R.P.; Zhang, Y. A ring-closing yne-carbonyl metathesis of ynamides. Org. Lett., 2006, 8(2), 231-234.
[http://dx.doi.org/10.1021/ol052487s] [PMID: 16408882]
[39]
Sun, Y-L.; Chen, L.; Cao, J.; Sun, F-N. Xu, Z.; Zheng, Z.-J.; Cui, Y.-M.; Xu, L.-W. Lewis acid-catalyzed yne-carbonyl metathesis of ynamides and cyclobutanones: Facile synthesis of functionalized alkylidenecyclobutanes. Asian J. Org. Chem., 2018, 7(2), 374-377.
[http://dx.doi.org/10.1002/ajoc.201700709]
[40]
Jin, T.; Yamamoto, Y. Gold-catalyzed synthesis of polycyclic enones from carbon tethered 1,3-enynyl carbonyls via tandem heteroenyne metathesis and Nazarov reaction. Org. Lett., 2008, 10(14), 3137-3139.
[http://dx.doi.org/10.1021/ol801265s] [PMID: 18572946]
[41]
Saito, A.; Umakoshi, M.; Yagyu, N.; Hanzawa, Y. Novel one-pot approach to synthesis of indanones through Sb(V)-catalyzed reaction of phenylalkynes with aldehydes. Org. Lett., 2008, 10(9), 1783-1785.
[http://dx.doi.org/10.1021/ol800539a] [PMID: 18396889]
[42]
Saito, A.; Kasai, J.; Odaira, Y.; Fukaya, H.; Hanzawa, Y. Synthesis of 2,3-dihydroquinolin-4(1H)-ones through catalytic metathesis of o-alkynylanilines and aldehydes. J. Org. Chem., 2009, 74(15), 5644-5647.
[http://dx.doi.org/10.1021/jo900857c] [PMID: 19496542]
[43]
Gudla, V.; Swamy, K.C.; Battula, V.R. Gold-catalyzed highly regioselective coupling reaction between alkynes and aldehydes for the synthesis of conjugated enones. ChemistrySelect, 2018, 3(17), 4576-4580.
[http://dx.doi.org/10.1002/slct.201800371]
[44]
Jin, T.; Yang, F.; Liu, C.; Yamamoto, Y. TfOH-catalyzed intramolecular alkyne-ketone metathesis leading to highly substituted five-membered cyclic enones. Chem. Comm., 2009, 1(24), 3533.
[45]
González-Rodríguez, C.; Escalante, L.; Varela, J.A.; Castedo, L.; Saá, C. Brønsted Acid-promoted intramolecular carbocyclization of alkynals leading to cyclic enones. Org. Lett., 2009, 11(7), 1531-1533.
[http://dx.doi.org/10.1021/ol900142r] [PMID: 19245263]
[46]
Miura, K.; Yamamto, K.; Yamanobe, A.; Ito, K.; Kinoshita, H.; Ichikawa, J.; Hosomi, A. Indium(III)-catalyzed Coupling between Alkynes and Aldehydes to ¡,¢-Unsaturated Ketones. Chem. Lett., 2010, 39(7), 766-767.
[http://dx.doi.org/10.1246/cl.2010.766]
[47]
Liu, L-P.; Malhotra, D.; Paton, R.S.; Houk, K.N.; Hammond, G.B. The [4+2], not [2+2], mechanism occurs in the gold-catalyzed intramolecular oxygen transfer reaction of 2-alkynyl-1,5-diketones. Angew. Chem. Int. Ed. Engl., 2010, 49(48), 9132-9135.
[http://dx.doi.org/10.1002/anie.201005514] [PMID: 21031394]
[48]
Hong, J-T.; Kang, M-J.; Jang, H-Y. Pt(II)-catalyzed cyclization of alkyne-aldehydes. Bull. Korean Chem. Soc., 2010, 31(7), 2085-2087.
[http://dx.doi.org/10.5012/bkcs.2010.31.7.2085]
[49]
Saito, A.; Kasai, J.; Konishi, T.; Hanzawa, Y. Tandem synthesis of 2,3-dihydro-4-iminoquinolines via three-component alkyne-imine metathesis. J. Org. Chem., 2010, 75(20), 6980-6982.
[http://dx.doi.org/10.1021/jo1013993] [PMID: 20843018]
[50]
Sze, E.M.L.; Rao, W.; Koh, M.J.; Chan, P.W.H. Gold-catalyzed tandem intramolecular heterocyclization/Petasis-Ferrier rearrangement of 2-(prop-2-ynyloxy)benzaldehydes as an expedient route to benzo[b]oxepin-3(2 H)-ones. Chemistry, 2011, 17(5), 1437-1441.
[http://dx.doi.org/10.1002/chem.201003096] [PMID: 21268145]
[51]
Bera, K.; Sarkar, S.; Biswas, S.; Maiti, S.; Jana, U. Iron-catalyzed synthesis of functionalized 2H-chromenes via intramolecular alkyne-carbonyl metathesis. J. Org. Chem., 2011, 76(9), 3539-3544.
[http://dx.doi.org/10.1021/jo2000012] [PMID: 21413813]
[52]
Das, A.J.; Devi, R.; Das, S.K. Boron trifluoride–etherate in fluorinated alcohols: A powerful promoter system for intramolecular alkyne–aldehyde metathesis of o-(3-arylpropargyloxy) benzaldehydes. Tet. Lett., 2018, 59(48), 4263-4266.
[http://dx.doi.org/10.1016/j.tetlet.2018.10.040]
[53]
Aikawa, K.; Hioki, Y.; Shimizu, N.; Mikami, K. Catalytic asymmetric synthesis of stable oxetenes via Lewis acid-promoted [2+2] cycloaddition. J. Am. Chem. Soc., 2011, 133(50), 20092-20095.
[http://dx.doi.org/10.1021/ja2085299] [PMID: 22070285]
[54]
Batuecas, M.; Esteruelas, M.A.; Garcia-Yebra, C.; Onate, E. Osmium-centered oxetylidene: Formation and cleavage. Organometallics, 2012, 31(23), 8079-8081.
[http://dx.doi.org/10.1021/om3011323]
[55]
Escalante, L.; González-Rodríguez, C.; Varela, J.A.; Saá, C. Tandem Brønsted acid promoted and Nazarov carbocyclizations of enyne acetals to hydroazulenones. Angew. Chem. Int. Ed. Engl., 2012, 51(49), 12316-12320.
[http://dx.doi.org/10.1002/anie.201205823] [PMID: 23124689]
[56]
Annes, S.B.; Ramesh, S. 1,3,5-Triphenylpyrazoline based organocatalysis: Synthesis of aryl-heteroaryl compounds and exploiting by-products from alkyne-carbonyl metathesis (ACM) in one pot. Asian J. Org. Chem., 2019, 8(8), 1398-1404.
[http://dx.doi.org/10.1002/ajoc.201900305]
[57]
Bera, K.; Sarkar, S.; Jalal, S.; Jana, U. Synthesis of substituted phenanthrene by iron(III)-catalyzed intramolecular alkyne-carbonyl metathesis. J. Org. Chem., 2012, 77(19), 8780-8786.
[http://dx.doi.org/10.1021/jo301371n] [PMID: 22954237]
[58]
Karpaviciene, I.; Cikotiene, I. A unique cascade reaction between 3-arylprop-2-inylcarboxylates and benzaldehydes leading to the formation of Morita-Baylis-Hillman adducts. Org. Lett., 2013, 15(1), 224-227.
[http://dx.doi.org/10.1021/ol303319a] [PMID: 23252725]
[59]
Yeh, M-C.P.; Lin, M-N.; Hsu, C-H.; Liang, C-J. Syntheses of 3,4-disubstituted pyrroles and furans via Lewis acid-promoted semipinacol rearrangement/alkyne-ketone metathesis reaction of (C)-2-N- or O-((3-arylpropargyl)methyl)-tethered 3,5,5-trimethyl-2,3-epoxycyclohexan-1-ones. J. Org. Chem., 2013, 78(24), 12381-12396.
[http://dx.doi.org/10.1021/jo402025z] [PMID: 24294833]
[60]
Kumari, K.; Raghuvanshi, D.S.; Singh, K.N. An efficient synthesis of 2H-chromen-3-yl derivatives via CuI/(NH4)2HPO4 catalyzed reaction of O-propargyl salicylaldehydes with active methylene compounds. Tetrahedron, 2013, 69(1), 82-88.
[http://dx.doi.org/10.1016/j.tet.2012.10.066]
[61]
Maiti, S.; Biswas, P.; Ghosh, J.; Drew, M.G.B.; Bandyopadhyay, C. Iodine/CuI-mediated alkyneecarbonyl metathesis reaction: synthesis of 1-aryl-1,2-dihydrochromeno[2,3-b]azepine-3,6-dione. Tetrahedron, 2014, 70(2), 334-339.
[http://dx.doi.org/10.1016/j.tet.2013.11.062]
[62]
Bera, K.; Jalal, S.; Sarkar, S.; Jana, U. FeCl3-catalyzed synthesis of functionally diverse dibenzo[b,f]oxepines and benzo[b]oxepines via alkyne-aldehyde metathesis. Org. Biomol. Chem., 2014, 12(1), 57-61.
[http://dx.doi.org/10.1039/C3OB41624K] [PMID: 24220112]
[63]
Jalal, S.; Bera, K.; Sarkar, S.; Paul, K.; Jana, U. Efficient synthesis of functionalized dihydroquinolines, quinolines and dihydrobenzo[b]azepine via an iron(III) chloride-catalyzed intramolecular alkyne-carbonyl metathesis of alkyne tethered 2-amino benzaldehyde/acetophenone derivatives. Org. Biomol. Chem., 2014, 12(11), 1759-1770.
[http://dx.doi.org/10.1039/C3OB42292E] [PMID: 24500306]
[64]
Zhu, C.; Ma, S. Sc(OTf)3-catalyzed bicyclization of o-alkynylanilines with aldehydes: ring-fused 1,2-dihydroquinolines. Angew. Chem. Int. Ed. Engl., 2014, 53(49), 13532-13535.
[http://dx.doi.org/10.1002/anie.201406959] [PMID: 25288381]
[65]
Nayak, M.; Kim, I. Alkyne carbonyl metathesis as a means to make 4-acyl chromenes: Syntheses of (±)-deguelin and (±)-munduserone. J. Org. Chem., 2015, 80(22), 11460-11467.
[http://dx.doi.org/10.1021/acs.joc.5b02160] [PMID: 26525067]
[66]
Manojveer, S.; Balamurugan, R. A cascade approach to naphthalene derivatives from o-alkynylbenzaldehydes and enolizable ketones via in-situ-formed acetals. Eur. J. Org. Chem., 2015, 2015(19), 4254-4260.
[http://dx.doi.org/10.1002/ejoc.201500497]
[67]
Nayak, M.; Singh, D.K.; Kim, I. Regiospecific synthesis of 5- and 6-acylated naphtho[1,2-b]benzofurans via intramolecular alkyne carbonyl metathesis. Synthesis, 2017, 49(9), 2063-2073.
[68]
Paul, K.; Jalal, S.; Kundal, S.; Chakraborty, B.; Jana, U. Iron-catalyzed intramolecular alkyne-carbonyl metathesis: A new cyclization strategy for the synthesis of benzocarbazoles and azepino[1,2-a]indoles derivatives. Synthesis, 2017, 49(18), 4205-4212.
[http://dx.doi.org/10.1055/s-0036-1588472]
[69]
Basu, S.; Mukhopadhyay, C. Synthesis of (E)-3-(2-Oxo-2-arylethylidene)indolin-2-ones through alkyne carbonyl metathesis and their stereospecific application towards spiro- oxindolopyrrolizidine scaffolds. Eur. J. Org. Chem., 2018, 2018(12), 1496-1506.
[http://dx.doi.org/10.1002/ejoc.201701606]
[70]
Murai, K.; Tateishi, K.; Saito, A. Barluenga’s reagent with HBF4 as an efficient catalyst for alkyne-carbonyl metathesis of unactivated alkynes. Org. Biomol. Chem., 2016, 14(44), 10352-10356.
[http://dx.doi.org/10.1039/C6OB02090A] [PMID: 27766339]
[71]
Nayak, M.; Singh, D.K.; Kim, I. Polyaromatic heterocycles through intramolecular alkyne carbonyl metathesis: 5-Acylnaphtho[2,1-b]benzofurans. Tetrahedron, 2017, 73(14), 1831-1840.
[http://dx.doi.org/10.1016/j.tet.2017.02.036]
[72]
Baig, M.F.; Shaik, S.P.; Krishna, N.H.; Chouhan, N.K.; Alarifi, A.; Kamal, A. One-pot synthesis of naphtho[1′,2′:4,5]imidazo[1,2-a]pyridin-5-yl(aryl)methanones through sequential sonogashira coupling/alkyne–carbonyl metathesis. Eur. J. Org. Chem., 2017, (27), 4026-4034.
[http://dx.doi.org/10.1002/ejoc.201700496]
[73]
Parpart, S.; Boldt, S.; Ehlers, P.; Langer, P. Synthesis of Unsymmetrical Aza-Ullazines by Intramolecular Alkynyl-Carbonyl Metathesis. Org. Lett., 2018, 20(1), 122-125.
[http://dx.doi.org/10.1021/acs.orglett.7b03477] [PMID: 29232149]
[74]
Fu, G.C.; Grubbs, R.H. Synthesis of cycloalkenes via alkylidene-mediated olefin metathesis and carbonyl olefination. J. Am. Chem. Soc., 1993, 115(9), 3800-3801.
[http://dx.doi.org/10.1021/ja00062a066]
[75]
Searles, S. Heterocyclic Compounds with Three- and Four- Membered Rings In:Interscience; Weissberger, A., Ed.; New York,, 1965. pt. 2, 983
[76]
Carless, H.A.J.; Trivedi, H.S. New ring expansion reaction of 2-t-butyloxetans. J. Chem. Soc. Chem. Commun., 1979, 382-383.
[http://dx.doi.org/10.1039/c39790000382]
[77]
D’Auria, M.; Racioppi, R.; Viggiani, L. Paternò-Büchi reaction between furan and heterocyclic aldehydes: oxetane formation vs. metathesis. Photochem. Photobiol. Sci., 2010, 9(8), 1134-1138.
[http://dx.doi.org/10.1039/c0pp00076k] [PMID: 20563353]
[78]
Pitzer, L.; Sandfort, F.; Strieth-Kalthoff, F.; Glorius, F. Carbonyl-olefin cross-metathesis through a visible-light-induced 1,3-diol formation and fragmentation sequence. Angew. Chem. Int. Ed. Engl., 2018, 57(49), 16219-16223.
[http://dx.doi.org/10.1002/anie.201810221] [PMID: 30253003]
[79]
Griffith, A.K.; Vanos, C.M.; Lambert, T.H. Organocatalytic carbonyl-olefin metathesis. J. Am. Chem. Soc., 2012, 134(45), 18581-18584.
[http://dx.doi.org/10.1021/ja309650u] [PMID: 23126620]
[80]
Zhu, Z-B.; Wei, Y.; Shi, M. Recent developments of cyclopropene chemistry. Chem. Soc. Rev., 2011, 40(11), 5534-5563.
[http://dx.doi.org/10.1039/c1cs15074j] [PMID: 21695332]
[81]
Marek, I.; Simaan, S.; Masarwa, A. Enantiomerenangereicherte cyclopropene: vielseitige bausteine in der asymmetrischen synthese. Angew. Chem., 2007, 119(39), 7508-7520, (Enantiomerically enriched cyclopropene derivatives: Versatile building blocks in asymmetric synthesis. Angew. Chem. Int. Ed., 2007, 46(39), 7364-7376.
[http://dx.doi.org/10.1002/anie.200604774]
[82]
Rubin, M.; Rubina, M.; Gevorgyan, V. Transition metal chemistry of cyclopropenes and cyclopropanes. Chem. Rev., 2007, 107(7), 3117-3179.
[http://dx.doi.org/10.1021/cr050988l] [PMID: 17622181]
[83]
Mellor, J.M.; Smith, N.M. Reductive cleavage of the nitrogen–nitrogen bond in hydrazine derivatives. J. Chem. Soc., Perkin Trans. 1, 1984, 2927-2931.
[http://dx.doi.org/10.1039/P19840002927]
[84]
Lee, A-L. Organocatalyzed carbonyl-olefin metathesis. Angew. Chem. Int. Ed. Engl., 2013, 52(17), 4524-4525.
[http://dx.doi.org/10.1002/anie.201300678] [PMID: 23526720]
[85]
Tran, U.P.N.; Oss, G.; Pace, D.P.; Ho, J.; Nguyen, T.V. Tropylium-promoted carbonyl-olefin metathesis reactions. Chem. Sci. (Camb.), 2018, 9(23), 5145-5151.
[http://dx.doi.org/10.1039/C8SC00907D] [PMID: 29997866]
[86]
Demole, E.; Enggist, P.; Borer, M.C. Applications synthétiques de la cyclisation d’alcools tertiaires γ‐éthyléniques en α‐bromotétrahydrofurannes sous l’action du N‐bromosuccinimide. II. Cyclisation du (±)‐nérolidol en diméthyl‐2,5‐(méthyl‐4‐pentène‐3‐yl)‐2‐cycloheptène‐4‐one, tétraméthyl‐3, 3, 7, 10‐oxa‐2‐tricyclo[5.5.0.01,4]‐dodécène‐9, β‐acoratriène, cédradiène‐2,8, épi‐2‐α‐cédrène et α‐cédrène. Helv. Chim. Acta, 1971, 54(7), 1845-1864.
[http://dx.doi.org/10.1002/hlca.19710540712]
[87]
Jackson, A.C.; Goldman, B.E.; Snider, B.B. Intramolecular and intermolecular Lewis acid catalyzed ene reactions using ketones as enophiles. J. Org. Chem., 1984, 49(21), 3988-3994.
[http://dx.doi.org/10.1021/jo00195a022]
[88]
van Schaik, H-P.; Vijn, R-J.; Bickelhaupt, F. Acid‐catalyzed olefination of benzaldehyde. Angew. Chem. Int. Ed. Engl., 1994, 33(15/16), 1611-1612.
[http://dx.doi.org/10.1002/anie.199416111]
[89]
Lee, K.Y.; Ko, K-Y. Envirocat EPZ10: A recyclable solid acid catalyst for the synthesis of Biginelli-type 3,4-dihydropyrimidin-2(1H)-ones. Bull. Korean Chem. Soc., 2004, 25(12), 1929-1931.
[http://dx.doi.org/10.5012/bkcs.2004.25.12.1929]
[90]
Soicke, A.; Slavov, N.; Neudörfl, J-M.; Schmalz, H-G. Metal-free intramolecular carbonyl-olefin metathesis of ortho-prenylarylketones. Synlett, 2011, 2487-2490.
[91]
Naidu, V.R.; Bah, J.; Franzén, J. Direct organocatalytic oxo‐Metathesis, a trans‐selective carbocation‐catalyzed olefination of aldehydes. Eur. J. Org. Chem., 2015, 2015(8), 1834-1839.
[http://dx.doi.org/10.1002/ejoc.201403651]
[92]
Ludwig, J.R.; Zimmerman, P.M.; Gianino, J.B.; Schindler, C.S. Iron(III)-catalysed carbonyl-olefin metathesis. Nature, 2016, 533(7603), 374-379.
[http://dx.doi.org/10.1038/nature17432] [PMID: 27120158]
[93]
Ma, L.; Li, W.; Xi, H.; Bai, X.; Ma, E.; Yan, X.; Li, Z. FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. Angew. Chem. Int. Ed. Engl., 2016, 55(35), 10410-10413.
[http://dx.doi.org/10.1002/anie.201604349] [PMID: 27431372]
[94]
Saá, C. Iron(III)‐catalyzed ring‐closing carbonyl–olefin metathesis. Angew. Chem. Int. Ed. Engl., 2016, 55(37), 10960-10961.
[http://dx.doi.org/10.1002/anie.201606300] [PMID: 27491787]
[95]
McAtee, C.C.; Riehl, P.S.; Schindler, C.S. Polycyclic aromatic hydrocarbons via iron(III)-catalyzed carbonyl-olefin metathesis. J. Am. Chem. Soc., 2017, 139(8), 2960-2963.
[http://dx.doi.org/10.1021/jacs.7b01114] [PMID: 28221039]
[96]
Albright, H.; Riehl, P.S.; McAtee, C.C.; Reid, J.P.; Ludwig, J.R.; Karp, L.A.; Zimmerman, P.M.; Sigman, M.S.; Schindler, C.S. Catalytic carbonyl-olefin metathesis of aliphatic ketones: Iron(III) homo-dimers as lewis acidic superelectrophiles. J. Am. Chem. Soc., 2019, 141(4), 1690-1700.
[http://dx.doi.org/10.1021/jacs.8b11840] [PMID: 30596414]
[97]
Albright, H.; Vonesh, H.L.; Becker, M.R.; Alexander, B.W.; Ludwig, J.R.; Wiscons, R.A.; Schindler, C.S. GaCl3-catalyzed ring-opening carbonyl-olefin metathesis. Org. Lett., 2018, 20(16), 4954-4958.
[http://dx.doi.org/10.1021/acs.orglett.8b02086] [PMID: 30052456]
[98]
Ni, S.; Franzén, J. Carbocation catalysed ring closing aldehyde-olefin metathesis. Chem. Commun. (Camb.), 2018, 54(92), 12982-12985.
[http://dx.doi.org/10.1039/C8CC06734A] [PMID: 30383876]
[99]
Catti, L.; Tiefenbacher, K. Brønsted acid-catalyzed carbonyl-olefin metathesis inside a self-assembled supramolecular host. Angew. Chem. Int. Ed. Engl., 2018, 57(44), 14589-14592.
[http://dx.doi.org/10.1002/anie.201712141] [PMID: 29266825]
[100]
Tran, U.P.N.; Oss, G.; Breugst, M.; Detmar, E.; Pace, D.P.; Liyanto, K.; Nguyen, T.V. Carbonyl-olefin metathesis catalyzed by molecular iodine. ACS Catal., 2019, 9(2), 912-919.
[http://dx.doi.org/10.1021/acscatal.8b03769]
[101]
Wang, M.; Fang, Z.; Fu, C.; Ma, S. Metal alkoxide promoted regio- and stereoselective C=O and C=C metathesis of allenoates with aldehydes. Angew. Chem. Int. Ed. Engl., 2014, 53(12), 3214-3217.
[http://dx.doi.org/10.1002/anie.201310183] [PMID: 24554504]
[102]
Chakraborty, P.; Roy, S.C. Study towards diversity oriented synthesis of optically active substituted cyclopentane fused carbocyclic and oxacyclic medium-sized rings: Competition between Grubbs-II catalyzed ring closing olefin metathesis and ring closing carbonyl-olefin metathesis. J. Chem. Sci., 2016, 128(12), 1831-1840.
[http://dx.doi.org/10.1007/s12039-016-1197-7]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 1
Year: 2020
Page: [5 - 39]
Pages: 35
DOI: 10.2174/2213346106666191105144019

Article Metrics

PDF: 28
HTML: 3
EPUB: 1