Possible Pathways of Hepatotoxicity Caused by Chemical Agents

Author(s): Roohi Mohi-ud-din, Reyaz Hassan Mir, Gifty Sawhney, Mohd Akbar Dar, Zulfiqar Ali Bhat*.

Journal Name: Current Drug Metabolism

Volume 20 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Liver injury induced by drugs has become a primary reason for acute liver disease and therefore posed a potential regulatory and clinical challenge over the past few decades and has gained much attention. It also remains the most common cause of failure of drugs during clinical trials. In 50% of all acute liver failure cases, drug-induced hepatoxicity is the primary factor and 5% of all hospital admissions.

Methods: The various hepatotoxins used to induce hepatotoxicity in experimental animals include paracetamol, CCl4, isoniazid, thioacetamide, erythromycin, diclofenac, alcohol, etc. Among the various models used to induce hepatotoxicity in rats, every hepatotoxin causes toxicity by different mechanisms.

Results: The drug-induced hepatotoxicity caused by paracetamol accounts for 39% of the cases and 13% hepatotoxicity is triggered by other hepatotoxic inducing agents.

Conclusion: Research carried out and the published papers revealed that hepatotoxins such as paracetamol and carbon- tetrachloride are widely used for experimental induction of hepatotoxicity in rats.

Keywords: Hepatotoxicity, hepatotoxins, liver damage, xenobiotics, cytochrome P450, lipopolysaccharide, liver toxicity.

[1]
Navarro, V.J.; Senior, J.R. Drug-related hepatotoxicity. N. Engl. J. Med., 2006, 354(7), 731-739.
[http://dx.doi.org/10.1056/NEJMra052270] [PMID: 16481640]
[2]
Willett, K.L.; Roth, R.A.; Walker, L. Workshop overview: Hepatotoxicity assessment for botanical dietary supplements. Toxicol. Sci., 2004, 79(1), 4-9.
[http://dx.doi.org/10.1093/toxsci/kfh075] [PMID: 14976355]
[3]
Papay, J.I.; Clines, D.; Rafi, R.; Yuen, N.; Britt, S.D.; Walsh, J.S.; Hunt, C.M. Drug-induced liver injury following positive drug rechallenge. Regul. Toxicol. Pharmacol., 2009, 54(1), 84-90.
[http://dx.doi.org/10.1016/j.yrtph.2009.03.003] [PMID: 19303041]
[4]
Saukkonen, J.J.; Cohn, D.L.; Jasmer, R.M.; Schenker, S.; Jereb, J.A.; Nolan, C.M.; Peloquin, C.A.; Gordin, F.M.; Nunes, D.; Strader, D.B.; Bernardo, J.; Venkataramanan, R.; Sterling, T.R. ATS (American Thoracic Society) Hepatotoxicity of Antituberculosis Therapy Subcommittee. An official ATS statement: hepatotoxicity of antituberculosis therapy. Am. J. Respir. Crit. Care Med., 2006, 174(8), 935-952.
[http://dx.doi.org/10.1164/rccm.200510-1666ST] [PMID: 17021358]
[5]
Ostapowicz, G.; Fontana, R.J.; Schiødt, F.V.; Larson, A.; Davern, T.J.; Han, S.H.; McCashland, T.M.; Shakil, A.O.; Hay, J.E.; Hynan, L.; Crippin, J.S.; Blei, A.T.; Samuel, G.; Reisch, J.; Lee, W.M.U.S. Acute Liver Failure Study Group. Results of a prospective study of acute liver failure at 17 tertiary care centers in the United States. Ann. Intern. Med., 2002, 137(12), 947-954.
[http://dx.doi.org/10.7326/0003-4819-137-12-200212170-00007] [PMID: 12484709]
[6]
Lee, W.M. Acute liver failure in the United States. Semin. Liver Dis., 2003, 23(3), 217-226.
[7]
Au, J.S.; Navarro, V.J.; Rossi, S. Review article: Drug-induced liver injury--its pathophysiology and evolving diagnostic tools. Aliment. Pharmacol. Ther., 2011, 34(1), 11-20.
[http://dx.doi.org/10.1111/j.1365-2036.2011.04674.x] [PMID: 21539586]
[8]
Zimmerman, H.J. Drug-induced liver disease. Clin. Liver Dis., 2000, 4(1), 73-96 vi.
[http://dx.doi.org/10.1016/S1089-3261(05)70097-0] [PMID: 11232192]
[9]
Andrade, R.J.; Lucena, M.I.; Alonso, A.; García-Cortes, M.; García-Ruiz, E.; Benitez, R.; Fernández, M.C.; Pelaez, G.; Romero, M.; Corpas, R.; Durán, J.A.; Jiménez, M.; Rodrigo, L.; Nogueras, F.; Martín-Vivaldi, R.; Navarro, J.M.; Salmerón, J.; de la Cuesta, F.S.; Hidalgo, R. HLA class II genotype influences the type of liver injury in drug-induced idiosyncratic liver disease. Hepatology, 2004, 39(6), 1603-1612.
[http://dx.doi.org/10.1002/hep.20215] [PMID: 15185301]
[10]
Kaplowitz, N. Drug-induced liver disorders: implications for drug development and regulation. Drug Saf., 2001, 24(7), 483-490.
[http://dx.doi.org/10.2165/00002018-200124070-00001] [PMID: 11444721]
[11]
Lewis, J.H. The rational use of potentially hepatotoxic medications in patients with underlying liver disease. Expert Opin. Drug Saf., 2002, 1(2), 159-172.
[http://dx.doi.org/10.1517/14740338.1.2.159] [PMID: 12904150]
[12]
Bell, L.N.; Chalasani, N. Epidemiology of idiosyncratic drug-induced liver injury. Semin. Liver Dis., 2009, 29(4), 337-347.
[13]
Boelsterli, U.A. Diclofenac-induced liver injury: a paradigm of idiosyncratic drug toxicity. Toxicol. Appl. Pharmacol., 2003, 192(3), 307-322.
[http://dx.doi.org/10.1016/S0041-008X(03)00368-5] [PMID: 14575648]
[14]
Jaeschke, H.; Gores, G.J.; Cederbaum, A.I.; Hinson, J.A.; Pessayre, D.; Lemasters, J.J. Mechanisms of hepatotoxicity. Toxicol. Sci., 2002, 65(2), 166-176.
[http://dx.doi.org/10.1093/toxsci/65.2.166] [PMID: 11812920]
[15]
Chang, C.Y.; Schiano, T.D. Review article: Drug hepatotoxicity. Aliment. Pharmacol. Ther., 2007, 25(10), 1135-1151.
[http://dx.doi.org/10.1111/j.1365-2036.2007.03307.x] [PMID: 17451560]
[16]
Srinivasan, N.; Sathyanarayana, D. Hepato protective activity of various extracts of Indigofera barberi gamble against d-galactosamine induced toxicity in rats. Ann. Plant Sci., 2013, 02(10), 401-404.
[17]
Park, W.B.; Kim, W.; Lee, K.L.; Yim, J.J.; Kim, M.; Jung, Y.J.; Kim, N.J.; Kim, D.H.; Kim, Y.J.; Yoon, J.H.; Oh, M.D.; Lee, H.S. Antituberculosis drug-induced liver injury in chronic hepatitis and cirrhosis. J. Infect., 2010, 61(4), 323-329.
[http://dx.doi.org/10.1016/j.jinf.2010.07.009] [PMID: 20670648]
[18]
Polson, J.E. Hepatotoxicity due to antibiotics. Clin. Liver Dis., 2007, 11(3), 549-561 vi.
[http://dx.doi.org/10.1016/j.cld.2007.06.009] [PMID: 17723919]
[19]
Murray, K.F.; Hadzic, N.; Wirth, S.; Bassett, M.; Kelly, D. Drug-related hepatotoxicity and acute liver failure. J. Pediatr. Gastroenterol. Nutr., 2008, 47(4), 395-405.
[http://dx.doi.org/10.1097/MPG.0b013e3181709464] [PMID: 18852631]
[20]
Hussein, R.R. Effect of antiepileptic drugs on liver enzymes. Beni-Suef Univ. J. Basic Appl. Sci., 2013, 2(1), 14-19.
[http://dx.doi.org/10.1016/j.bjbas.2013.09.002]
[21]
Björnsson, E. Hepatotoxicity associated with antiepileptic drugs. Acta Neurol. Scand., 2008, 118(5), 281-290.
[http://dx.doi.org/10.1111/j.1600-0404.2008.01009.x] [PMID: 18341684]
[22]
Reichle, F.M.; Conzen, P.F. Halogenated inhalational anaesthetics. Best Pract. Res. Clin. Anaesthesiol., 2003, 17(1), 29-46.
[http://dx.doi.org/10.1053/bean.2002.0265] [PMID: 12751547]
[23]
Pandit, A.; Sachdeva, T.; Bafna, P. Drug-induced hepatotoxicity: a review. J. Appl. Pharm. Sci., 2012, 2(5), 233-243.
[24]
Teschke, R.; Genthner, A.; Wolff, A. Kava hepatotoxicity: comparison of aqueous, ethanolic, acetonic kava extracts and kava-herbs mixtures. J. Ethnopharmacol., 2009, 123(3), 378-384.
[http://dx.doi.org/10.1016/j.jep.2009.03.038] [PMID: 19501269]
[25]
Bunchorntavakul, C.; Reddy, K.R. Review article: herbal and dietary supplement hepatotoxicity. Aliment. Pharmacol. Ther., 2013, 37(1), 3-17.
[http://dx.doi.org/10.1111/apt.12109] [PMID: 23121117]
[26]
Seeff, L.B. Herbal hepatotoxicity. Clin. Liver Dis., 2007, 11(3), 577-596 vii.
[http://dx.doi.org/10.1016/j.cld.2007.06.005] [PMID: 17723921]
[27]
Licata, A.; Macaluso, F.S.; Craxì, A. Herbal hepatotoxicity: a hidden epidemic. Intern. Emerg. Med., 2013, 8(1), 13-22.
[http://dx.doi.org/10.1007/s11739-012-0777-x] [PMID: 22477279]
[28]
Muriel, P.; Alba, N.; Pérez-Alvarez, V.M.; Shibayama, M.; Tsutsumi, V.K. Kupffer cells inhibition prevents hepatic lipid peroxidation and damage induced by carbon tetrachloride. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2001, 130(2), 219-226.
[http://dx.doi.org/10.1016/S1532-0456(01)00237-X] [PMID: 11574291]
[29]
Weber, L.W.; Boll, M.; Stampfl, A. Hepatotoxicity and mechanism of action of haloalkanes: carbon tetrachloride as a toxicological model. Crit. Rev. Toxicol., 2003, 33(2), 105-136.
[http://dx.doi.org/10.1080/713611034] [PMID: 12708612]
[30]
Shi, J.; Aisaki, K.; Ikawa, Y.; Wake, K. Evidence of hepatocyte apoptosis in rat liver after the administration of carbon tetrachloride. Am. J. Pathol., 1998, 153(2), 515-525.
[http://dx.doi.org/10.1016/S0002-9440(10)65594-0] [PMID: 9708811]
[31]
Dai, C.; Tang, S.; Deng, S.; Zhang, S.; Zhou, Y.; Velkov, T.; Li, J.; Xiao, X. Lycopene attenuates colistin-induced nephrotoxicity in mice via activation of the Nrf2/HO-1 pathway. Antimicrob. Agents Chemother., 2015, 59(1), 579-585.
[http://dx.doi.org/10.1128/AAC.03925-14] [PMID: 25385104]
[32]
SALAMA. Assessment effect of Aloe vera, azadirachta indica and Moringa oleifera aqueous extracts on carbon tetrachloride-induced hepatotoxicity in rats. Int. J. Pharm. Pharm. Sci., 2016, 8(4), 83-89.
[33]
Zeashan, H.; Amresh, G.; Singh, S.; Rao, C.V. Hepatoprotective activity of Amaranthus spinosus in experimental animals. Food Chem. Toxicol., 2008, 46(11), 3417-3421.
[http://dx.doi.org/10.1016/j.fct.2008.08.013] [PMID: 18783728]
[34]
Niu, L.; Cui, X.; Qi, Y.; Xie, D.; Wu, Q.; Chen, X.; Ge, J.; Liu, Z. Involvement of TGF-β1/Smad3 signaling in carbon tetrachloride-induced acute liver injury in mice. PLoS One, 2016, 11(5)e0156090
[http://dx.doi.org/10.1371/journal.pone.0156090] [PMID: 27224286]
[35]
Sodhi, K.; Puri, N.; Kim, D.H.; Hinds, T.D.; Stechschulte, L.A.; Favero, G.; Rodella, L.; Shapiro, J.I.; Jude, D.; Abraham, N.G. PPARδ binding to heme oxygenase 1 promoter prevents angiotensin II-induced adipocyte dysfunction in Goldblatt hypertensive rats. Int. J. Obes., 2014, 38(3), 456-465.
[http://dx.doi.org/10.1038/ijo.2013.116] [PMID: 23779049]
[36]
Kluwe, J.; Pradere, J.P.; Gwak, G.Y.; Mencin, A.; De Minicis, S.; Osterreicher, C.H.; Colmenero, J.; Bataller, R.; Schwabe, R.F. Modulation of hepatic fibrosis by c-Jun-N-terminal kinase inhibition. Gastroenterology, 2010, 138(1), 347-359.
[http://dx.doi.org/10.1053/j.gastro.2009.09.015] [PMID: 19782079]
[37]
Zhao, G.; Hatting, M.; Nevzorova, Y.A.; Peng, J.; Hu, W.; Boekschoten, M.V.; Roskams, T.; Muller, M.; Gassler, N.; Liedtke, C.; Davis, R.J.; Cubero, F.J.; Trautwein, C. Jnk1 in murine hepatic stellate cells is a crucial mediator of liver fibrogenesis. Gut, 2014, 63(7), 1159-1172.
[http://dx.doi.org/10.1136/gutjnl-2013-305507] [PMID: 24037431]
[38]
Lee, H-S.; Hwang, C.Y.; Shin, S.Y.; Kwon, K.S.; Cho, K.H. MLK3 is part of a feedback mechanism that regulates different cellular responses to reactive oxygen species. Sci. Signal., 2014, 7(328), ra52-ra52.
[http://dx.doi.org/10.1126/scisignal.2005260] [PMID: 24894995]
[39]
IMS, IMS National Sales Perspectives Available at: http://www.imshealth.com
[41]
Lee, W.M. Acute liver failure.In: Seminars in respiratory and critical care medicine; Thieme Medical Publishers, 2012.
[http://dx.doi.org/10.1055/s-0032-1301733]
[42]
Hinson, J.A.; Roberts, D.W.; James, L.P. Mechanisms of Acetaminophen-induced Liver Necrosis.In: Adverse Drug Reactions; Jack, Uetrecht., Ed.; Springer: New York, 2010, pp. 369-405.
[http://dx.doi.org/10.1007/978-3-642-00663-0_12]
[43]
Jaeschke, H.; McGill, M.R.; Ramachandran, A. Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Drug Metab. Rev., 2012, 44(1), 88-106.
[http://dx.doi.org/10.3109/03602532.2011.602688] [PMID: 22229890]
[44]
Bessems, J.G.; Vermeulen, N.P. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit. Rev. Toxicol., 2001, 31(1), 55-138.
[http://dx.doi.org/10.1080/20014091111677] [PMID: 11215692]
[45]
Doreswamy, R.; Sharma, D. Plant drugs for liver disorders management. Indian drugs, 1995, 143(1), 1-12.
[46]
Cohen, S.D.; Pumford, N.R.; Khairallah, E.A.; Boekelheide, K.; Pohl, L.R.; Amouzadeh, H.R.; Hinson, J.A. Selective protein covalent binding and target organ toxicity. Toxicol. Appl. Pharmacol., 1997, 143(1), 1-12.
[http://dx.doi.org/10.1006/taap.1996.8074] [PMID: 9073586]
[47]
Qiu, Y.; Benet, L.Z.; Burlingame, A. Identification of hepatic protein targets of the reactive metabolites of the non-hepatotoxic regioisomer of acetaminophen, 3′-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel electrophoresis and mass spectrometry; Biological Reactive Intermediates, VI Springer, 2001, pp. 663-673.
[http://dx.doi.org/10.1007/978-1-4615-0667-6_99]
[48]
McGill, M.R.; Williams, C.D.; Xie, Y.; Ramachandran, A.; Jaeschke, H. Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol. Appl. Pharmacol., 2012, 264(3), 387-394.
[http://dx.doi.org/10.1016/j.taap.2012.08.015] [PMID: 22980195]
[49]
Xie, Y.; Ramachandran, A.; Breckenridge, D.G.; Liles, J.T.; Lebofsky, M.; Farhood, A.; Jaeschke, H. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury. Toxicol. Appl. Pharmacol., 2015, 286(1), 1-9.
[http://dx.doi.org/10.1016/j.taap.2015.03.019] [PMID: 25818599]
[50]
Heard, K.J.; Green, J.L.; James, L.P.; Judge, B.S.; Zolot, L.; Rhyee, S.; Dart, R.C. Acetaminophen-cysteine adducts during therapeutic dosing and following overdose. BMC Gastroenterol., 2011, 11(1), 20.
[http://dx.doi.org/10.1186/1471-230X-11-20] [PMID: 21401949]
[51]
McGill, M.R.; Jaeschke, H. Metabolism and disposition of acetaminophen: recent advances in relation to hepatotoxicity and diagnosis. Pharm. Res., 2013, 30(9), 2174-2187.
[http://dx.doi.org/10.1007/s11095-013-1007-6] [PMID: 23462933]
[52]
McGill, M.R.; Lebofsky, M.; Norris, H.R.; Slawson, M.H.; Bajt, M.L.; Xie, Y.; Williams, C.D.; Wilkins, D.G.; Rollins, D.E.; Jaeschke, H. Plasma and liver acetaminophen-protein adduct levels in mice after acetaminophen treatment: dose-response, mechanisms, and clinical implications. Toxicol. Appl. Pharmacol., 2013, 269(3), 240-249.
[http://dx.doi.org/10.1016/j.taap.2013.03.026] [PMID: 23571099]
[53]
Latchoumycandane, C.; Seah, Q.M.; Tan, R.C.; Sattabongkot, J.; Beerheide, W.; Boelsterli, U.A. Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes. Toxicol. Appl. Pharmacol., 2006, 217(1), 125-133.
[http://dx.doi.org/10.1016/j.taap.2006.08.001] [PMID: 16979204]
[54]
McGill, M.R.; Du, K.; Xie, Y.; Bajt, M.L.; Ding, W.X.; Jaeschke, H. The role of the c-Jun N-terminal kinases 1/2 and receptor-interacting protein kinase 3 in furosemide-induced liver injury. Xenobiotica, 2015, 45(5), 442-449.
[http://dx.doi.org/10.3109/00498254.2014.986250] [PMID: 25423287]
[55]
Pumford, N.R.; Hinson, J.A.; Potter, D.W.; Rowland, K.L.; Benson, R.W.; Roberts, D.W. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen adducts in serum and liver proteins of acetaminophen-treated mice. J. Pharmacol. Exp. Ther., 1989, 248(1), 190-196.
[PMID: 2913271]
[56]
Pumford, N.R.; Roberts, D.W.; Benson, R.W.; Hinson, J.A. Immunochemical quantitation of 3-(cystein-S-yl)acetaminophen protein adducts in subcellular liver fractions following a hepatotoxic dose of acetaminophen. Biochem. Pharmacol., 1990, 40(3), 573-579.
[http://dx.doi.org/10.1016/0006-2952(90)90558-3] [PMID: 2200409]
[57]
Muldrew, K.L.; James, L.P.; Coop, L.; McCullough, S.S.; Hendrickson, H.P.; Hinson, J.A.; Mayeux, P.R. Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug Metab. Dispos., 2002, 30(4), 446-451.
[http://dx.doi.org/10.1124/dmd.30.4.446] [PMID: 11901099]
[58]
Davern, T.J., II; James, L.P.; Hinson, J.A.; Polson, J.; Larson, A.M.; Fontana, R.J.; Lalani, E.; Munoz, S.; Shakil, A.O.; Lee, W.M. Acute Liver Failure Study Group. Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology, 2006, 130(3), 687-694.
[http://dx.doi.org/10.1053/j.gastro.2006.01.033] [PMID: 16530510]
[59]
James, L.P.; Capparelli, E.V.; Simpson, P.M.; Letzig, L.; Roberts, D.; Hinson, J.A.; Kearns, G.L.; Blumer, J.L.; Sullivan, J.E. Network of Pediatric Pharmacology Research Units, National Institutes of Child Health and Human Development. Acetaminophen-associated hepatic injury: evaluation of acetaminophen protein adducts in children and adolescents with acetaminophen overdose. Clin. Pharmacol. Ther., 2008, 84(6), 684-690.
[http://dx.doi.org/10.1038/clpt.2008.190] [PMID: 18923390]
[60]
Henderson, N.C.; Pollock, K.J.; Frew, J.; Mackinnon, A.C.; Flavell, R.A.; Davis, R.J.; Sethi, T.; Simpson, K.J. Critical role of c-jun (NH2) terminal kinase in paracetamol- induced acute liver failure. Gut, 2007, 56(7), 982-990.
[http://dx.doi.org/10.1136/gut.2006.104372] [PMID: 17185352]
[61]
Cubero, F.J.; Zoubek, M.E.; Hu, W.; Peng, J.; Zhao, G.; Nevzorova, Y.A.; Al Masaoudi, M.; Bechmann, L.P.; Boekschoten, M.V.; Muller, M.; Preisinger, C.; Gassler, N.; Canbay, A.E.; Luedde, T.; Davis, R.J.; Liedtke, C.; Trautwein, C. Combined activities of JNK1 and JNK2 in hepatocytes protect against toxic liver injury. Gastroenterology, 2016, 150(4), 968-981.
[http://dx.doi.org/10.1053/j.gastro.2015.12.019] [PMID: 26708719]
[62]
Bourdi, M.; Korrapati, M.C.; Chakraborty, M.; Yee, S.B.; Pohl, L.R. Protective role of c-Jun N-terminal kinase 2 in acetaminophen-induced liver injury. Biochem. Biophys. Res. Commun., 2008, 374(1), 6-10.
[http://dx.doi.org/10.1016/j.bbrc.2008.06.065] [PMID: 18586006]
[63]
Nakagawa, H.; Maeda, S.; Hikiba, Y.; Ohmae, T.; Shibata, W.; Yanai, A.; Sakamoto, K.; Ogura, K.; Noguchi, T.; Karin, M.; Ichijo, H.; Omata, M. Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology, 2008, 135(4), 1311-1321.
[http://dx.doi.org/10.1053/j.gastro.2008.07.006] [PMID: 18700144]
[64]
Wancket, L.M.; Meng, X.; Rogers, L.K.; Liu, Y. Mitogen-activated protein kinase phosphatase (Mkp)-1 protects mice against acetaminophen-induced hepatic injury. Toxicol. Pathol., 2012, 40(8), 1095-1105.
[http://dx.doi.org/10.1177/0192623312447551] [PMID: 22623522]
[65]
Du, K.; McGill, M.R.; Xie, Y.; Bajt, M.L.; Jaeschke, H. Resveratrol prevents protein nitration and release of endonucleases from mitochondria during acetaminophen hepatotoxicity. Food Chem. Toxicol., 2015, 81, 62-70.
[http://dx.doi.org/10.1016/j.fct.2015.04.014] [PMID: 25865938]
[66]
Saito, C.; Lemasters, J.J.; Jaeschke, H. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol. Appl. Pharmacol., 2010, 246(1-2), 8-17.
[http://dx.doi.org/10.1016/j.taap.2010.04.015] [PMID: 20423716]
[67]
Shinohara, M.; Ybanez, M.D.; Win, S.; Than, T.A.; Jain, S.; Gaarde, W.A.; Han, D.; Kaplowitz, N. Silencing glycogen synthase kinase-3β inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J. Biol. Chem., 2010, 285(11), 8244-8255.
[http://dx.doi.org/10.1074/jbc.M109.054999] [PMID: 20061376]
[68]
Sharma, M.; Gadang, V.; Jaeschke, A. Critical role for mixed-lineage kinase 3 in acetaminophen-induced hepatotoxicity. Mol. Pharmacol., 2012, 82(5), 1001-1007.
[http://dx.doi.org/10.1124/mol.112.079863] [PMID: 22918968]
[69]
Saberi, B. Protein Kinase c (PKC) participates in acetaminophen hepatotoxicity through JNK dependent and independent signaling pathways. Hepatology, 2014, 59(4), 1543.
[http://dx.doi.org/10.1002/hep.26625] [PMID: 23873604]
[70]
Saberi, B.; Ybanez, M.D.; Johnson, H.S.; Gaarde, W.A.; Han, D.; Kaplowitz, N. Protein kinase C (PKC) participates in acetaminophen hepatotoxicity through c-jun-N-terminal kinase (JNK)-dependent and -independent signaling pathways. Hepatology, 2014, 59(4), 1543-1554.
[http://dx.doi.org/10.1002/hep.26625] [PMID: 23873604]
[71]
Li, J.X.; Feng, J.M.; Wang, Y.; Li, X.H.; Chen, X.X.; Su, Y.; Shen, Y.Y.; Chen, Y.; Xiong, B.; Yang, C.H.; Ding, J.; Miao, Z.H. The B-Raf(V600E) inhibitor dabrafenib selectively inhibits RIP3 and alleviates acetaminophen-induced liver injury. Cell Death Dis., 2014, 5(6)e1278
[http://dx.doi.org/10.1038/cddis.2014.241] [PMID: 24901049]
[72]
Dejaco, C.; Mittermaier, C.; Reinisch, W.; Gasche, C.; Waldhoer, T.; Strohmer, H.; Moser, G. Azathioprine treatment and male fertility in inflammatory bowel disease. Gastroenterology, 2001, 121(5), 1048-1053.
[http://dx.doi.org/10.1053/gast.2001.28692] [PMID: 11677195]
[73]
Maltzman, J.S.; Koretzky, G.A. Azathioprine: old drug, new actions. J. Clin. Invest., 2003, 111(8), 1122-1124.
[http://dx.doi.org/10.1172/JCI200318384] [PMID: 12697731]
[74]
Dubinsky, M.C. Azathioprine, 6-mercaptopurine in inflammatory bowel disease: pharmacology, efficacy, and safety. Clin. Gastroenterol. Hepatol., 2004, 2(9), 731-743.
[http://dx.doi.org/10.1016/S1542-3565(04)00344-1] [PMID: 15354273]
[75]
Marinaki, A.M.; Ansari, A.; Duley, J.A.; Arenas, M.; Sumi, S.; Lewis, C.M.; Shobowale-Bakre, M.; Escuredo, E.; Fairbanks, L.D.; Sanderson, J.D. Adverse drug reactions to azathioprine therapy are associated with polymorphism in the gene encoding inosine triphosphate pyrophosphatase (ITPase). Pharmacogenetics, 2004, 14(3), 181-187.
[http://dx.doi.org/10.1097/00008571-200403000-00006] [PMID: 15167706]
[76]
Takatsu, N.; Matsui, T.; Murakami, Y.; Ishihara, H.; Hisabe, T.; Nagahama, T.; Maki, S.; Beppu, T.; Takaki, Y.; Hirai, F.; Yao, K. Adverse reactions to azathioprine cannot be predicted by thiopurine S-methyltransferase genotype in Japanese patients with inflammatory bowel disease. J. Gastroenterol. Hepatol., 2009, 24(7), 1258-1264.
[http://dx.doi.org/10.1111/j.1440-1746.2009.05917.x] [PMID: 19682195]
[77]
Wong, D.R.; Derijks, L.J.; den Dulk, M.O.; Gemmeke, E.H.; Hooymans, P.M. The role of xanthine oxidase in thiopurine metabolism: a case report. Ther. Drug Monit., 2007, 29(6), 845-848.
[http://dx.doi.org/10.1097/FTD.0b013e31815bf4dc] [PMID: 18043486]
[78]
Hisamuddin, I.M.W.M.; Yang, V.W. Pharmacogenetics and diseases of the colon. Curr. Opin. Gastroenterol., 2007, 23(1), 60-66.
[http://dx.doi.org/10.1097/MOG.0b013e32801145c2] [PMID: 17133087]
[79]
Ansari, A.; Elliott, T.; Baburajan, B.; Mayhead, P.; O’Donohue, J.; Chocair, P.; Sanderson, J.; Duley, J. Long-term outcome of using allopurinol co-therapy as a strategy for overcoming thiopurine hepatotoxicity in treating inflammatory bowel disease. Aliment. Pharmacol. Ther., 2008, 28(6), 734-741.
[http://dx.doi.org/10.1111/j.1365-2036.2008.03782.x] [PMID: 19145729]
[80]
Talpur, M. Zinc sulphate in azathioprine induced hepatotoxicity-An experimental study; WJBMS, 2014.
[81]
Menor, C.; Fernández-Moreno, M.D.; Fueyo, J.A.; Escribano, O.; Olleros, T.; Arriaza, E.; Cara, C.; Lorusso, M.; Di Paola, M.; Román, I.D.; Guijarro, L.G. Azathioprine acts upon rat hepatocyte mitochondria and stress-activated protein kinases leading to necrosis: protective role of N-acetyl-L-cysteine. J. Pharmacol. Exp. Ther., 2004, 311(2), 668-676.
[http://dx.doi.org/10.1124/jpet.104.069286] [PMID: 15226385]
[82]
Sharma, A. Hepatoprotective activity of Adina cordifolia against ethanol induce hepatotoxicity in rats. Int. Curr. Pharm. J., 2012, 1(9), 279-284.
[http://dx.doi.org/10.3329/icpj.v1i9.11619]
[83]
Eliwa, H.; El-Denshary, S.; Nada, S.A.; Elyamany, M.F.; Omara, E.A.; Asaaf, N. Evaluation of the therapeutic effect of whey proteins on the hepatotoxicity induced by paracetamol and alcohol coadministration in rats. Int. J. Pharma. Res. Biomed. Sci., 2014, 3(2), 295-314.
[84]
Cederbaum, A.I.; Lu, Y.; Wang, X.; Wu, D. Synergistic toxic interactions between CYP2E1, LPS/TNFα, and JNK/p38 MAP kinase and their implications in alcohol-induced liver injury. In: Biological Basis of Alcohol-Induced Cancer. Springer: New York, 2015, pp. 145-172.
[85]
Yokoyama, M.; Yokoyama, A.; Mori, S.; Takahashi, H.K.; Yoshino, T.; Watanabe, T.; Watanabe, T.; Ohtsu, H.; Nishibori, M. Inducible histamine protects mice from P. acnes-primed and LPS-induced hepatitis through H2-receptor stimulation. Gastroenterology, 2004, 127(3), 892-902.
[http://dx.doi.org/10.1053/j.gastro.2004.06.020] [PMID: 15362044]
[86]
Maddox, J.F.; Luyendyk, J.P.; Cosma, G.N.; Breau, A.P.; Bible, R.H., Jr; Harrigan, G.G.; Goodacre, R.; Ganey, P.E.; Cantor, G.H.; Cockerell, G.L.; Roth, R.A. Metabonomic evaluation of idiosyncrasy-like liver injury in rats cotreated with ranitidine and lipopolysaccharide. Toxicol. Appl. Pharmacol., 2006, 212(1), 35-44.
[http://dx.doi.org/10.1016/j.taap.2005.06.021] [PMID: 16051291]
[87]
Kim, J.Y. Tuberculosis control. Global public goods for health: health economic and public health perspectives; Oxford University Press for the World Health Organization: New York, 2003, pp. 54-72.
[88]
Boelsterli, U.A.; Lee, K.K. Mechanisms of isoniazid-induced idiosyncratic liver injury: emerging role of mitochondrial stress. J. Gastroenterol. Hepatol., 2014, 29(4), 678-687.
[http://dx.doi.org/10.1111/jgh.12516] [PMID: 24783247]
[89]
Control, C.D. Centers for Disease Control and Prevention (CDC). Severe isoniazid-associated liver injuries among persons being treated for latent tuberculosis infection - United States, 2004-2008. MMWR Morb. Mortal. Wkly. Rep., 2010, 59(8), 224-229.
[PMID: 20203555]
[90]
Tayal, V. Hepatoprotective effect of tocopherol against isoniazid and rifampicin induced hepatotoxicity in albino rabbits., 2007.
[91]
Tostmann, A.; Boeree, M.J.; Aarnoutse, R.E.; de Lange, W.C.; van der Ven, A.J.; Dekhuijzen, R. Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J. Gastroenterol. Hepatol., 2008, 23(2), 192-202.
[http://dx.doi.org/10.1111/j.1440-1746.2007.05207.x] [PMID: 17995946]
[92]
Wang, P.; Pradhan, K.; Zhong, X.B.; Ma, X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B, 2016, 6(5), 384-392.
[http://dx.doi.org/10.1016/j.apsb.2016.07.014] [PMID: 27709007]
[93]
Lee, S-J.; Lee, Y.J.; Park, K-K. The pathogenesis of drug-induced liver injury. Expert Rev. Gastroenterol. Hepatol., 2016, 10(10), 1175-1185.
[http://dx.doi.org/10.1080/17474124.2016.1196133] [PMID: 27248313]
[94]
Hassan, H.M.; Guo, H.L.; Yousef, B.A.; Luyong, Z.; Zhenzhou, J. Hepatotoxicity mechanisms of isoniazid: a mini-review. J. Appl. Toxicol., 2015, 35(12), 1427-1432.
[http://dx.doi.org/10.1002/jat.3175] [PMID: 26095833]
[95]
Metushi, I.G.; Cai, P.; Zhu, X.; Nakagawa, T.; Uetrecht, J.P. A fresh look at the mechanism of isoniazid-induced hepatotoxicity. Clin. Pharmacol. Ther., 2011, 89(6), 911-914.
[http://dx.doi.org/10.1038/clpt.2010.355] [PMID: 21412230]
[96]
Yue, J.; Peng, R.X.; Yang, J.; Kong, R.; Liu, J. CYP2E1 mediated isoniazid-induced hepatotoxicity in rats. Acta Pharmacol. Sin., 2004, 25(5), 699-704.
[PMID: 15132840]
[97]
Church, R.J.; Wu, H.; Mosedale, M.; Sumner, S.J.; Pathmasiri, W.; Kurtz, C.L.; Pletcher, M.T.; Eaddy, J.S.; Pandher, K.; Singer, M.; Batheja, A.; Watkins, P.B.; Adkins, K.; Harrill, A.H. A systems biology approach utilizing a mouse diversity panel identifies genetic differences influencing isoniazid-induced microvesicular steatosis. Toxicol. Sci., 2014, 140(2), 481-492.
[http://dx.doi.org/10.1093/toxsci/kfu094] [PMID: 24848797]
[98]
Bao, Y.; Ma, X.; Rasmussen, T.P.; Zhong, X.B. Genetic Variations Associated with Anti-Tuberculosis Drug-Induced Liver Injury. Curr. Pharmacol. Rep., 2018, 4(3), 171-181.
[http://dx.doi.org/10.1007/s40495-018-0131-8] [PMID: 30464886]
[99]
Jayaraj, R.; Lakshmana Rao, P.V. Protein phosphorylation profile and adduct formation in liver and kidney of microcystin-LR-treated mice. Toxicon, 2006, 48(3), 272-277.
[http://dx.doi.org/10.1016/j.toxicon.2006.05.012] [PMID: 16860833]
[100]
Ding, W.X.; Shen, H.M.; Ong, C.N. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin-induced rapid apoptosis in rat hepatocytes. Hepatology, 2000, 32(3), 547-555.
[http://dx.doi.org/10.1053/jhep.2000.16183] [PMID: 10960448]
[101]
McDermott, C.M.; Nho, C.W.; Howard, W.; Holton, B. The cyanobacterial toxin, microcystin-LR, can induce apoptosis in a variety of cell types. Toxicon, 1998, 36(12), 1981-1996.
[http://dx.doi.org/10.1016/S0041-0101(98)00128-7] [PMID: 9839682]
[102]
Ding, W-X.; Nam Ong, C. Role of oxidative stress and mitochondrial changes in cyanobacteria-induced apoptosis and hepatotoxicity. FEMS Microbiol. Lett., 2003, 220(1), 1-7.
[http://dx.doi.org/10.1016/S0378-1097(03)00100-9] [PMID: 12644220]
[103]
dos Santos, A.P.M.E.; Bracarense, A.P.F.R.L. Hepatotoxicity associated with microcystin. Semin. Cienc. Agrar., 2008, 29(2), 417-430.
[http://dx.doi.org/10.5433/1679-0359.2008v29n2p417]
[104]
Yoshida, T.; Makita, Y.; Tsutsumi, T.; Nagata, S.; Tashiro, F.; Yoshida, F.; Sekijima, M.; Tamura, S.; Harada, T.; Maita, K.; Ueno, Y. Immunohistochemical localization of microcystin-LR in the liver of mice: a study on the pathogenesis of microcystin-LR-induced hepatotoxicity. Toxicol. Pathol., 1998, 26(3), 411-418.
[http://dx.doi.org/10.1177/019262339802600316] [PMID: 9608648]
[105]
Bradham, C.A.; Qian, T.; Streetz, K.; Trautwein, C.; Brenner, D.A.; Lemasters, J.J. The mitochondrial permeability transition is required for tumor necrosis factor alpha-mediated apoptosis and cytochrome c release. Mol. Cell. Biol., 1998, 18(11), 6353-6364.
[http://dx.doi.org/10.1128/MCB.18.11.6353] [PMID: 9774651]
[106]
Aithal, G.P.; Ramsay, L.; Daly, A.K.; Sonchit, N.; Leathart, J.B.; Alexander, G.; Kenna, J.G.; Caldwell, J.; Day, C.P. Hepatic adducts, circulating antibodies, and cytokine polymorphisms in patients with diclofenac hepatotoxicity. Hepatology, 2004, 39(5), 1430-1440.
[http://dx.doi.org/10.1002/hep.20205] [PMID: 15122773]
[107]
Daly, A.K.; Aithal, G.P.; Leathart, J.B.; Swainsbury, R.A.; Dang, T.S.; Day, C.P. Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology, 2007, 132(1), 272-281.
[http://dx.doi.org/10.1053/j.gastro.2006.11.023] [PMID: 17241877]
[108]
de David, C.; Rodrigues, G.; Bona, S.; Meurer, L.; González-Gallego, J.; Tuñón, M.J.; Marroni, N.P. Role of quercetin in preventing thioacetamide-induced liver injury in rats. Toxicol. Pathol., 2011, 39(6), 949-957.
[http://dx.doi.org/10.1177/0192623311418680] [PMID: 21885874]
[109]
Okuyama, H. Thioredoxin prevents thioacetamide-induced acute hepatitis.Comparative Hepatology; BioMed Central, 2004.
[110]
Dyroff, M.C.; Neal, R.A. Studies of the mechanism of metabolism of thioacetamide s-oxide by rat liver microsomes. Mol. Pharmacol., 1983, 23(1), 219-227.
[PMID: 6408387]
[111]
Sarma, D.; Hajovsky, H.; Koen, Y.M.; Galeva, N.A.; Williams, T.D.; Staudinger, J.L.; Hanzlik, R.P. Covalent modification of lipids and proteins in rat hepatocytes and in vitro by thioacetamide metabolites. Chem. Res. Toxicol., 2012, 25(9), 1868-1877.
[http://dx.doi.org/10.1021/tx3001658] [PMID: 22667464]
[112]
Hajovsky, H.; Hu, G.; Koen, Y.; Sarma, D.; Cui, W.; Moore, D.S.; Staudinger, J.L.; Hanzlik, R.P. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem. Res. Toxicol., 2012, 25(9), 1955-1963.
[http://dx.doi.org/10.1021/tx3002719] [PMID: 22867114]
[113]
Myagmar, B-E.; Shinno, E.; Ichiba, T.; Aniya, Y. Antioxidant activity of medicinal herb Rhodococcum vitis-idaea on galactosamine-induced liver injury in rats. Phytomedicine, 2004, 11(5), 416-423.
[http://dx.doi.org/10.1016/j.phymed.2003.04.003] [PMID: 15330497]
[114]
Najmi, A.K.; Pillai, K.K.; Pal, S.N.; Aqil, M. Free radical scavenging and hepatoprotective activity of jigrine against galactosamine induced hepatopathy in rats. J. Ethnopharmacol., 2005, 97(3), 521-525.
[http://dx.doi.org/10.1016/j.jep.2004.12.016] [PMID: 15740890]
[115]
Cainelli, F.; Vallone, A. Safety and efficacy of pegylated liposomal doxorubicin in HIV-associated Kaposi’s sarcoma. Biologics, 2009, 3, 385-390.
[PMID: 19774206]
[116]
Injac, R.; Perse, M.; Obermajer, N.; Djordjevic-Milic, V.; Prijatelj, M.; Djordjevic, A.; Cerar, A.; Strukelj, B. Potential hepatoprotective effects of fullerenol C60(OH)24 in doxorubicin-induced hepatotoxicity in rats with mammary carcinomas. Biomaterials, 2008, 29(24-25), 3451-3460.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.048] [PMID: 18501960]
[117]
Kalender, Y.; Yel, M.; Kalender, S. Doxorubicin hepatotoxicity and hepatic free radical metabolism in rats. The effects of vitamin E and catechin. Toxicology, 2005, 209(1), 39-45.
[http://dx.doi.org/10.1016/j.tox.2004.12.003] [PMID: 15725512]
[118]
García-Morales, I.; Sancho Rieger, J.; Gil-Nagel, A.; Herranz Fernández, J.L. Antiepileptic drugs: from scientific evidence to clinical practice. Neurologist, 2007, 13(6)(Suppl. 1), S20-S28.
[http://dx.doi.org/10.1097/NRL.0b013e31815bb3b7] [PMID: 18090948]
[119]
Haddad, P.M.; Das, A.; Ashfaq, M.; Wieck, A. A review of valproate in psychiatric practice. Expert Opin. Drug Metab. Toxicol., 2009, 5(5), 539-551.
[http://dx.doi.org/10.1517/17425250902911455] [PMID: 19409030]
[120]
Tong, V.; Teng, X.W.; Chang, T.K.; Abbott, F.S. Valproic acid I: time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol. Sci., 2005, 86(2), 427-435.
[http://dx.doi.org/10.1093/toxsci/kfi184] [PMID: 15858223]
[121]
Kiang, T.K.; Teng, X.W.; Karagiozov, S.; Surendradoss, J.; Chang, T.K.; Abbott, F.S. Role of oxidative metabolism in the effect of valproic acid on markers of cell viability, necrosis, and oxidative stress in sandwich-cultured rat hepatocytes. Toxicol. Sci., 2010, 118(2), 501-509.
[http://dx.doi.org/10.1093/toxsci/kfq294] [PMID: 20861068]
[122]
Kiang, T.K.; Teng, X.W.; Surendradoss, J.; Karagiozov, S.; Abbott, F.S.; Chang, T.K. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity. Toxicol. Appl. Pharmacol., 2011, 252(3), 318-324.
[http://dx.doi.org/10.1016/j.taap.2011.03.004] [PMID: 21397622]
[123]
Mohd-Redzwan, S.; Jamaluddin, R.; Abd-Mutalib, M.S.; Ahmad, Z. A mini review on aflatoxin exposure in Malaysia: past, present and future. Front. Microbiol., 2013, 4, 334.
[http://dx.doi.org/10.3389/fmicb.2013.00334] [PMID: 24312084]
[124]
Pitt, J.I. Toxigenic fungi and mycotoxins. Br. Med. Bull., 2000, 56(1), 184-192.
[http://dx.doi.org/10.1258/0007142001902888] [PMID: 10885115]
[125]
Preston, R.J.; Williams, G.M. DNA-reactive carcinogens: mode of action and human cancer hazard. Crit. Rev. Toxicol., 2005, 35(8-9), 673-683.
[http://dx.doi.org/10.1080/10408440591007278] [PMID: 16417034]
[126]
Edlayne, G.; Simone, A.; Felicio, J.D. Chemical and biological approaches for mycotoxin control: a review. Recent Pat. Food Nutr. Agric., 2009, 1(2), 155-161.
[http://dx.doi.org/10.2174/2212798410901020155] [PMID: 20653536]
[127]
Ingawale, D.K.; Mandlik, S.K.; Naik, S.R. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): a critical discussion. Environ. Toxicol. Pharmacol., 2014, 37(1), 118-133.
[http://dx.doi.org/10.1016/j.etap.2013.08.015] [PMID: 24322620]
[128]
Marin, S.; Ramos, A.J.; Cano-Sancho, G.; Sanchis, V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem. Toxicol., 2013, 60, 218-237.
[http://dx.doi.org/10.1016/j.fct.2013.07.047] [PMID: 23907020]
[129]
Sharma, R.A.; Farmer, P.B. Biological relevance of adduct detection to the chemoprevention of cancer. Clin. Cancer Res., 2004, 10(15), 4901-4912.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0098] [PMID: 15297390]
[130]
Haleagrahara, N.; Jackie, T.; Chakravarthi, S.; Rao, M.; Kulur, A. Protective effect of Etlingera elatior (torch ginger) extract on lead acetate--induced hepatotoxicity in rats. J. Toxicol. Sci., 2010, 35(5), 663-671.
[http://dx.doi.org/10.2131/jts.35.663] [PMID: 20930461]
[131]
Gurer, H.; Ercal, N. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radic. Biol. Med., 2000, 29(10), 927-945.
[http://dx.doi.org/10.1016/S0891-5849(00)00413-5] [PMID: 11084283]
[132]
Sharma, A.; Sharma, V.; Kansal, L. Amelioration of lead-induced hepatotoxicity by Allium sativum extracts in Swiss albino mice. Libyan J. Med., 2010, 5(1), 4621.
[http://dx.doi.org/10.3402/ljm.v5i0.4621] [PMID: 28156294]
[133]
Bourdi, M.; Chen, W.; Peter, R.M.; Martin, J.L.; Buters, J.T.; Nelson, S.D.; Pohl, L.R. Human cytochrome P450 2E1 is a major autoantigen associated with halothane hepatitis. Chem. Res. Toxicol., 1996, 9(7), 1159-1166.
[http://dx.doi.org/10.1021/tx960083q] [PMID: 8902272]
[134]
Fallahian, F. Halothane induced hepatitis (CME). Shiraz E Med. J., 2009, 10(4), 209-220.
[135]
Dugan, C.M.; MacDonald, A.E.; Roth, R.A.; Ganey, P.E. A mouse model of severe halothane hepatitis based on human risk factors. J. Pharmacol. Exp. Ther., 2010, 333(2), 364-372.
[http://dx.doi.org/10.1124/jpet.109.164541] [PMID: 20124411]
[136]
Proctor, W.R.; Chakraborty, M.; Chea, L.S.; Morrison, J.C.; Berkson, J.D.; Semple, K.; Bourdi, M.; Pohl, L.R. Eosinophils mediate the pathogenesis of halothane-induced liver injury in mice. Hepatology, 2013, 57(5), 2026-2036.
[http://dx.doi.org/10.1002/hep.26196] [PMID: 23238640]
[137]
You, Q.; Cheng, L.; Reilly, T.P.; Wegmann, D.; Ju, C. Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology, 2006, 44(6), 1421-1431.
[http://dx.doi.org/10.1002/hep.21425] [PMID: 17133481]
[138]
Kobayashi, E.; Kobayashi, M.; Tsuneyama, K.; Fukami, T.; Nakajima, M.; Yokoi, T. Halothane-induced liver injury is mediated by interleukin-17 in mice. Toxicol. Sci., 2009, 111(2), 302-310.
[http://dx.doi.org/10.1093/toxsci/kfp165] [PMID: 19633216]
[139]
Lunam, C.A.; Hall, P.M.; Cousins, M.J. The pathology of halothane hepatotoxicity in a guinea-pig model: a comparison with human halothane hepatitis. Br. J. Exp. Pathol., 1989, 70(5), 533-541.
[PMID: 2818932]
[140]
Tanaka, Y.; Takahashi, A.; Watanabe, K.; Takayama, K.; Yahata, T.; Habu, S.; Nishimura, T. A pivotal role of IL-12 in Th1-dependent mouse liver injury. Int. Immunol., 1996, 8(4), 569-576.
[http://dx.doi.org/10.1093/intimm/8.4.569] [PMID: 8671644]
[141]
Mizuhara, H.; Kuno, M.; Seki, N.; Yu, W.G.; Yamaoka, M.; Yamashita, M.; Ogawa, T.; Kaneda, K.; Fujii, T.; Senoh, H.; Fujiwara, H. Strain difference in the induction of T-cell activation-associated, interferon gamma-dependent hepatic injury in mice. Hepatology, 1998, 27(2), 513-519.
[http://dx.doi.org/10.1002/hep.510270227] [PMID: 9462651]
[142]
Masubuchi, Y.; Sugiyama, S.; Horie, T. Th1/Th2 cytokine balance as a determinant of acetaminophen-induced liver injury. Chem. Biol. Interact., 2009, 179(2-3), 273-279.
[http://dx.doi.org/10.1016/j.cbi.2008.10.028] [PMID: 19014921]
[143]
Zhu, J.; Paul, W.E. CD4 T cells: fates, functions, and faults. Blood, 2008, 112(5), 1557-1569.
[http://dx.doi.org/10.1182/blood-2008-05-078154] [PMID: 18725574]
[144]
Rezzani, R. Cyclosporine A and adverse effects on organs: histochemical studies. Prog. Histochem. Cytochem., 2004, 39(2), 85-128.
[http://dx.doi.org/10.1016/j.proghi.2004.04.001] [PMID: 15354618]
[145]
Akool, S.; Doller, A.; Babelova, A.; Tsalastra, W.; Moreth, K.; Schaefer, L.; Pfeilschifter, J.; Eberhardt, W. Molecular mechanisms of TGF β receptor-triggered signaling cascades rapidly induced by the calcineurin inhibitors cyclosporin A and FK506. J. Immunol., 2008, 181(4), 2831-2845.
[http://dx.doi.org/10.4049/jimmunol.181.4.2831] [PMID: 18684975]
[146]
Berg, K.J.; Førre, O.; Bjerkhoel, F.; Amundsen, E.; Djøseland, O.; Rugstad, H.E.; Westre, B. Side effects of cyclosporin A treatment in patients with rheumatoid arthritis. Kidney Int., 1986, 29(6), 1180-1187.
[http://dx.doi.org/10.1038/ki.1986.125] [PMID: 3528611]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 11
Year: 2019
Page: [867 - 879]
Pages: 13
DOI: 10.2174/1389200220666191105121653
Price: $65

Article Metrics

PDF: 43
HTML: 4