Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Toxicity Mechanism of Gadolinium Oxide Nanoparticles and Gadolinium Ions in Human Breast Cancer Cells

Author(s): Mohd Javed Akhtar*, Maqusood Ahamed, Hisham Alhadlaq and Salman Alrokayan

Volume 20, Issue 11, 2019

Page: [907 - 917] Pages: 11

DOI: 10.2174/1389200220666191105113754

Price: $65

Abstract

Background: Due to the potential advantages of Gadolinium Nanoparticles (NPs) over gadolinium elements, gadolinium based NPs are currently being explored in the field of MRI. Either in elemental form or nanoparticulate form, gadolinium toxicity is believed to occur due to the deposition of gadolinium ion (designated as Gd3+ ion or simply G ion).

Objective: There is a serious lack of literature on the mechanisms of toxicity caused by either gadolinium-based NPs or ions. Breast cancer tumors are often subjected to MRIs, therefore, human breast cancer (MCF-7) cells could serve as an appropriate in vitro model for the study of Gadolinium Oxide (GO) NP and G ion.

Methods: Cytotoxicity and oxidative damage was determined by quantifying cell viability, cell membrane damage, and Reactive Oxygen Species (ROS). Intracellular Glutathione (GSH) was measured along with cellular Total Antioxidant Capacity (TAC). Autophagy was determined by using Monodansylcadaverine (MDC) and Lysotracker Red (LTR) dyes in tandem. Mitochondrial Membrane Potential (MMP) was measured by JC-1 fluorescence. Physicochemical properties of GO NPs were characterized by field emission transmission electron microscopy, X-ray diffraction, and energy dispersive spectrum.

Results: A time- and concentration-dependent toxicity and oxidative damage was observed due to GO NPs and G ions. Bax/Bcl2 ratios, FITC-7AAD double staining, and cell membrane blebbing in phase-contrast images all suggested different modes of cell death induced by NPs and ions.

Conclusion: In summary, cell death induced by GO NPs with high aspect ratio favored apoptosis-independent cell death, whereas G ions favored apoptosis-dependent cell death.

Keywords: Gd2O3 NPs, Gd3+ ion, Glutathione (GSH), Reactive Oxygen Species (ROS), autophagosome, apoptosis.

Graphical Abstract
[1]
Huang, H.; Lovell, J.F. Advanced functional nanomaterials for theranostics. Adv. Funct. Mater., 2017, 27(2)1603524
[http://dx.doi.org/10.1002/adfm.201603524] [PMID: 28824357]
[2]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alrokayan, S.A.; Kumar, S. Targeted anticancer therapy: Overexpressed receptors and nanotechnology. Clin. Chim. Acta, 2014, 436, 78-92.
[http://dx.doi.org/10.1016/j.cca.2014.05.004] [PMID: 24836529]
[3]
Li, C. A targeted approach to cancer imaging and therapy. Nat. Mater., 2014, 13(2), 110-115.
[http://dx.doi.org/10.1038/nmat3877] [PMID: 24452345]
[4]
Sharma, R.; Mody, N.; Agrawal, U.; Vyas, S.P. Theranostic nanomedicine: A next generation platform for cancer diagnosis and therapy. Mini Rev. Med. Chem., 2017, 17(18), 1746-1757.
[http://dx.doi.org/10.2174/1389557516666160219122524] [PMID: 26891932]
[5]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(4), 802-813.
[http://dx.doi.org/10.1016/j.bbagen.2017.01.018] [PMID: 28115205]
[6]
Ma, X.; Zhao, Y.; Liang, X.J. Theranostic nanoparticles engineered for clinic and pharmaceutics. Acc. Chem. Res., 2011, 44(10), 1114-1122.
[http://dx.doi.org/10.1021/ar2000056] [PMID: 21732606]
[7]
Anishur Rahman, A.T.M.; Majewski, P.; Vasilev, K. Gd2O3 nanoparticles: Size-dependent nuclear magnetic resonance. Contrast Media Mol. Imaging, 2013, 8(1), 92-95.
[http://dx.doi.org/10.1002/cmmi.1481] [PMID: 23109397]
[8]
Evanics, F.; Diamente, P.R.; Van Veggel, F.C.J.M.; Stanisz, G.J.; Prosser, R.S. Water-soluble GdF3 and GdF3/LaF3 nanoparticles-physical characterization and NMR relaxation properties. Chem. Mater., 2006, 18(10), 2499-2505.
[http://dx.doi.org/10.1021/cm052299w]
[9]
Dumont, M.F.; Baligand, C.; Li, Y.; Knowles, E.S.; Meisel, M.W.; Walter, G.A.; Talham, D.R. DNA surface modified gadolinium phosphate nanoparticles as MRI contrast agents. Bioconjug. Chem., 2012, 23(5), 951-957.
[http://dx.doi.org/10.1021/bc200553h] [PMID: 22462809]
[10]
Olchowy, C.; Cebulski, K.; Łasecki, M.; Chaber, R.; Olchowy, A.; Kałwak, K.; Zaleska-Dorobisz, U. The presence of the gadolinium-based contrast agent depositions in the brain and symptoms of gadolinium neurotoxicity- A systematic review. PLoS One, 2017, 12(2)e0171704
[http://dx.doi.org/10.1371/journal.pone.0171704] [PMID: 28187173]
[11]
Rogowska, J.; Olkowska, E.; Ratajczyk, W.; Wolska, L. Gadolinium as a new emerging contaminant of aquatic environments. Environ. Toxicol. Chem., 2018, 37(6), 1523-1534.
[http://dx.doi.org/10.1002/etc.4116] [PMID: 29473658]
[12]
Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. Biometals, 2016, 29(3), 365-376.
[http://dx.doi.org/10.1007/s10534-016-9931-7] [PMID: 27053146]
[13]
Kuo, Y.T.; Chen, C.Y.; Liu, G.C.; Wang, Y.M. Development of bifunctional gadolinium-labeled superparamagnetic nanoparticles (Gd-MnMEIO) for in vivo MR Imaging of the liver in an animal model. PLoS One, 2016, 11(2)e0148695
[http://dx.doi.org/10.1371/journal.pone.0148695] [PMID: 26886558]
[14]
Marangoni, V.S.; Neumann, O.; Henderson, L.; Kaffes, C.C.; Zhang, H.; Zhang, R.; Bishnoi, S.; Ayala-Orozco, C.; Zucolotto, V.; Bankson, J.A.; Nordlander, P.; Halas, N.J. Enhancing T1 magnetic resonance imaging contrast with internalized gadolinium(III) in a multilayer nanoparticle. Proc. Natl. Acad. Sci. USA, 2017, 114(27), 6960-6965.
[http://dx.doi.org/10.1073/pnas.1701944114] [PMID: 28630340]
[15]
Dixit, S.; Das, M.; Alwarappan, S.; Goicochea, N.L.; Howell, M.; Mohapatra, S.; Mohapatra, S. Phospholipid micelle encapsulated gadolinium oxide nanoparticles for imaging and gene delivery. RSC Advances, 2013, 3(8), 2727-2735.
[http://dx.doi.org/10.1039/c2ra22293k] [PMID: 24724012]
[16]
Clauser, P.; Helbich, T.H.; Kapetas, P.; Pinker, K.; Bernathova, M.; Woitek, R.; Kaneider, A.; Baltzer, P.A.T. Breast lesion detection and characterization with contrast-enhanced magnetic resonance imaging: Prospective randomized intraindividual comparison of gadoterate meglumine (0.15 mmol/kg) and gadobenate dimeglumine (0.075 mmol/kg) at 3T. J. Magn. Reson. Imaging, 2019, 49(4), 1157-1165.
[http://dx.doi.org/10.1002/jmri.26335] [PMID: 30552829]
[17]
Ibrahim, M.A.; Dublin, A.B. Magnetic Resonance Imaging (MRI) gadolinium. StatPearls [Internet], 2019.https://www.ncbi.nlm.nih.gov/books/NBK482487/
[18]
Kramer, J.H.; Arnoldi, E.; François, C.J.; Wentland, A.L.; Nikolaou, K.; Wintersperger, B.J.; Grist, T.M. Dynamic and static magnetic resonance angiography of the supra-aortic vessels at 3.0 T: Intraindividual comparison of gadobutrol, gadobenate dimeglumine, and gadoterate meglumine at equimolar dose. Invest. Radiol., 2013, 48(3), 121-128.
[http://dx.doi.org/10.1097/RLI.0b013e31827752b4] [PMID: 23211552]
[19]
Scott, L.J. Gadobutrol: A review in contrast-enhanced MRI and MRA. Clin. Drug Investig., 2018, 38(8), 773-784.
[http://dx.doi.org/10.1007/s40261-018-0674-9] [PMID: 30006819]
[20]
Carbonaro, L.A.; Pediconi, F.; Verardi, N.; Trimboli, R.M.; Calabrese, M.; Sardanelli, F. Breast MRI using a high-relaxivity contrast agent: An overview. AJR Am. J. Roentgenol., 2011, 196(4), 942-955.
[http://dx.doi.org/10.2214/AJR.10.4974] [PMID: 21427349]
[21]
Van Der Zande, M.; Undas, A.K.; Kramer, E.; Monopoli, M.P.; Peters, R.J.; Garry, D.; Antunes Fernandes, E.C.; Hendriksen, P.J.; Marvin, H.J.P.; Peijnenburg, A.A.; Bouwmeester, H. Different responses of Caco-2 and MCF-7 cells to silver nanoparticles are based on highly similar mechanisms of action. Nanotoxicology, 2016, 10(10), 1431-1441.
[http://dx.doi.org/10.1080/17435390.2016.1225132] [PMID: 27597447]
[22]
Ma, X.; Gong, N.; Zhong, L.; Sun, J.; Liang, X.J. Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials, 2016, 97, 10-21.
[http://dx.doi.org/10.1016/j.biomaterials.2016.04.026] [PMID: 27155363]
[23]
Man, N.; Yu, L.; Yu, S.H.; Wen, L.P. Rare earth oxide nanocrystals as a new class of autophagy inducers. Autophagy, 2010, 6(2), 310-311.
[http://dx.doi.org/10.4161/auto.6.2.11138] [PMID: 20104026]
[24]
Murdock, R.C.; Braydich-Stolle, L.; Schrand, A.M.; Schlager, J.J.; Hussain, S.M. Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol. Sci., 2008, 101(2), 239-253.
[http://dx.doi.org/10.1093/toxsci/kfm240] [PMID: 17872897]
[25]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[26]
Welder, A.A.; Grant, R.; Bradlaw, J.; Acosta, D. A primary culture system of adult rat heart cells for the study of toxicologic agents. In Vitro Cell. Dev. Biol., 1991, 27A(12), 921-926.
[http://dx.doi.org/10.1007/BF02631118] [PMID: 1757397]
[27]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[28]
Aranda, A.; Sequedo, L.; Tolosa, L.; Quintas, G.; Burello, E.; Castell, J.V.; Gombau, L. Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicol. In Vitro, 2013, 27(2), 954-963.
[http://dx.doi.org/10.1016/j.tiv.2013.01.016] [PMID: 23357416]
[29]
Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 1976, 74(1), 214-226.
[http://dx.doi.org/10.1016/0003-2697(76)90326-2] [PMID: 962076]
[30]
Oh, M.; Choi, I.K.; Kwon, H.J. Inhibition of histone deacetylase1 induces autophagy. Biochem. Biophys. Res. Commun., 2008, 369(4), 1179-1183.
[http://dx.doi.org/10.1016/j.bbrc.2008.03.019] [PMID: 18342621]
[31]
Munafó, D.B.; Colombo, M.I. A novel assay to study autophagy: Regulation of autophagosome vacuole size by amino acid deprivation. J. Cell Sci., 2001, 114(Pt 20), 3619-3629.
[PMID: 11707514]
[32]
Smiley, S.T.; Reers, M.; Mottola-Hartshorn, C.; Lin, M.; Chen, A.; Smith, T.W.; Steele, G.D., Jr; Chen, L.B. Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc. Natl. Acad. Sci. USA, 1991, 88(9), 3671-3675.
[http://dx.doi.org/10.1073/pnas.88.9.3671] [PMID: 2023917]
[33]
Paul-Samojedny, M.; Kokocińska, D.; Samojedny, A.; Mazurek, U.; Partyka, R.; Lorenz, Z.; Wilczok, T. Expression of cell survival/death genes: Bcl-2 and Bax at the rate of colon cancer prognosis. Biochim. Biophys. Acta, 2005, 1741(1-2), 25-29.
[http://dx.doi.org/10.1016/j.bbadis.2004.11.021] [PMID: 15955446]
[34]
Ahamed, M.; Akhtar, M.J.; Siddiqui, M.A.; Ahmad, J.; Musarrat, J.; Al-Khedhairy, A.A.; AlSalhi, M.S.; Alrokayan, S.A. Oxidative stress mediated apoptosis induced by nickel ferrite nanoparticles in cultured A549 cells. Toxicology, 2011, 283(2-3), 101-108.
[http://dx.doi.org/10.1016/j.tox.2011.02.010] [PMID: 21382431]
[35]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[36]
Adams, J.M. Ways of dying: Multiple pathways to apoptosis. Genes Dev., 2003, 17(20), 2481-2495.
[http://dx.doi.org/10.1101/gad.1126903] [PMID: 14561771]
[37]
Nikoletopoulou, V.; Markaki, M.; Palikaras, K.; Tavernarakis, N. Crosstalk between apoptosis, necrosis and autophagy. Biochim. Biophys. Acta, 2013, 1833(12), 3448-3459.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.001] [PMID: 23770045]
[38]
Rogalińska, M. Alterations in cell nuclei during apoptosis. Cell. Mol. Biol. Lett., 2002, 7(4), 995-1018.
[PMID: 12511968]
[39]
Toné, S.; Sugimoto, K.; Tanda, K.; Suda, T.; Uehira, K.; Kanouchi, H.; Samejima, K.; Minatogawa, Y.; Earnshaw, W.C. Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp. Cell Res., 2007, 313(16), 3635-3644.
[http://dx.doi.org/10.1016/j.yexcr.2007.06.018] [PMID: 17643424]
[40]
Rivera-Gil, P.; Jimenez de Aberasturi, D.; Wulf, V.; Pelaz, B.; del Pino, P.; Zhao, Y.; De La Fuente, J.M.; Ruiz De Larramendi, I.; Rojo, T.; Liang, X.J.; Parak, W.J. The challenge to relate the physicochemical properties of colloidal nanoparticles to their cytotoxicity. Acc. Chem. Res., 2013, 46(3), 743-749.
[http://dx.doi.org/10.1021/ar300039j] [PMID: 22786674]
[41]
Rodriguez-Liviano, S.; Nuñez, N.O.; Rivera-Fernández, S.; De La Fuente, J.M.; Ocaña, M. Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous Eu:GdF3 nanoparticles for biomedical applications. Langmuir, 2013, 29(10), 3411-3418.
[http://dx.doi.org/10.1021/la4001076] [PMID: 23402647]
[42]
Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev., 2015, 44(17), 6287-6305.
[http://dx.doi.org/10.1039/C4CS00487F] [PMID: 26056687]
[43]
Stefančíková, L.; Porcel, E.; Eustache, P.; Li, S.; Salado, D.; Marco, S.; Guerquin-Kern, J.L.; Réfrégiers, M.; Tillement, O.; Lux, F.; Lacombe, S. Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol., 2014, 5(1), 6.
[http://dx.doi.org/10.1186/s12645-014-0006-6] [PMID: 25328549]
[44]
Sato, T.; Ito, K.; Tamada, T.; Kanki, A.; Watanabe, S.; Nishimura, H.; Tanimoto, D.; Higashi, H.; Yamamoto, A. Tissue gadolinium deposition in renally impaired rats exposed to different gadolinium-based MRI contrast agents: Evaluation with inductively coupled plasma mass spectrometry (ICP-MS). Magn. Reson. Imaging, 2013, 31(8), 1412-1417.
[http://dx.doi.org/10.1016/j.mri.2013.03.025] [PMID: 23643157]
[45]
Delfino, R.; Biasotto, M.; Candido, R.; Altissimo, M.; Stebel, M.; Salomè, M.; Van Elteren, J.T.; Vogel Mikuš, K.; Zennaro, C.; Šala, M.; Addobbati, R.; Tromba, G.; Pascolo, L. Gadolinium tissue deposition in the periodontal ligament of mice with reduced renal function exposed to Gd-based contrast agents. Toxicol. Lett., 2019, 301, 157-167.
[http://dx.doi.org/10.1016/j.toxlet.2018.11.014] [PMID: 30476537]
[46]
Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev., 1999, 99(9), 2293-2352.
[http://dx.doi.org/10.1021/cr980440x] [PMID: 11749483]
[47]
Guo, B.J.; Yang, Z.L.; Zhang, L.J. Gadolinium deposition in brain: Current scientific evidence and future perspectives. Front. Mol. Neurosci., 2018, 11, 335.
[http://dx.doi.org/10.3389/fnmol.2018.00335] [PMID: 30294259]
[48]
Siega, P.; Wuerges, J.; Arena, F.; Gianolio, E.; Fedosov, S.N.; Dreos, R.; Geremia, S.; Aime, S.; Randaccio, L. Release of toxic Gd3+ ions to tumour cells by vitamin B12 bioconjugates. Chemistry, 2009, 15(32), 7980-7989.
[http://dx.doi.org/10.1002/chem.200802680] [PMID: 19562781]
[49]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[50]
Scherz-Shouval, R.; Elazar, Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci., 2011, 36(1), 30-38.
[http://dx.doi.org/10.1016/j.tibs.2010.07.007] [PMID: 20728362]
[51]
Abrikossova, N.; Skoglund, C.; Ahrén, M.; Bengtsson, T.; Uvdal, K. Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes. Nanotechnology, 2012, 23(27)275101
[http://dx.doi.org/10.1088/0957-4484/23/27/275101] [PMID: 22706406]
[52]
Seo, S.J.; Han, S.M.; Cho, J.H.; Hyodo, K.; Zaboronok, A.; You, H.; Peach, K.; Hill, M.A.; Kim, J.K. Enhanced production of reactive oxygen species by gadolinium oxide nanoparticles under core-inner-shell excitation by proton or monochromatic X-ray irradiation: Implication of the contribution from the interatomic de-excitation-mediated nanoradiator effect to dose enhancement. Radiat. Environ. Biophys., 2015, 54(4), 423-431.
[http://dx.doi.org/10.1007/s00411-015-0612-7] [PMID: 26242374]
[53]
Weng, T.I.; Chen, H.J.; Lu, C.W.; Ho, Y.C.; Wu, J.L.; Liu, S.H.; Hsiao, J.K. Exposure of macrophages to low-dose gadolinium-based contrast medium: Impact on oxidative stress and cytokines production. Contrast Media Mol. Imaging, 2018, 20183535769
[http://dx.doi.org/10.1155/2018/3535769] [PMID: 30627059]
[54]
Kowaltowski, A.J.; Vercesi, A.E. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med., 1999, 26(3-4), 463-471.
[http://dx.doi.org/10.1016/S0891-5849(98)00216-0] [PMID: 9895239]
[55]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alrokayan, S.A. MgO nanoparticles cytotoxicity caused primarily by GSH depletion in human lung epithelial cells. J. Trace Elem. Med. Biol., 2018, 50, 283-290.
[http://dx.doi.org/10.1016/j.jtemb.2018.07.016] [PMID: 30262293]
[56]
Akhtar, M.J.; Ahamed, M.; Alhadlaq, H.A.; Alshamsan, A. Nanotoxicity of cobalt induced by oxidant generation and glutathione depletion in MCF-7 cells. Toxicol. In Vitro, 2017, 40, 94-101.
[http://dx.doi.org/10.1016/j.tiv.2016.12.012] [PMID: 28024936]
[57]
Mohammadinejad, R.; Moosavi, M.A.; Tavakol, S.; Vardar, D.Ö.; Hosseini, A.; Rahmati, M.; Dini, L.; Hussain, S.; Mandegary, A.; Klionsky, D.J. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy, 2019, 15(1), 4-33.
[http://dx.doi.org/10.1080/15548627.2018.1509171] [PMID: 30160607]
[58]
Lin, J.; Shi, S.S.; Zhang, J.Q.; Zhang, Y.J.; Zhang, L.; Liu, Y.; Jin, P.P.; Wei, P.F.; Shi, R.H.; Zhou, W.; Wen, L.P. Giant cellular vacuoles induced by rare earth oxide nanoparticles are abnormally enlarged endo/lysosomes and promote mTOR-dependent TFEB nucleus translocation. Small, 2016, 12(41), 5759-5768.
[http://dx.doi.org/10.1002/smll.201601903] [PMID: 27593892]
[59]
Henriques, B.; Coppola, F.; Monteiro, R.; Pinto, J.; Viana, T.; Pretti, C.; Soares, A.; Freitas, R.; Pereira, E. Toxicological assessment of anthropogenic gadolinium in seawater: Biochemical effects in mussels Mytilus galloprovincialis. Sci. Total Environ., 2019, 664, 626-634.
[http://dx.doi.org/10.1016/j.scitotenv.2019.01.341] [PMID: 30763843]
[60]
Lu, M.; Gong, X. Upstream Reactive Oxidative Species (ROS) signals in exogenous oxidative stress-induced mitochondrial dysfunction. Cell Biol. Int., 2009, 33(6), 658-664.
[http://dx.doi.org/10.1016/j.cellbi.2009.03.009] [PMID: 19376252]
[61]
Lee, J.; Giordano, S.; Zhang, J. Autophagy, mitochondria and oxidative stress: Cross-talk and redox signalling. Biochem. J., 2012, 441(2), 523-540.
[http://dx.doi.org/10.1042/BJ20111451] [PMID: 22187934]
[62]
Alarifi, S.; Ali, H.; Alkahtani, S.; Alessia, M.S. Regulation of apoptosis through bcl-2/bax proteins expression and DNA damage by nano-sized gadolinium oxide. Int. J. Nanomedicine, 2017, 12, 4541-4551.
[http://dx.doi.org/10.2147/IJN.S139326] [PMID: 28684914]
[63]
Niquet, J.; Baldwin, R.A.; Allen, S.G.; Fujikawa, D.G.; Wasterlain, C.G. Hypoxic neuronal necrosis: Protein synthesis-independent activation of a cell death program. Proc. Natl. Acad. Sci. USA, 2003, 100(5), 2825-2830.
[http://dx.doi.org/10.1073/pnas.0530113100] [PMID: 12606726]
[64]
Hou, L.; Liu, K.; Li, Y.; Ma, S.; Ji, X.; Liu, L. Necrotic pyknosis is a morphologically and biochemically distinct event from apoptotic pyknosis. J. Cell Sci., 2016, 129(16), 3084-3090.
[http://dx.doi.org/10.1242/jcs.184374] [PMID: 27358477]
[65]
Zhao, J.; Zhou, Z.Q.; Jin, J.C.; Yuan, L.; He, H.; Jiang, F.L.; Yang, X.G.; Dai, J.; Liu, Y. Mitochondrial dysfunction induced by different concentrations of gadolinium ion. Chemosphere, 2014, 100, 194-199.
[http://dx.doi.org/10.1016/j.chemosphere.2013.11.031] [PMID: 24321333]
[66]
Tsai, Y.F.; Huang, C.W.; Chiang, J.H.; Tsai, F.J.; Hsu, Y.M.; Lu, C.C.; Hsiao, C.Y.; Yang, J.S. Gadolinium chloride elicits apoptosis in human osteosarcoma U-2 OS cells through extrinsic signaling, intrinsic pathway and endoplasmic reticulum stress. Oncol. Rep., 2016, 36(6), 3421-3426.
[http://dx.doi.org/10.3892/or.2016.5174] [PMID: 27748868]
[67]
Zhang, Y.; Chen, X.; Gueydan, C.; Han, J. Plasma membrane changes during programmed cell deaths. Cell Res., 2018, 28(1), 9-21.
[http://dx.doi.org/10.1038/cr.2017.133] [PMID: 29076500]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy