Synthesis, Biological Evaluation and Molecular Docking Studies of Novel Di-hydropyridine Analogs as Potent Antioxidants

Author(s): Saddala Madhu Sudhana, Pradeepkiran Jangampalli Adi*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 29 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aim: The aim of this study is to synthesize, characterize and biological evaluation of 3-ethyl 5- methyl2-(2-aminoethoxy)-4-(2-chlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylate derivatives.

Background: An efficient synthesis of two series of novel carbamate and sulfonamide derivatives of amlodipine, 3-ethyl 5-methyl 2-(2-aminoethoxy)-4-(2-chlorophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (amlodipine) 1 were chemical synthesized process.

Materials & Methods: In this process, various chloroformates 2(a-e) and sulfonyl chlorides 4(a-e) on reaction with 1 in the presence of N,N–dimethylpiperazine as a base in THF at 50-550 oC, the corresponding title compounds 3(a-e) and 5(a-e) in high yields. Furthermore, the compounds 3(a-e) and 5(a-e) were evaluated for antioxidant activity (DPPH method), metal chelating activity, hemolytic activity, antioxidant assay (ABTS method), cytotoxicity, molecular docking and in silico ADMET properties.

Results: Results revealed that 5a, 5e, 3d, 3a and 5c exhibited high antioxidant, metal chelating activities, but 5a, 5e and 3d exhibited low activity. The molecular docking studies and ADMET of suggested ligands showed the best binding energies and non-toxic properties.

Conclusion: The present in silico and in vitro evaluations suggested that these dihydropyridine derivatives act as potent antioxidants and chelating agents which may be useful in treating metals induced oxidative stress associated diseases.

Keywords: Synthesis, Docking, DHP, Amlodipine, NMR, Cytotoxicity assay, Potent antioxidant.

[1]
Müller, G. Medicinal chemistry of target family-directed masterkeys. Drug Discov. Today, 2003, 8(15), 681-691.
[http://dx.doi.org/10.1016/S1359-6446(03)02781-8] [PMID: 12927511]
[2]
Medina-Franco, J.L.; Giulianotti, M.A.; Welmaker, G.S.; Houghten, R.A.; Richard, A.H. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today, 2013, 18(9-10), 495-501.
[http://dx.doi.org/10.1016/j.drudis.2013.01.008] [PMID: 23340113]
[3]
Siragy, H.M.; Bedigian, M. Mechanism of action of angiotensin-receptor blocking agents. Curr. Hypertens. Rep., 1999, 1(4), 289-295.
[http://dx.doi.org/10.1007/s11906-999-0036-3] [PMID: 10981080]
[4]
Morimoto, S.; Takahashi, N.; Morita, T.; Someya, K.; Toyoda, N.; Iwasaka, T. Critical appraisal and pooled analysis of telmisartan alone or in combination with hydrochlorothiazide for achieving blood pressure goals. Integr. Blood Press. Control, 2010, 3, 73-79.
[http://dx.doi.org/10.2147/IBPC.S9325] [PMID: 21949623]
[5]
Fagard, R.H. Dihydropyridines and the treatment of hypertension. J. Clin Basic Cardiol, 1999, 2(2), 163-166.
[6]
Hadi, M.A.; Jumaili, A.L. Synthesis, Characterization, Docking Studies And Bio-Efficacy Evaluation of Novel 1,4-Dihydropyridine Derivatives. Int. J. Sci. Res. (Ahmedabad), 2014, 3(10), 66-69.
[7]
Donkor, I.O.; Zhou, X.; Schmidt, J.; Agrawal, K.C.; Kishore, V. Synthesis and radioprotective effects of adamantyl substituted 1,4-dihydropyridine derivatives. Bioorg. Med. Chem., 1998, 6(5), 563-568.
[http://dx.doi.org/10.1016/S0968-0896(98)00017-0] [PMID: 9629469]
[8]
Godfraind, T.; Miller, R.; Wibo, M. Calcium antagonism and calcium entry blockade. Pharmacol. Rev., 1986, 38(4), 321-416.
[PMID: 2432624]
[9]
Boer, R.; Gekeler, V. Chemosensitizer in tumor therapy: new compounds promise better efficacy. Dru Fut, 1995, 20, 499.
[10]
Pramanik, A.; Saha, M.; Bhar, S. “On-water” catalyst-free ecofriendly synthesis of the hantzsch dihydropyridines. ISRN Org. Chem., 2012, 2012342738
[http://dx.doi.org/10.5402/2012/342738] [PMID: 24052841]
[11]
Kumar, R.S.; Idhayadhulla, A.; Nasser, A.J.A.; Selvin, J. Synthesis and antimicrobial activity of a new series of 1,4-dihydropyridine derivatives. J. Serb. Chem. Soc., 2011, 76(1), 1-11.
[http://dx.doi.org/10.2298/JSC091127003K]
[12]
Prakash, O.; Hussain, K.; Kumar, R.; Wadhwa, D.; Sharma, C.; Aneja, K.R. Synthesis and antimicrobial evaluation of new 1,4-dihydro-4-pyrazolylpyridines and 4-pyrazolylpyridines. Org. Med. Chem. Lett., 2011, 1(1), 5-9.
[http://dx.doi.org/10.1186/2191-2858-1-5] [PMID: 22373350]
[13]
Swarnalatha, G.; Prasanthi, G.; Sirisha, N.; Madhusudhana, C.C. 1,4-Dihydropyridines: a multtifunctional molecule: a review. Int. J. Chemtech Res., 2011, 3(1), 75-89.
[14]
Trivedi, A.; Dodiya, D.; Dholariya, B.; Kataria, V.; Bhuva, V.; Shah, V. Synthesis and biological evaluation of some novel 1,4-dihydropyridines as potential antitubercular agents. Chem. Biol. Drug Des., 2011, 78(5), 881-886.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01233.x] [PMID: 21895982]
[15]
Kharkar, P.S.; Desai, B.; Gaveria, H.; Varu, B.; Loriya, R.; Naliapara, Y.; Shah, A.; Kulkarni, V.M. Three-dimensional quantitative structure-activity relationship of 1,4-dihydropyridines as antitubercular agents. J. Med. Chem., 2002, 45(22), 4858-4867.
[http://dx.doi.org/10.1021/jm020217z] [PMID: 12383011]
[16]
Gattinoni, S.; Simone, C.D.; Dallavalle, S.; Fezza, F.; Nannei, R.; Battista, N.; Minetti, P.; Quattrociocchi, G.; Caprioli, A.; Borsini, F.; Cabri, W.; Penco, S.; Merlini, L.; Maccarrone, M. A new group of oxime carbamates as reversible inhibitors of fatty acid amide hydrolase. Bioorg. Med. Chem. Lett., 2010, 20(15), 4406-4411.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.050] [PMID: 20591666]
[17]
Tundo, P.; McElroy, C.R.; Arico, F. Synthesis of carbamates from amines and dialkyl carbonates: Influence of leaving and entering groups. Synlett, 2010, 10, 1567-1571.
[http://dx.doi.org/10.1055/s-0029-1219927]
[18]
Coyne, C.P.; Jones, T.; Pharr, T. Synthesis of a covalent gemcitabine-(carbamate)-[anti-HER2/neu] immunochemotherapeutic and its cytotoxic anti-neoplastic activity against chemotherapeutic-resistant SKBr-3 mammary carcinoma. Bioorg. Med. Chem., 2011, 19(1), 67-76.
[http://dx.doi.org/10.1016/j.bmc.2010.11.046] [PMID: 21169024]
[19]
Hur, M.Y.; Ahn, M.K.; Seo, S.H. Chlorphenesin carbomate.The korean college of Pharmacy Association; The Korean Pharmacopeia; Seoul, Korea: Shinil Books Co. Ltd, 2003.
[20]
Jin, G.H.; Lee, H.J.; Gim, H.J.; Ryu, J.H.; Jeon, R. Design and synthesis of carbamate and thiocarbamate derivatives and their inhibitory activities of NO production in LPS activated macrophages. Bioorg. Med. Chem. Lett., 2012, 22(9), 3301-3304.
[http://dx.doi.org/10.1016/j.bmcl.2012.03.010] [PMID: 22475560]
[21]
Chandra, T.; Garg, N. Synthesis of sulpha drug quinazolin -4-one derivatives and their evaluation for anti-inflammatory activity. World J. Chem., 2009, 4, 210-218.
[22]
Olliaro, P. Mode of action and mechanisms of resistance for antimalarial drugs. Pharmacol. Ther., 2001, 89(2), 207-219.
[http://dx.doi.org/10.1016/S0163-7258(00)00115-7] [PMID: 11316521]
[23]
Hasegawa, T.; Yamamoto, H. A practical synthesis of optically active (R)-2-propyloctanoic acid: Therapeutic agent for Alzheimer’s disease. Bull. Chem. Soc. Jpn., 2000, 73, 423-428.
[http://dx.doi.org/10.1246/bcsj.73.423]
[24]
Hanson, P.R.; Probst, D.A.; Robinson, R.E.; Yau, M. Cyclic sulfonamides via the ring-closing metathesis reaction. Tetrahedron Lett., 1999, 40, 4761-4764.
[http://dx.doi.org/10.1016/S0040-4039(99)00878-3]
[25]
Ogden, R.C.; Flexner, C.W. Protease inhibitors in AIDS therapy. Marcel Dekker, Ed.; Inc.; New York, 2001, pp. 101-118.
[26]
Nishimori, I.; Vullo, D.; Innocenti, A.; Scozzafava, A.; Mastrolorenzo, A.; Supuran, C.T. Carbonic anhydrase inhibitors: inhibition of the transmembrane isozyme XIV with sulfonamides. Bioorg. Med. Chem. Lett., 2005, 15(17), 3828-3833.
[http://dx.doi.org/10.1016/j.bmcl.2005.06.055] [PMID: 16039848]
[27]
Qin, H.; Yamagiwa, N.; Matsunaga, S.; Shibasaki, M. Bismuth- and hafnium-catalyzed hydroamination of vinyl arenes with sulfonamides, carbamates, and carboxamides. Chem. Asian J., 2007, 2(1), 150-154.
[http://dx.doi.org/10.1002/asia.200600284] [PMID: 17441148]
[28]
Hu, L.; Li, Z.R.; Wang, Y.M.; Wu, Y.; Jiang, J.D.; Boykin, D.W. Novel pyridinyl and pyrimidinylcarbazole sulfonamides as antiproliferative agents. Bioorg. Med. Chem. Lett., 2007, 17(5), 1193-1196.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.034] [PMID: 17197178]
[29]
Govindasamy, L.; Rajakannan, V.; Velmurugan, D.; Mohanakrishnan, A.K.; Srinivasan, P.C. Crystal structure of 3-hydroxy methyl 4,6-dimethoxy-9-phenylsulfonyl-carbazole. Cryst. Res. Technol., 2003, 38(2), 182-192.
[http://dx.doi.org/10.1002/crat.200310021]
[30]
Barnes, D.M.; Barkalow, J.; Plata, D.J. A facile method for the preparation of MOM-protected carbamates. Org. Lett., 2009, 11(2), 273-275.
[http://dx.doi.org/10.1021/ol8022769] [PMID: 19072629]
[31]
Hatano, T.; Kagawa, H.; Yasuhara, T.; Okuda, T. Two new flavonoids and other constituents in licore root: their relative astringency and radical scavenging affects. Chem. Pharm. Bull. (Tokyo), 1988, 36, 1090-2097.
[http://dx.doi.org/10.1248/cpb.36.2090]
[32]
Bendiabdellah, A.; Mohammed, E.A.D.; Meliani, N.; Djabou, N.; Allali, H.; Tabti, B. Preliminary phytochemical screening and antioxidant activities of solvent extracts from Daucus crinitus Desf., from Algeria. J. Appl. Pharm. Sci., 2012, 2(7), 92-95.
[33]
Miller, N.J.; Rice-Evans, C.A. Factors influencing the antioxidant activity determined by the ABTS.+ radical cation assay. Free Radic. Res., 1997, 26(3), 195-199.
[http://dx.doi.org/10.3109/10715769709097799] [PMID: 9161842]
[34]
Halliwell, B. Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am. J. Med., 1991, 91(3C), 14S-22S.
[http://dx.doi.org/10.1016/0002-9343(91)90279-7] [PMID: 1928205]
[35]
Revathy, T.; Jayasri, M.A.; Suthindhiran, K. Anti-oxidant and enzyme-inhibitory potential of marine streptomyces. Am. J. Biochem. Biotechnol., 2013, 9(3), 282-290.
[http://dx.doi.org/10.3844/ajbbsp.2013.282.290]
[36]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[37]
Dolly, A.; Griffiths, J.B. Cell and tissue culture for medical research; John Wiley & Sons: New York, 2000.
[38]
Madhu, S.S.; Obaiah, J.; Usha, R.A. Identification of potent VEGFR-2 Inhibitors of Angiogenesis through homology modeling, structure based virtual screening, docking and molecular dynamics simulations. Int. J. Sci. Eng. Res., 2015, 6, 1382-1390.
[39]
Saundane, A.R.; Vijaykumar, K.; Verma, A.V. Synthesis Antioxidant and Antimicrobial Activities of N-[(5′-Substituted 2′-phenyl-1H-indol-3′-yl)methylene]-5- (pyridin-4-yl)-1,3,4-oxadiazol-2-amines. J. Chem., 2013, 1-9.
[http://dx.doi.org/10.1155/2013/718937]
[40]
Aswathanarayanappa, C.; Bheemappa, E.; Bodke, Y.D.; Krishnegowda, P.S.; Venkata, S.P.; Ningegowda, R. Synthesis and evaluation of antioxidant properties of novel 1,2,4-triazole-based schiff base heterocycles. Arch. Pharm. (Weinheim), 2013, 346(12), 922-930.
[http://dx.doi.org/10.1002/ardp.201300202] [PMID: 24301964]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 29
Year: 2019
Page: [2676 - 2686]
Pages: 11
DOI: 10.2174/1568026619666191105100959
Price: $65

Article Metrics

PDF: 22
HTML: 2