Parkinson’s Disease: A Review from Pathophysiology to Treatment

Author(s): Bianca L.B. Marino, Lucilene R. de Souza, Kessia P.A. Sousa, Jaderson V. Ferreira, Elias C. Padilha, Carlos H.T.P. da Silva, Carlton A. Taft, Lorane I.S. Hage-Melim*

Journal Name: Mini-Reviews in Medicinal Chemistry

Volume 20 , Issue 9 , 2020


Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Abstract:

Parkinson's Disease (PD) is the second most common neurodegenerative disease in the elderly population, with a higher prevalence in men, independent of race and social class; it affects approximately 1.5 to 2.0% of the elderly population over 60 years and 4% for those over 80 years of age. PD is caused by the necrosis of dopaminergic neurons in the substantia nigra, which is the brain region responsible for the synthesis of the neurotransmitter dopamine (DA), resulting in its decrease in the synaptic cleft. The monoamine oxidase B (MAO-B) degrades dopamine, promoting the glutamate accumulation and oxidative stress with the release of free radicals, causing excitotoxicity. The PD symptoms are progressive physical limitations such as rigidity, bradykinesia, tremor, postural instability and disability in functional performance. Considering that there are no laboratory tests, biomarkers or imaging studies to confirm the disease, the diagnosis of PD is made by analyzing the motor features. There is no cure for PD, and the pharmacological treatment consists of a dopaminergic supplement with levodopa, COMT inhibitors, anticholinergics agents, dopaminergic agonists, and inhibitors of MAO-B, which basically aims to control the symptoms, enabling better functional mobility and increasing life expectancy of the treated PD patients. Due to the importance and increasing prevalence of PD in the world, this study reviews information on the pathophysiology, symptomatology as well as the most current and relevant treatments of PD patients.

Keywords: Parkinson's disease, neuronal degeneration, dopamine, dopaminergic agonists, pharmacological treatment, pathophysiology, symptomatology.

[1]
Ikeda-Matsuo, Y.; Miyata, H.; Mizoguchi, T.; Ohama, E.; Naito, Y.; Uematsu, S.; Akira, S.; Sasaki, Y.; Tanabe, M. Microsomal prostaglandin E synthase-1 is a critical factor in dopaminergic neurodegeneration in Parkinson’s disease. Neurobiol. Dis., 2019, 124, 81-92.
[2]
Miyanishi, K.; Choudhury, M.E.; Watanabe, M.; Kubo, M.; Nomoto, M.; Yano, H.; Tanaka, J. Behavioral tests predicting striatal dopamine level in a rat hemi-Parkinson’s disease model. Neurochem. Int., 2019, 122, 38-46.
[3]
Rocha, M.D.; Viegas, F.P.; Campos, H.C.; Nicastro, P.C.; Fossaluzza, P.C.; Fraga, C.A.; Barreiro, E.J.; Viegas, C., Jr The role of natural products in the discovery of new drug candidates for the treatment of neurodegenerative disorders II: Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2011, 10(2), 251-270.
[4]
Santos, V.L. Perfil epidemiológico da doença de Parkinson no Brasil, Centro universitário de Brasília., 2015.
[5]
Barbosa, A.F.; Voos, M.C.; Chen, J.; Francato, D.C.V.; Souza, C.O.; Barbosa, E.R.; Chien, H.F.; Mansur, L.L. Cognitive or cognitive-motor executive function tasks? Evaluating verbal fluency measures in people with parkinson’s disease. BioMed Res. Int., 2017, 2017, 1-7.
[6]
Tan, L.C.; Venketasubramanian, N.; Jamora, R.D.; Heng, D. Incidence of Parkinson’s disease in Singapore. Parkinsonism Relat. Disord., 2007, 13(1), 40-43.
[7]
Song, J.; Kim, J. Degeneration of dopaminergic neurons due to metabolic alterations and Parkinson’s Disease. Front. Aging Neurosci., 2016, 8(65), 1-11.
[8]
Caixeta, L.; Vieira, R.T. Demência na Doença de Parkinson. Rev. Bras. Psiquiatr., 2008, 30(4), 375-383.
[9]
Muangpaisan, W.; Hori, H.; Brayne, C. Systematic review of the prevalence and incidence of Parkinson’s Disease in Asia. J. Epidemiol., 2009, 19(6), 281-293.
[10]
Tan, L.C.S. Epidemiology of Parkinson’s disease. Neurol. Asia, 2013, 18(3), 231-238.
[11]
Lau, L.M.L.; Breteler, M.M.B. Epidemiology of Parkinson’s disease. Lancet Neurol., 2006, 5(6), 525-535.
[12]
Bellou, V.; Belbasis, L.; Tzoulaki, I.; Evangelou, E.; Ioannidis, J.P.A. Environmental risk factors and Parkinson’s disease: An umbrella review of meta-analyses. Parkinsonism Relat. Disord., 2016, 23, 1-9.
[13]
Onozawa, R.; Tsugawa, J.; Tsuboi, Y.; Fukae, J.; Mishima, T.; Fujioka, S. The impact of early morning off in Parkinson’s disease on patient quality of life and caregiver burden. J. Neurol. Sci., 2016, 364, 1-5.
[14]
Pereira, M.C.L.; Suzuki, D.E.; Janjoppi, L.; Okamoto, O.K. Strategies for neuronal recovery in experimental models of Parkinson’s disease. Einstein , 2007, 5(4), 387-391.
[15]
Abbas, M.M.; Xu, Z.; Tan, L.C.S. Epidemiology of Parkinson’s Disease-East Versus West. Mov. Disord. Clin. Pract. , 2017, 5(1), 14-28.
[16]
Dorsey, E.R.; Constantinescu, R.; Thompson, J.P.; Biglan, K.M.; Holloway, R.G.; Kieburtz, K.; Marshall, F.J.; Ravina, B.M.; Schifitto, G.; Siderowf, A.; Tanner, C.M. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 2007, 68(5), 384-386.
[17]
Huot, P.; Sgambato-Faure, V.; Fox, S.H.; McCreary, A.C. Serotonergic approaches in Parkinson’s Disease: Translational perspectives, an update. ACS Chem. Neurosci., 2017, 8(5), 973-986.
[18]
Gallese, V.; Cuccio, V. The neural exploitation hypothesis and its implications for an embodied approach to language and cognition: Insights from the study of action verbs processing and motor disorders in Parkinson’s disease. Cortex, 2018, 100, 215-225.
[19]
Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging, 2003, 24(2), 197-211.
[20]
Wise, Jr, J.P.; Price, C.G.; Amaro, J.A.; Cannon, J.R. Autophagy disruptions associated with altered optineurin expression in extranigral regions in a rotenone model of Parkinson’s Disease. Front. Neurosci., 2018, 12, 289.
[21]
Silva, P.G.C.; Domingues, D.D.; Carvalho, L.A.; Allodi, S.; Correa, C.L. Neurotrophic factors in Parkinson’s disease are regulated by exercise: Evidence-based pactice. J. Neurol. Sci., 2016, 363, 5-15.
[22]
Youdim, M.B.H. Monoamine oxidase inhibitors, and iron chelators in depressive illness and neurodegenerative diseases. J. Neural Transm. (Vienna), 2018, 125(11), 1719-1733.
[23]
Broski, S.M.; Hunt, C.H.; Johnson, G.B.; Morreale, R.F.; Lowe, V.J.; Peller, P.J. Structural and functional imaging in parkinsonian syndromes. Radiographics, 2014, 34(5), 1273-1292.
[24]
Choudhry, H.; Perlmuter, L.C. Non CNS pathogenic origin of Parkinson’s disease. J. Neurol., 2017, 264(9), 2027-2030.
[25]
Mori, I. Viremic attack explains the dual-hit theory of Parkinson’s disease. Med. Hypotheses, 2017, 101, 33-36.
[26]
Braak, H.; Braak, E. Pathoanatomy of Parkinson’s disease. J. Neurol., 2000, 247(Suppl. 2), II3-II10.
[27]
Butt, A.H.; Rovini, E.; Dolciotti, C.; De Petris, G.; Bongioanni, P.; Carboncini, M.C.; Cavallo, F. Objective and automatic classification of Parkinson disease with Leap Motion controller. Biomed. Eng. Online, 2018, 17(168), 1-21.
[28]
Mironova, Y.S.; Zhukova, I.A.; Zhukova, N.G.; Alifirova, V.M.; Izhboldina, O.P.; Latypova, A.V. Parkinson's disease and glutamate excitotoxicity. Zh Nevrol. Psikhiatr. Im. S S Korsakova, , 2018, 118(6. Vyp. 2), 50-54.
[29]
Caggiu, E.; Arru, G.; Hosseini, S.; Niegowska, M.; Sechi, G.; Zarbo, I.R.; Sechi, L.A. Inflammation, Infectious Triggers, and Parkinson’s Disease. Front. Neurol., 2019, 10(122), 1-9.
[30]
Kalia, L.V.; Lang, A.E. Parkinson’s disease. Lancet, 2015, 386(9996), 896-912.
[31]
McKinley, E.T.; Baranowski, T.C.; Blavo, D.O.; Cato, C.; Doan, T.N.; Rubinstein, A.L. Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. Brain Res. Mol. Brain Res., 2005, 141(2), 128-137.
[32]
Kaur, R.; Mehan, S.; Singh, S. Understanding multifactorial architecture of Parkinson’s disease: Pathophysiology to management. Neurol. Sci., 2019, 40(1), 13-23.
[33]
Braun, G.H.; Jorge, D.M.M.; Ramos, H.P.; Alves, R.M.; da Silva, V.B.; Giuliatti, S.; Sampaio, S.V.; Taft, C.A.; Silva, C.H.T.P. Molecular dynamics, flexible docking, virtual screening, ADMET predictions, and molecular interaction field studies to design novel potential MAO-B inhibitors. J. Biomol. Struct. Dyn., 2008, 25(4), 347-355.
[34]
Souza, L.R.; Picanço, R.M.; Pinheiro, A.A.; Silva, K.R.; Taft, C.A.; da Silva, C.H.T. de P.; Santos, C.B.; Hage-Melim, L.I.S. Development of Monoamine Oxidase B inhibitors with Antiparkinson activity. Curr. Phys. Chem., 2016, 6, 40-52.
[35]
Cacabelos, R. Parkinson’s disease: From pathogenesis to pharmacogenomics. Int. J. Mol. Sci., 2017, 18(3), 551.
[36]
Liu, C.; Liang, M.C.; Soong, T.W. Nitric Oxide, Iron and Neurodegeneration. Front. Neurosci., 2019, 13(114), 1-10.
[37]
Redenšek, S.; Trošt, M.; Dolžan, V. Genetic determinants of Parkinson’s Disease: Can they help to stratify the patients based on the underlying molecular defect? Front. Aging Neurosci., 2017, 9(20), 1-17.
[38]
Picillo, M.; Lizarraga, K.J.; Friesen, E.L.; Chau, H.; Zhang, M.; Sato, C.; Rooke, G.; Munhoz, R.P.; Rogaeva, E.; Fraser, P.E.; Kalia, S.K.; Kalia, L.V. Parkinsonism due to A53E α-synuclein gene mutation: Clinical, genetic, epigenetic, and biochemical features. Mov. Disord., 2018, 33(12), 1950-1955.
[39]
Redenšek, S.; Flisar, D.; Kojovic, M.; Kramberger, M.G.; Georgiev, D.; Pirtošek, Z.; Trošt, M.; Dolžan, V. Dopaminergic pathway genes influence adverse events related to dopaminergic treatment in Parkinson’s disease. Front. Pharmacol., 2019, 10(8), 1-10.
[40]
Gan-Or, Z.; Liong, C.; Alcalay, R.N. GBA-Associated Parkinson’s disease and other synucleinopathies. Curr. Neurol. Neurosci., 2018, 18(8), 44.
[41]
Nussbaum, R.L.; Ellis, C.E. Alzheimer’s disease and Parkinson’s disease. N. Engl. J. Med., 2003, 348, 1356-1364.
[42]
Periquet, M.; Fulga, T.; Myllykangas, L.; Schlossmacher, M.G.; Feany, M. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J. Neurosci., 2007, 27(12), 3338-3346.
[43]
Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Parkinson’s disease is not simply a prion disorder. J. Neurosci., 2017, 37(41), 9799-9807.
[44]
Drotár, P.; Mekyska, J.R.; Rektorová, I.; Masarová, L.; Smékal, Z.; Faundez-Zanuy, M. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease. Artif. Intell. Med., 2016, 67, 39-46.
[45]
Wei, Z.; Li, X.; Li, X.; Liu, Q.; Cheng, Y. Oxidative stress in Parkinson’s disease: A systematic review and meta-analysis. Front. Mol. Neurosci., 2018, 11(236), 1-7.
[46]
Costa, M.F.B.N.A.; Reisdorfer, E.; Kempfer, S.S.; Porporatti, A.L.; Canto, G.L. Validade diagnóstica de biomarcadores na doença de Parkinson: Revisão sistemática e meta-análise. Ver. Bras. Enferm, 2018, 71(6), 3250-3259.
[47]
Parnetti, L.; Chiasserini, D.; Persichetti, E.; Eusebi, P.; Varghese, S.; Qureshi, M.M.; Dardis, A.; Deganuto, M.; De Carlo, C.; Castrioto, A.; Balducci, C.; Paciotti, S.; Tambasco, N.; Bembi, B.; Bonanni, L.; Onofrj, M.; Rossi, A.; Beccari, T.; El-Agnaf, O.; Calabresi, P. Cerebrospinal fluid lysosomal enzymes and alpha-synuclein in Parkinson’s disease. Mov. Disord., 2014, 29(8), 1019-1027.
[48]
Kuhbach, K.; Hülsemann, M.; Herrmann, Y.; Kravchenko, K.; Kulawik, A.; Linnartz, C.; Peters, L.; Wang, K.; Willbold, J.; Willbold, D.; Bannach, O. Application of an amyloid beta oligomer standard in the sFIDA assay. Front. Neurosci., 2016, 10(8), 1-6.
[49]
Gibb, W.R.G.; Lees, A.J. The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry, 1988, 51(6), 745-752.
[50]
Argaud, S.; Verin, M.; Sauleau, P.; Grandjean, D. Facial Emotion Recognition in Parkinson’s disease: A review and new hypotheses. Mov. Disord., 2018, 33(4), 554-567.
[51]
Postuma, R.B.; Berg, D.; Stern, M.; Poewe, W.; Olanow, C.W.; Oertel, W.; Obeso, J.; Marek, K.; Litvan, I.; Lang, A.E.; Halliday, G.; Goetz, C.G.; Gasser, T.; Dubois, B.; Chan, P.; Bloem, B.R.; Adler, C.H.; Deuschl, G. MDS clinical diagnostic criteria for Parkinson’s disease. Mov. Disord., 2015, 30(12), 1591-1601.
[52]
Hustad, E.; Skogholt, A.H.; Hveem, K.; Aasly, J.O. The accuracy of the clinical diagnosis of Parkinson disease. The HUNT study. J. Neurol., 2018, 265(9), 2120-2124.
[53]
Basorttini, O.G.P.; Felício, A.C.; Aquino, C.C.H.A.; Pedroso, J.L. Progressive supranuclear palsy: New concepts. Arq. Neuropsiquiatr., 2010, 68(6), 938-946.
[54]
Glaab, E. Computational systems biology approaches for Parkinson’s disease. Cell Tissue Res., 2018, 373(1), 91-109.
[55]
Oliveira1, R.V.; Pereira, J.S. O papel da difusão por ressonância magnética na doença de Parkinson e no diagnóstico diferencial com parkinsonismo atípico. Radiol. Bras., 2017, 50(4), 250-257.
[56]
Modrego, P.J.; Fayed, N.; Artal, J. Correlation of findings in advanced MRI techniques with global severity scales in patients with Parkinson disease. Acad. Radiol., 2011, 18(2), 235-241.
[57]
Zaaroor, M.; Sinai, A.; Goldsher, D.; Eran, A.; Nassar, M.; Schelensiger, I. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: A report of 30 Parkinson’s disease and essential tremor cases. J. Neurosurg., 2018, 128(1), 202-210.
[58]
Felicio, A.C.; Shih, M.C.; Cordeiro-Junior, C.; Andrade, L.A.F. Molecular imaging studies in Parkinson’s disease: Reducing diagnostic uncertainty. Neurologist, 2009, 15(1), 6-16.
[59]
Pavese, N.; Brooks, D.J. Imaging neurodegeneration in Parkinson’s disease. Biochim. Biophys. Acta, 2009, 1792(7), 722-729.
[60]
Foulds, P.; Mann, D.M.A.; Mitchell, J.D.; Allsop, D. Parkinson disease: Progress toward a molecular biomarker for Parkinson disease. Nat. Rev. Neurol., 2010, 6(7), 359-361.
[61]
Leggio, L.; Vivarelli, S.; L’Episcopo, L.; Tirolo, C.; Caniglia, S.; Testa, N.; Marchetti, B.; Iraci, N. microRNAs in Parkinson’s disease: From pathogenesis to novel diagnostic and therapeutic approaches. Int. J. Mol. Sci., 2017, 18(12), 2698.
[62]
Crispo, J.A.G.; Fortin, Y.; Thibault, D.P.; Emons, M.; Bjerre, L.M.; Kohen, D.E.; Perez-Lloret, S.; Mattison, D.; Willis, A.W.; Krewski, D.L. Trends in inpatient antiparkinson drug use in the USA, 2001-2012. Eur. J. Clin. Pharmacol., 2015, 71(8), 1011-1019.
[63]
Francardo, V.; Bez, F.; Wieloch, T.; Nissbrandt, H.; Ruscher, K.; Cenci, M.A. Pharmacological stimulation of sigma-1 receptors has neurorestorative effects in experimental parkinsonism. Brain, 2014, 137(Pt 7), 1998-2014.
[64]
Poewe, W.; Antonini, A. Novel formulations and modes of delivery of levodopa. Mov. Disord., 2015, 30(1), 114-120.
[65]
Rieck, M.; Schumacher-Schuh, A.F.; Atmann, V.; Callegari-Jacques, S.M.; Rieder, C.R.M.; Hutz, M.H. Association between DRD2 and DRD3 gene polymorphisms and gastrointestinal symptoms induced by levodopa therapy in Parkinson’s disease. Pharmacogenomics J., 2018, 18(1), 196-200.
[66]
Müller, T.; Möhr, J.D. Efficacy of carbidopa-levodopa extended-release capsules (IPX066) in the treatment of Parkinson disease. Expert Opin. Pharmacother., 2018, 19(18), 2063-2071.
[67]
Safe, S. Carbidopa: A selective Ah receptor modulator (SAhRM). Biochem. J., 2017, 474(22), 3763-3765.
[68]
Antonini, A.; Moro, E.; Godeiro, C.; Reichmann, H. Medical and surgical management of advanced Parkinson’s disease. Mov. Disord., 2018, 33(6), 900-908.
[69]
Shin, M.S.; Meong, H.Y.; An, D.I.; Lee, H.Y.; Sung, I.H. Treadmill exercise facilitates synaptic plasticity on dopaminergic neurons and fibers in the mouse model with Parkinson’s disease. Neurosci. Lett., 2016, 621, 28-33.
[70]
Kühn, J.; Haumesser, J.K.; Beck, M.H.; Altschüler, J.; Kühn, A.A.; Nikulin, V.V.; Riesen, C. Differential effects of levodopa and apomorphine on neuronal population oscillations in the cortico-basal ganglia loop circuit in vivo in experimental parkinsonism. Exp. Neurol.,, 2017, 298(Pt A), 122-133.
[71]
Reichmann, H. Modern treatment in Parkinson’s disease, a personal approach. J. Neural Transm. (Vienna), 2016, 123(1), 73-80.
[72]
Pastor, P.; Tolosa, E. Cabergoline in the treatment of Parkinson’s disease. Neurologia, 2003, 18(4), 202-209.
[73]
Gopinathan, G.; Horowski, R.; Suchy, I.H. Lisuride pharmacology and treatment of Parkinson’s disease. In Calne DB (Ed.) Drugs for the treatment of Parkinson’s disease, Handbook of Experimental Pharmacology,. , 1989; 88, pp. 471-513.
[74]
Italiano, D.; Bianchini, E.; Ilardi, M.; Cilia, R.; Pezzoli, G.; Zanettini, R.; Vacca, L.; Stocchi, F.; Bramanti, P.; Ciurleo, R.; Di Lorenzo, G.; Polimeni, G.; de Luise, C.; Ross, D.; Rijnbeek, P.; Sturkenboom, M.; Trifirò, G. Effectiveness of risk minimization measures for cabergoline-induced cardiac valve fibrosis in clinical practice in Italy. J. Neural Transm. (Vienna), 2015, 122(6), 799-808.
[75]
Pondal, M.; Teodoro, D.S.; Bermejo, F. Anticholinergic therapy and dementia in patients with Parkinson’s disease. J. Neurol., 1996, 243(7), 543-545.
[76]
Porter, M.C.; Apprah-Kubf, L.S.; Chaudhuri, K.R. Treatment of Parkinson’s disease and restless legs syndrome with cabergoline, a long-acting dopamine agonist. Int. J. Clin. Pract., 2002, 56(6), 468-474.
[77]
Faddoul, L.; Chahine, B.; Haydar, S.; Abourida, S.; Hallit, S.; Raad, E. The effect of pramipexole extended release on the levodopa equivalent daily dose in Lebanese Parkinson diseased patients. Pharm. Pract. (Granada), 2018, 16(4), 1220.
[78]
Pardeshi, C.V.; Belgamwar, V.S. Ropinirole-dextran sulfate nanoplex for nasal administration against Parkinson’s disease: In silico molecular modeling and in vitro ex vivo evaluation. Artif. Cells Nanomed. Biotechnol., 2017, 45(3), 635-648.
[79]
Perez-Lloret, S.; Rey, M.V.; Ratti, P.L.; Rascol, O. Rotigotine transdermal patch for the treatment of Parkinson’s Disease. Fundam. Clin. Pharmacol., 2013, 27(1), 81-95.
[80]
van Wamelen, D.J.V.; Grigorioud, S.; Chaudhuri, K.R.; Odin, P. Continuous drug delivery aiming continuous dopaminergic stimulation in Parkinson’s disease. J. Parkinsons Dis., 2018, 8(Suppl. 1), S65-S72.
[81]
Santos, E.U.D.; Duarte, E.B.C.; Miranda, L.M.R.; Asano, A.G.C.; Asano, N.M.J.; Maia, M.M.D.; Souza, P.R.E. Pharmacogenetic profile and the occurrence of visual hallucinations in patients with sporadic Parkinson’s disease. J. Clin. Pharmacol., 2019, 59(7), 1006-1013.
[82]
Mallajosyula, J.K.; Deepinder, K.; Shankar, J.C.; Subramanian, R.; Anand, R.; Nicholls, D.G.; Di Monte, D.A.; Macarthur, H.; Andersen, J.K. MAO-B Elevation in mouse brain astrocytes results in Parkinson’s pathology. PLoS One, 2008, 3(2)e1616
[83]
Liu, B.; Chaonan, L.; Zhang, J.; Liu, Y.; Sun, J.; Cheng, X.; Mao, W.; Ma, Y.; Li, S. Effects of eldepryl on glial cell proliferation and activation in the substantia nigra and striatum in a rat model of Parkinson’s disease. Neurol. Res., 2017, 39(5), 459-467.
[84]
Olanow, C.W.; Rascol, O.; Hauser, R.; Feigin, P.; Jankovic, J.; Lang, A.; Langston, W.; Melamed, E.; Poewe, W.; Stocchi, F.; Tolosa, E. A double-blind, delayed-start trial of rasagiline in Parkinson’s disease. N. Engl. J. Med., 2009, 361(13), 1268-1278.
[85]
Valldeoriola, F. Consenso de expertos espa˜noles sobre el uso de la safinamida en la enfermedad de Parkinson. Neurologia, 2017.
[86]
Bonifácio, M.J.; Torrão, L.; Loureiro, A.I.; Palma, P.N.; Wright, L.C.; Soares-da-Silva, L. Pharmacological profile of opicapone, a thirdgeneration nitrocatechol catechol-O-methyl transferase inhibitor, in the rat. Br. J. Pharmacol., 2015, 172(7), 1739-1752.
[87]
Brooks, D.J.; Sagar, H. Entacapone is beneficial in both fluctuating and non-fluctuating patients with Parkinson’s disease: A randomised, placebo controlled, double blind, six months study. J. Neurol. Neurosurg. Psychiatry, 2003, 74, 1071-1079.
[88]
Poór, M.; Zrínyi, Z.; Kőszegi, T. Structure related effects of flavonoid aglycones on cell cycle progression of HepG2 cells: Metabolic activation of fisetin and quercetin by catechol-O methyltransferase (COMT). Biomed. Pharmacother., 2016, 83, 998-1005.
[89]
Truong, D.D. Tolcapone: Review of its pharmacology and use as adjunctive therapy in patients with Parkinson’s disease. Clin. Interv. Aging, 2009, 4, 109-113.
[90]
Fabbri, M.; Ferreira, J.J.; Lees, A.; Stocchi, F.; Poewe, W.; Tolosa, E.; Rascol, O. Opicapone for the treatment of Parkinson’s disease: A review of a new licensed medicine. Mov. Disord., 2018, 33(10), 1528-1539.
[91]
Devos, D.; Moreau, C.; Dujardin, K.; Cabantchik, L.; Defebvre, L.; Bordet, R. New pharmacological options for treating advanced Parkinson’s disease. Clin. Ther., 2013, 35(10), 1640-1652.
[92]
Bortolato, M.; Godar, S.C.; Alzghoul, L.; Zhang, J.; Darling, R.D.; Kimberly, L. Simpson, K.L.; Bini, V.; Chen, K.; Wellman, C.L.; Lin, R.C.S.; Shih, J.C. Monoamine oxidase A and A/B knockout mice display autistic-like features. Int. J. Neuropsychopharmacol., 2013, 16(4), 869-888.
[93]
Mrad, M.L.; Zeller, M.; Hernandez, K.J.; Rzaigui, M.; Ben Nasr, C. Bis(adamantan-1-aminium) hydrogen phosphate fumaric acid sesquisolvate. Acta Crystallogr. Sect. E Struct. Rep. Online, 2012, 68(Pt 8), 2531-2532.
[94]
Perez-Lloret, S.; Rascol, O. Efficacy and safety of amantadine for the treatment of L-DOPA-induced dyskinesia. J. Neural Transm. (Vienna), 2018, 125(8), 1237-1250.
[95]
Kostelnik, A.; Cegan, A.; Pohanka, M. Anti-Parkinson drug biperiden inhibits enzyme acetylcholinesterase. BioMed Res. Int., 2017, 2017, 1-5.
[96]
Downs, A.M.; Fan, X.; Donsante, C.; Jinnah, H.A.; Hess, E.J. Trihexyphenidyl rescues the deficit in dopamine neurotransmission in a mouse model of DYT1 dystonia. Neurobiol. Dis., 2019, 125, 115-122.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 9
Year: 2020
Published on: 03 November, 2019
Page: [754 - 767]
Pages: 14
DOI: 10.2174/1389557519666191104110908
Price: $65

Article Metrics

PDF: 126
HTML: 34
EPUB: 1
PRC: 1