Oncogenesis and Tumor Inhibition by MicroRNAs and its Potential Therapeutic Applications: A Systematic Review

Author(s): Maryam Karkhane, Hamed Esmaeil Lashgarian, Maryam Hormozi, Shirzad Fallahi, Kourosh Cheraghipour, Abdolrazagh Marzban*

Journal Name: MicroRNA

Volume 9 , Issue 3 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

MicroRNAs appear as small molecule modifiers, which improve many new findings and mechanical illustrations for critically important biological phenomena and pathologic events. The best-characterized non‐coding RNA family consists of about 2600 human microRNAs. Rich evidence has revealed their crucial importance in maintaining normal development, differentiation, growth control, aging, modulation of cell survival or apoptosis, as well as migration and metastasis as microRNAs dysregulation leads to cancer incidence and progression. By far, microRNAs have recently emerged as attractive targets for therapeutic intervention. The rationale for developing microRNA therapeutics is based on the premise that aberrantly expressed microRNAs play a significant role in the emergence of a variety of human diseases ranging from cardiovascular defects to cancer, and that repairing these microRNA deficiencies by either antagonizing or restoring microRNA function may yield a therapeutic benefit. Although microRNA antagonists are conceptually similar to other inhibitory therapies, improving the performance of microRNAs by microRNA replacement or inhibition that is a less well- described attitude. In this assay, we have condensed the last global knowledge and concepts regarding the involvement of microRNAs in cancer emergence, which has been achieved from the previous studies, consisting of the regulation of key cancer‐related pathways, such as cell cycle control and the DNA damage response and the disruption of profile expression in human cancer. Here, we have reviewed the special characteristics of microRNA replacement and inhibition therapies and discussed explorations linked with the delivery of microRNA mimics in turmeric cells. Besides, the achievement of biomarkers based on microRNAs in clinics is considered as novel non-invasive biomarkers in diagnostic and prognostic assessments.

Keywords: Cancer incidence, cancer, miRNA mimic, miRNA replacement therapy, miRNAs, non-coding RNAs, non-invasive biomarker.

[1]
Khanizadeh S, Hasanvand B, Nikoo HR, et al. Association between miRNA-146a rs2910164 (G/C) polymorphism with the susceptibility to chronic HBV infection and spontaneous viral clearance in an Iranian population. J Med Virol 2019; 91(6): 1063-8.
[http://dx.doi.org/10.1002/jmv.25394] [PMID: 30624803]
[2]
Davoodian P, Ravanshad M, Hosseini SY, et al. Effect of TGF-β/smad signaling pathway blocking on expression profiles of miR-335, miR-150, miR-194, miR-27a, and miR-199a of hepatic stellate cells (HSCs). Gastroenterol Hepatol Bed Bench 2017; 10(2): 112-7.
[PMID: 28702135]
[3]
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75(5): 843-54.
[4]
Luo Z, Cui R, Tili E, Croce C. Friend or Foe: MicroRNAs in the p53 network. Cancer Lett 2018; 419: 96-102.
[http://dx.doi.org/10.1016/j.canlet.2018.01.013] [PMID: 29330109]
[5]
Kozomara A, Birgaoanu M, Griffiths-Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res 2019; 47(D1): D155-62.
[http://dx.doi.org/10.1093/nar/gky1141] [PMID: 30423142]
[6]
Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int 2015; 15(1): 38.
[http://dx.doi.org/10.1186/s12935-015-0185-1] [PMID: 25960691]
[7]
Santosh B, Varshney A, Yadava PK. Non-coding RNAs: biological functions and applications. Cell Biochem Funct 2015; 33(1): 14-22.
[http://dx.doi.org/10.1002/cbf.3079] [PMID: 25475931]
[8]
Jung HJ, Lee KP, Kwon KS, Suh Y. MicroRNAs in skeletal muscle aging: current issues and perspectives. J Gerontol A Biol Sci Med Sci 2019; 74(7): 1008-14.
[9]
Lin X, Zhan J-K, Wang Y-J, et al. Function, role, and clinical application of microRNAs in vascular aging. BioMed Res Int 2016; pp. 15.
[http://dx.doi.org/10.1155/2016/6021394]
[10]
Zhang HD, Jiang LH, Sun DW, Hou JC, Ji ZL. CircRNA: a novel type of biomarker for cancer. Breast Cancer 2018; 25(1): 1-7.
[http://dx.doi.org/10.1007/s12282-017-0793-9] [PMID: 28721656]
[11]
Ambros V, Lee R, Fusco AP. Isolating circulating microRNA (miRNA). Google Patents 2018, US20160032277A1.
[12]
Karkhane M, Marzban A, Rafiei A, Akhtari J. Cancer stem cells: cell heterogeneity in cancer and nanotechnology approaches for their treatment. Majallah-i Danishgah-i Ulum-i Pizishki-i Mazandaran 2016; 25(133): 361-75.
[13]
Hosseinahli N, Aghapour M, Duijf PHG, Baradaran B. Treating cancer with microRNA replacement therapy: A literature review. J Cell Physiol 2018; 233(8): 5574-88.
[http://dx.doi.org/10.1002/jcp.26514] [PMID: 29521426]
[14]
Chen Y-X, Huang K-J, Niu K-X. Recent advances in signal amplification strategy based on oligonucleotide and nanomaterials for microRNA detection-a review. Biosens Bioelectron 2018; 99: 612-24.
[http://dx.doi.org/10.1016/j.bios.2017.08.036] [PMID: 28837925]
[15]
Yan L, Liang M, Hou X, et al. The role of microRNA-16 in the pathogenesis of autoimmune diseases: A comprehensive review. Biomed Pharmacother 2019; 112: 108583
[http://dx.doi.org/10.1016/j.biopha.2019.01.044] [PMID: 30780103]
[16]
Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002; 99(24): 15524-9.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[17]
Hameiri-Grossman M, Porat-Klein A, Yaniv I, et al. The association between let-7, RAS and HIF-1α in Ewing Sarcoma tumor growth. Oncotarget 2015; 6(32): 33834-48.
[http://dx.doi.org/10.18632/oncotarget.5616] [PMID: 26393682]
[18]
Masliah-Planchon J, Garinet S, Pasmant E. RAS-MAPK pathway epigenetic activation in cancer: miRNAs in action. Oncotarget 2016; 7(25): 38892-907.
[http://dx.doi.org/10.18632/oncotarget.6476] [PMID: 26646588]
[19]
Chen Y, Xie C, Zheng X, et al. LIN28/let-7/PD-L1 pathway as a target for cancer immunotherapy. Cancer Immunol Res 2019; 7(3): 487-97.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0331] [PMID: 30651289]
[20]
Quévillon Huberdeau M, Simard MJ. A guide to microRNA-mediated gene silencing. FEBS J 2019; 286(4): 642-52.
[http://dx.doi.org/10.1111/febs.14666] [PMID: 30267606]
[21]
Yu N, Yong S, Kim HK, et al. Identification of tumor suppressor miRNAs by integrative miRNA and mRNA sequencing of matched tumor-normal samples in lung adenocarcinoma. Mol Oncol 2019; 13(6): 1356-68.
[http://dx.doi.org/10.1002/1878-0261.12478] [PMID: 30913346]
[22]
Ratert N, Meyer H-A, Jung M, et al. miRNAs profiling identifies candidate mirnas for bladder cancer diagnosis and clinical outcome. J Mol Diagn 2013; 15(5): 695-705.
[http://dx.doi.org/10.1016/j.jmoldx.2013.05.008] [PMID: 23945108]
[23]
Yang H, Dinney CP, Ye Y, Zhu Y, Grossman HB, Wu X. Evaluation of genetic variants in microRNA-related genes and risk of bladder cancer. Cancer Res 2008; 68(7): 2530-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5991] [PMID: 18381463]
[24]
Ichimi T, Enokida H, Okuno Y, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer 2009; 125(2): 345-52.
[http://dx.doi.org/10.1002/ijc.24390] [PMID: 19378336]
[25]
Braicu C, Cojocneanu-Petric R, Chira S, et al. Clinical and pathological implications of miRNA in bladder cancer. Int J Nanomedicine 2015; 10: 791-800.
[http://dx.doi.org/10.2147/IJN.S72904] [PMID: 25653521]
[26]
MacDonagh L, Gray SG, Finn SP, Cuffe S, O’Byrne KJ, Barr MP. The emerging role of microRNAs in resistance to lung cancer treatments. Cancer Treat Rev 2015; 41(2): 160-9.
[http://dx.doi.org/10.1016/j.ctrv.2014.12.009] [PMID: 25592062]
[27]
Yang Y, Meng H, Peng Q, et al. Downregulation of microRNA-21 expression restrains non-small cell lung cancer cell proliferation and migration through upregulation of programmed cell death 4. Cancer Gene Ther 2015; 22(1): 23-9.
[http://dx.doi.org/10.1038/cgt.2014.66] [PMID: 25477028]
[28]
Garofalo M, Croce CM. Role of microRNAs in maintaining cancer stem cells. Adv Drug Deliv Rev 2015; 81: 53-61.
[http://dx.doi.org/10.1016/j.addr.2014.11.014] [PMID: 25446141]
[29]
Fabris L, Ceder Y, Chinnaiyan AM, et al. The potential of microRNAs as prostate cancer biomarkers. Eur Urol 2016; 70(2): 312-22.
[http://dx.doi.org/10.1016/j.eururo.2015.12.054] [PMID: 26806656]
[30]
Bonci D, Coppola V, Patrizii M, et al. A microRNA code for prostate cancer metastasis. Oncogene 2016; 35(9): 1180-92.
[http://dx.doi.org/10.1038/onc.2015.176] [PMID: 26073083]
[31]
Mallick R, Patnaik SK, Wani S, Bansal A. A systematic review of esophageal microRNA markers for diagnosis and monitoring of Barrett’s esophagus. Dig Dis Sci 2016; 61(4): 1039-50.
[http://dx.doi.org/10.1007/s10620-015-3959-3] [PMID: 26572780]
[32]
Zheng Q, Chen C, Guan H, Kang W, Yu C. Prognostic role of microRNAs in human gastrointestinal cancer: A systematic review and meta-analysis. Oncotarget 2017; 8(28): 46611-23.
[http://dx.doi.org/10.18632/oncotarget.16679] [PMID: 28402940]
[33]
Clark RJ, Craig MP, Agrawal S, Kadakia M. microRNA involvement in the onset and progression of Barrett’s esophagus: a systematic review. Oncotarget 2018; 9(8): 8179-96.
[http://dx.doi.org/10.18632/oncotarget.24145] [PMID: 29487725]
[34]
Zhang L, Zhang X, Wang X, He M, Qiao S. MicroRNA-224 promotes tumorigenesis through downregulation of caspase-9 in triple-negative breast cancer. Dis Markers 2019.
[http://dx.doi.org/10.1155/2019/7378967]
[35]
Milevskiy MJG, Gujral U, Del Lama Marques C, et al. MicroRNA-196a is regulated by ER and is a prognostic biomarker in ER+ breast cancer. Br J Cancer 2019; 120(6): 621-32.
[http://dx.doi.org/10.1038/s41416-019-0395-8] [PMID: 30783203]
[36]
Wang D-Y, Gendoo DMA, Ben-David Y, Woodgett JR, Zacksenhaus E. A subgroup of microRNAs defines PTEN-deficient, triple-negative breast cancer patients with poorest prognosis and alterations in RB1, MYC, and Wnt signaling. Breast Cancer Res 2019; 21(1): 18.
[http://dx.doi.org/10.1186/s13058-019-1098-z] [PMID: 30704524]
[37]
Pulliam N, Tang J, Nephew KP. Estrogen receptor regulation of microRNAs in breast cancer estrogen receptor and breast cancer. Springer 2019; pp. 129-50.
[38]
Fan C, Lin Y, Mao Y, et al. MicroRNA-543 suppresses colorectal cancer growth and metastasis by targeting KRAS, MTA1 and HMGA2. Oncotarget 2016; 7(16): 21825-39.
[http://dx.doi.org/10.18632/oncotarget.7989] [PMID: 26968810]
[39]
Pan D, Lin P, Wen D, et al. Identification of down-regulated microRNAs in thyroid cancer and their potential functions. Am J Transl Res 2018; 10(8): 2264-76.
[PMID: 30210669]
[40]
Wójcicka A, Kolanowska M, Jażdżewski K. Mechanisms in endocrinology: microRNA in diagnostics and therapy of thyroid cancer. Eur J Endocrinol 2016; 174(3): R89-98.
[http://dx.doi.org/10.1530/EJE-15-0647] [PMID: 26503845]
[41]
Graham MER, Hart RD, Douglas S, et al. Serum microRNA profiling to distinguish papillary thyroid cancer from benign thyroid masses. J Otolaryngol Head Neck Surg 2015; 44(1): 33.
[http://dx.doi.org/10.1186/s40463-015-0083-5] [PMID: 26341226]
[42]
Wang P, Meng X, Huang Y, et al. MicroRNA-497 inhibits thyroid cancer tumor growth and invasion by suppressing BDNF. Oncotarget 2017; 8(2): 2825-34.
[http://dx.doi.org/10.18632/oncotarget.13747] [PMID: 27926508]
[43]
Takahashi RU, Miyazaki H, Ochiya T. The roles of microRNAs in breast cancer. Cancers (Basel) 2015; 7(2): 598-616.
[http://dx.doi.org/10.3390/cancers7020598] [PMID: 25860815]
[44]
Weiner-Gorzel K, Dempsey E, Milewska M, et al. Overexpression of the microRNA miR-433 promotes resistance to paclitaxel through the induction of cellular senescence in ovarian cancer cells. Cancer Med 2015; 4(5): 745-58.
[http://dx.doi.org/10.1002/cam4.409] [PMID: 25684390]
[45]
Nakamura K, Sawada K, Yoshimura A, Kinose Y, Nakatsuka E, Kimura T. Clinical relevance of circulating cell-free microRNAs in ovarian cancer. Mol Cancer 2016; 15(1): 48.
[http://dx.doi.org/10.1186/s12943-016-0536-0] [PMID: 27343009]
[46]
Smith B, Agarwal P, Bhowmick NA. MicroRNA applications for prostate, ovarian and breast cancer in the era of precision medicine. Endocr Relat Cancer 2017; 24(5): R157-72.
[http://dx.doi.org/10.1530/ERC-16-0525] [PMID: 28289080]
[47]
Li J, Hu K, Gong G, et al. Upregulation of MiR-205 transcriptionally suppresses SMAD4 and PTEN and contributes to human ovarian cancer progression. Sci Rep 2017; 7: 41330.
[http://dx.doi.org/10.1038/srep41330] [PMID: 28145479]
[48]
Dwivedi SKD, Mustafi SB, Mangala LS, et al. Therapeutic evaluation of microRNA-15a and microRNA-16 in ovarian cancer. Oncotarget 2016; 7(12): 15093-104.
[http://dx.doi.org/10.18632/oncotarget.7618] [PMID: 26918603]
[49]
Guo L, Fu J, Sun S, et al. MicroRNA-143-3p inhibits colorectal cancer metastases by targeting ITGA6 and ASAP3. Cancer Sci 2019; 110(2): 805-16.
[http://dx.doi.org/10.1111/cas.13910] [PMID: 30536996]
[50]
Carter JV, Galbraith NJ, Yang D, Burton JF, Walker SP, Galandiuk S. Blood-based microRNAs as biomarkers for the diagnosis of colorectal cancer: a systematic review and meta-analysis. Br J Cancer 2017; 116(6): 762-74.
[http://dx.doi.org/10.1038/bjc.2017.12] [PMID: 28152545]
[51]
Peng Q, Zhang X, Min M, Zou L, Shen P, Zhu Y. The clinical role of microRNA-21 as a promising biomarker in the diagnosis and prognosis of colorectal cancer: a systematic review and meta-analysis. Oncotarget 2017; 8(27): 44893-909.
[http://dx.doi.org/10.18632/oncotarget.16488] [PMID: 28415652]
[52]
Pan C, Yan X, Li H, et al. Systematic literature review and clinical validation of circulating microRNAs as diagnostic biomarkers for colorectal cancer. Oncotarget 2017; 8(40): 68317-28.
[http://dx.doi.org/10.18632/oncotarget.19344] [PMID: 28978119]
[53]
Wang S, Xiang J, Li Z, et al. A plasma microRNA panel for early detection of colorectal cancer. Int J Cancer 2015; 136(1): 152-61.
[http://dx.doi.org/10.1002/ijc.28136] [PMID: 23456911]
[54]
Liang Y, Zhao Q, Fan L, et al. Down-regulation of MicroRNA-381 promotes cell proliferation and invasion in colon cancer through up-regulation of LRH-1. Biomed Pharmacother 2015; 75: 137-41.
[http://dx.doi.org/10.1016/j.biopha.2015.07.020] [PMID: 26320367]
[55]
Zhao C, Zhang Y, Popel AS. Mechanistic computational models of microRNA-mediated signaling networks in human diseases. Int J Mol Sci 2019; 20(2): 421.
[http://dx.doi.org/10.3390/ijms20020421] [PMID: 30669429]
[56]
Saadatpour L, Fadaee E, Fadaei S, et al. Glioblastoma: exosome and microRNA as novel diagnosis biomarkers. Cancer Gene Ther 2016; 23(12): 415-8.
[http://dx.doi.org/10.1038/cgt.2016.48] [PMID: 27834360]
[57]
Zhou Q, Liu J, Quan J, Liu W, Tan H, Li W. MicroRNAs as potential biomarkers for the diagnosis of glioma: A systematic review and meta-analysis. Cancer Sci 2018; 109(9): 2651-9.
[http://dx.doi.org/10.1111/cas.13714] [PMID: 29949235]
[58]
Shea A, Harish V, Afzal Z, et al. MicroRNAs in glioblastoma multiforme pathogenesis and therapeutics. Cancer Med 2016; 5(8): 1917-46.
[http://dx.doi.org/10.1002/cam4.775] [PMID: 27282910]
[59]
Lu M, Wang Y, Zhou S, et al. MicroRNA-370 suppresses the progression and proliferation of human astrocytoma and glioblastoma by negatively regulating β-catenin and causing activation of FOXO3a. Exp Ther Med 2018; 15(1): 1093-8.
[PMID: 29399110]
[60]
He C, Yu T, Shi Y, et al. MicroRNA 301A promotes intestinal inflammation and colitis-associated cancer development by inhibiting BTG1. Gastroenterology 2017; 152(6): 1434-48.
[61]
Chang H, Kim N, Park JH, et al. Different microRNA expression levels in gastric cancer depending on Helicobacter pylori infection. Gut Liver 2015; 9(2): 188-96.
[http://dx.doi.org/10.5009/gnl13371] [PMID: 25167801]
[62]
Yonemori K, Kurahara H, Maemura K, Natsugoe S. MicroRNA in pancreatic cancer. J Hum Genet 2017; 62(1): 33-40.
[http://dx.doi.org/10.1038/jhg.2016.59] [PMID: 27251005]
[63]
Li Y, Sarkar FH. MicroRNA targeted therapeutic approach for pancreatic cancer. Int J Biol Sci 2016; 12(3): 326-37.
[http://dx.doi.org/10.7150/ijbs.15017] [PMID: 26929739]
[64]
Humeau M, Vignolle-Vidoni A, Sicard F, et al. Salivary microRNA in pancreatic cancer patients. PLoS One 2015; 10(6): e0130996
[http://dx.doi.org/10.1371/journal.pone.0130996] [PMID: 26121640]
[65]
Hale V, Hale GA, Brown PA, Amankwah EK. A review of DNA methylation and microRNA expression in recurrent pediatric acute leukemia. Oncology 2017; 92(2): 61-7.
[http://dx.doi.org/10.1159/000452091] [PMID: 27802447]
[66]
Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget 2017; 8(2): 3666-82.
[http://dx.doi.org/10.18632/oncotarget.12343] [PMID: 27705921]
[67]
Organista-Nava J, Gómez-Gómez Y, Illades-Aguiar B, Leyva-Vázquez MA. Regulation of the miRNA expression by TEL/AML1, BCR/ABL, MLL/AF4 and TCF3/PBX1 oncoproteins in acute lymphoblastic leukemia (Review). Oncol Rep 2016; 36(3): 1226-32.
[http://dx.doi.org/10.3892/or.2016.4948] [PMID: 27431573]
[68]
Wallaert A, Van Loocke W, Hernandez L, Taghon T, Speleman F, Van Vlierberghe P. Comprehensive miRNA expression profiling in human T-cell acute lymphoblastic leukemia by small RNA-sequencing. Sci Rep 2017; 7(1): 7901.
[http://dx.doi.org/10.1038/s41598-017-08148-x] [PMID: 28801656]
[69]
Ultimo S, Martelli AM, Zauli G, Vitale M, Calin GA, Neri LM. Roles and clinical implications of microRNAs in acute lymphoblastic leukemia. J Cell Physiol 2018; 233(8): 5642-54.
[http://dx.doi.org/10.1002/jcp.26290] [PMID: 29154447]
[70]
Shah K, Parikh S, Rawal R. Tyrosine kinase inhibitors in Ph+ chronic myeloid leukemia therapy: a review. Asian Pac J Cancer Prev 2016; 17(7): 3025-33.
[PMID: 27509925]
[71]
Chakraborty C, Sharma AR, Patra BC, Bhattacharya M, Sharma G, Lee S-S. MicroRNAs mediated regulation of MAPK signaling pathways in chronic myeloid leukemia. Oncotarget 2016; 7(27): 42683-97.
[http://dx.doi.org/10.18632/oncotarget.7977] [PMID: 26967056]
[72]
Mirzaei H, Fathullahzadeh S, Khanmohammadi R, et al. State of the art in microRNA as diagnostic and therapeutic biomarkers in chronic lymphocytic leukemia. J Cell Physiol 2018; 233(2): 888-900.
[http://dx.doi.org/10.1002/jcp.25799] [PMID: 28084621]
[73]
Rassenti LZ, Balatti V, Ghia EM, et al. MicroRNA dysregulation to identify therapeutic target combinations for chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2017; 114(40): 10731-6.
[http://dx.doi.org/10.1073/pnas.1708264114] [PMID: 28923920]
[74]
Jurcevic S, Klinga-Levan K, Olsson B, Ejeskär K. Verification of microRNA expression in human endometrial adenocarcinoma. BMC Cancer 2016; 16(1): 261.
[http://dx.doi.org/10.1186/s12885-016-2296-z] [PMID: 27039384]
[75]
Yang N, Ekanem NR, Sakyi CA, Ray SD. Hepatocellular carcinoma and microRNA: new perspectives on therapeutics and diagnostics. Adv Drug Deliv Rev 2015; 81: 62-74.
[http://dx.doi.org/10.1016/j.addr.2014.10.029] [PMID: 25450260]
[76]
Sohn W, Kim J, Kang SH, et al. Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Exp Mol Med 2015; 47(9): e184
[http://dx.doi.org/10.1038/emm.2015.68] [PMID: 26380927]
[77]
He X-Y, Liao Y-D, Guo X-Q, Wang R, Xiao Z-Y, Wang Y-G. Prognostic role of microRNA-21 expression in brain tumors: a meta-analysis. Mol Neurobiol 2016; 53(3): 1856-61.
[http://dx.doi.org/10.1007/s12035-015-9140-3] [PMID: 25790954]
[78]
Tominaga N, Kosaka N, Ono M, et al. Brain metastatic cancer cells release microRNA-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat Commun 2015; 6: 6716.
[http://dx.doi.org/10.1038/ncomms7716] [PMID: 25828099]
[79]
Catto JW, Alcaraz A, Bjartell AS, et al. MicroRNA in prostate, bladder, and kidney cancer: a systematic review. Eur Urol 2011; 59(5): 671-81.
[http://dx.doi.org/10.1016/j.eururo.2011.01.044] [PMID: 21296484]
[80]
Wang W, Wang Y, Liu W, van Wijnen AJ. Regulation and biological roles of the multifaceted miRNA-23b (MIR23B). Gene 2018; 642: 103-9.
[http://dx.doi.org/10.1016/j.gene.2017.10.085] [PMID: 29101066]
[81]
Wei F, Wang Q, Su Q, et al. miR-373 inhibits glioma cell U251 migration and invasion by down-regulating CD44 and TGFBR2. Cell Mol Neurobiol 2016; 36(8): 1389-97.
[http://dx.doi.org/10.1007/s10571-016-0338-3] [PMID: 26858153]
[82]
Hall KR, Fandy TE. Pharmacogenomics and pharmacoepigenomics: impact on therapeutic strategies genomics-driven healthcare. Springer 2018; pp. 227-38.
[http://dx.doi.org/10.1007/978-981-10-7506-3_12]
[83]
Koperski Ł, Kotlarek M, Świerniak M, et al. Next-generation sequencing reveals microRNA markers of adrenocortical tumors malignancy. Oncotarget 2017; 8(30): 49191-200.
[http://dx.doi.org/10.18632/oncotarget.16788] [PMID: 28423361]
[84]
Ramírez-Moya J, Wert-Lamas L, Santisteban P. MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene 2018; 37(25): 3369-83.
[http://dx.doi.org/10.1038/s41388-017-0088-9] [PMID: 29353884]
[85]
Garzon R, Marcucci G, Croce CM. Targeting microRNAs in cancer: rationale, strategies and challenges. Nat Rev Drug Discov 2010; 9(10): 775-89.
[http://dx.doi.org/10.1038/nrd3179] [PMID: 20885409]
[86]
Iorio MV, Croce CM. MicroRNA dysregulation in cancer: diagnostics, monitoring and therapeutics. A comprehensive review. EMBO Mol Med 2012; 4(3): 143-59.
[http://dx.doi.org/10.1002/emmm.201100209] [PMID: 22351564]
[87]
Gurbuz N, Ozpolat B. MicroRNA-based targeted therapeutics in pancreatic cancer. Anticancer Res 2019; 39(2): 529-32.
[http://dx.doi.org/10.21873/anticanres.13144] [PMID: 30711926]
[88]
Takahashi RU, Prieto-Vila M, Kohama I, Ochiya T. Development of miRNA-based therapeutic approaches for cancer patients. Cancer Sci 2019; 110(4): 1140-7.
[http://dx.doi.org/10.1111/cas.13965] [PMID: 30729639]
[89]
Bjartell A. New hope in prostate cancer precision medicine? miRNA replacement and epigenetics. Clin Cancer Res 2019; 25(9): 2679-81.
[90]
Mollaei H, Safaralizadeh R, Rostami Z. MicroRNA replacement therapy in cancer. J Cell Physiol 2019; 234(8): 12369-84.
[http://dx.doi.org/10.1002/jcp.28058] [PMID: 30605237]
[91]
Kobayashi M, Sawada K, Kimura T. Is microRNA replacement therapy promising treatment for cancer? Non-coding RNA Investig 2018; 2: 56.
[http://dx.doi.org/10.21037/ncri.2018.09.04]
[92]
Ashrafi B, Rashidipour M, Marzban A, et al. Mentha piperita essential oils loaded in a chitosan nanogel with inhibitory effect on biofilm formation against S. mutans on the dental surface. Carbohydr Polym 2019; 212: 142-9.
[http://dx.doi.org/10.1016/j.carbpol.2019.02.018] [PMID: 30832841]
[93]
Gholami M, Shahzamani K, Marzban A, Lashgarian HE. Evaluation of antimicrobial activity of synthesised silver nanoparticles using Thymus kotschyanus aqueous extract. IET Nanobiotechnol 2018; 12(8): 1114-7.
[http://dx.doi.org/10.1049/iet-nbt.2018.5110] [PMID: 30964023]
[94]
Zhang Y, Wang Z, Gemeinhart RA. Progress in microRNA delivery. J Control Release 2013; 172(3): 962-74.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.015] [PMID: 24075926]
[95]
Wang H, Jiang Y, Peng H, Chen Y, Zhu P, Huang Y. Recent progress in microRNA delivery for cancer therapy by non-viral synthetic vectors. Adv Drug Deliv Rev 2015; 81: 142-60.
[http://dx.doi.org/10.1016/j.addr.2014.10.031] [PMID: 25450259]
[96]
Wu Y, Crawford M, Yu B, Mao Y, Nana-Sinkam SP, Lee LJ. MicroRNA delivery by cationic lipoplexes for lung cancer therapy. Mol Pharm 2011; 8(4): 1381-9.
[http://dx.doi.org/10.1021/mp2002076] [PMID: 21648427]
[97]
Tyagi N, Arora S, Deshmukh SK, Singh S, Marimuthu S, Singh AP. Exploiting nanotechnology for the development of microRNA-based cancer therapeutics. J Biomed Nanotechnol 2016; 12(1): 28-42.
[http://dx.doi.org/10.1166/jbn.2016.2172] [PMID: 27301170]
[98]
Chitkara D, Singh S, Mittal A. Nanocarrier-based co-delivery of small molecules and siRNA/miRNA for treatment of cancer. Ther Deliv 2016; 7(4): 245-55.
[http://dx.doi.org/10.4155/tde-2015-0003] [PMID: 27010986]
[99]
Bai Z, Wei J, Yu C, et al. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7(8): 1209-25.
[http://dx.doi.org/10.1039/C8TB02946F]
[100]
Wang H, Liu S, Jia L, et al. Nanostructured lipid carriers for MicroRNA delivery in tumor gene therapy. Cancer Cell Int 2018; 18(1): 101.
[http://dx.doi.org/10.1186/s12935-018-0596-x] [PMID: 30008618]
[101]
Atri C, Guerfali FZ, Laouini D. MicroRNAs in diagnosis and therapeutics AGO-Driven Non-Coding RNAs. Elsevier 2019; pp. 137-77.
[http://dx.doi.org/10.1016/B978-0-12-815669-8.00006-3]
[102]
Tiwari A, Mukherjee B, Dixit M. MicroRNA key to angiogenesis regulation: miRNA biology and therapy. Curr Cancer Drug Targets 2018; 18(3): 266-77.
[http://dx.doi.org/10.2174/1568009617666170630142725] [PMID: 28669338]
[103]
Gosselin MP. Vectorisation de petits acides nucléiques par des lipopolyplexes: application au cancer du sein: Université d'Orléans; 2016; pp. 1-228.
[104]
Javanmardi S, Aghamaali MR, Abolmaali SS, Tamaddon AM. Progresses in microRNA delivery using synthetic nanovectors in cancer therapy. Curr Pharm Des 2018; 24(31): 3678-96.
[http://dx.doi.org/10.2174/1381612825666181120160316] [PMID: 30465494]
[105]
Zhang Y. Anti-miRNA delivery systems based on self-assembled nanostructure. Ph D Thesis, University of Illinois, Chicago, February 2016; pp. 1-199.
[106]
Abdelaziz HM, Freag MS, Elzoghby AO. Solid lipid nanoparticle-based drug delivery for lung cancer nanotechnology-based targeted drug delivery systems for lung cancer. Elsevier 2019; pp. 95-121.
[http://dx.doi.org/10.1016/B978-0-12-815720-6.00005-8]
[107]
Chuan D, Jin T, Fan R, Zhou L, Guo G. Chitosan for gene delivery: Methods for improvement and applications. Adv Colloid Interface Sci 2019; 268: 25-38.
[http://dx.doi.org/10.1016/j.cis.2019.03.007] [PMID: 30933750]
[108]
Mehta TA, Shah N, Parekh K, Dhas N, Patel JK. Surface-modified PLGA nanoparticles for targeted drug delivery to neurons surface modification of nanoparticles for targeted drug delivery. Springer 2019; pp. 33-71.
[http://dx.doi.org/10.1007/978-3-030-06115-9_3]
[109]
Bhagirath D, Yang TL, Dahiya R, Saini S. MicroRNAs as regulators of prostate cancer metastasis cell & molecular biology of prostate cancer. Springer 2018; pp. 83-100.
[http://dx.doi.org/10.1007/978-3-319-95693-0_5]
[110]
Shirafkan N, Mansoori B, Mohammadi A, Shomali N, Ghasbi M, Baradaran B. MicroRNAs as novel biomarkers for colorectal cancer: New outlooks. Biomed Pharmacother 2018; 97: 1319-30.
[http://dx.doi.org/10.1016/j.biopha.2017.11.046] [PMID: 29156521]
[111]
Pandey B, Singh AK, Singh SP. Nanoparticles mediated gene knockout through miRNA replacement: recent progress and challenges applications of targeted nano drugs and delivery systems. Elsevier 2019; pp. 469-97.
[http://dx.doi.org/10.1016/B978-0-12-814029-1.00017-X]
[112]
Hannafon BN, Carpenter KJ, Berry WL, Janknecht R, Dooley WC, Ding WQ. Exosome-mediated microRNA signaling from breast cancer cells is altered by the anti-angiogenesis agent docosahexaenoic acid (DHA). Mol Cancer 2015; 14(1): 133.
[http://dx.doi.org/10.1186/s12943-015-0400-7] [PMID: 26178901]
[113]
Medarova Z, Yigit MV, Moore A. Therapeutic nanoparticles and methods of use thereof. Google Patents 2018, 2018, US9763891B2.
[114]
Tiberio P, Callari M, Angeloni V, Daidone MG, Appierto V. Challenges in using circulating miRNAs as cancer biomarkers. BioMed Res Int 2015; pp. 10. Article ID 731479.
[http://dx.doi.org/10.1155/2015/731479]
[115]
Wittmann J, Jäck H-M. Serum microRNAs as powerful cancer biomarkers. Biochimica et Biophysica Acta (BBA). Rev Can 2010; 1806(2): 200-7.
[116]
Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci 2010; 101(10): 2087-92.
[http://dx.doi.org/10.1111/j.1349-7006.2010.01650.x] [PMID: 20624164]
[117]
Schwarzenbach H, Nishida N, Calin GA, Pantel K. Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol 2014; 11(3): 145-56.
[http://dx.doi.org/10.1038/nrclinonc.2014.5] [PMID: 24492836]
[118]
Cheng G. Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy. Adv Drug Deliv Rev 2015; 81: 75-93.
[http://dx.doi.org/10.1016/j.addr.2014.09.001] [PMID: 25220354]
[119]
Komatsu S, Kiuchi J, Imamura T, Ichikawa D, Otsuji E. Circulating microRNAs as a liquid biopsy: a next-generation clinical biomarker for diagnosis of gastric cancer. J Cancer Metastasis Treat 2018; 4: 36.
[http://dx.doi.org/10.20517/2394-4722.2017.58]
[120]
Simonian M, Mosallayi M, Mirzaei H. Circulating miR-21 as novel biomarker in gastric cancer: Diagnostic and prognostic biomarker. J Cancer Res Ther 2018; 14(2): 475.
[http://dx.doi.org/10.4103/0973-1482.175428] [PMID: 29516946]
[121]
Sabarimurugan S, Kumarasamy C, Madurantakam Royam M, et al. Validation of miRNA prognostic significance in stage II colorectal cancer: A protocol for systematic review and meta-analysis of observational clinical studies. Medicine (Baltimore) 2019; 98(12): e14570
[http://dx.doi.org/10.1097/MD.0000000000014570] [PMID: 30896613]
[122]
Mirzaei H, Masoudifar A, Sahebkar A, et al. MicroRNA: A novel target of curcumin in cancer therapy. J Cell Physiol 2018; 233(4): 3004-15.
[http://dx.doi.org/10.1002/jcp.26055] [PMID: 28617957]
[123]
Toiyama Y, Okugawa Y, Fleshman J, Boland CR, Goel A. MicroRNAs as potential liquid biopsy biomarkers in colorectal cancer: A systematic review. Biochimica et Biophysica Acta (BBA)- Reviews on Cancer 2018; 1870(2): 274-82.
[http://dx.doi.org/10.1016/j.bbcan.2018.05.006]
[124]
Cho WC. MicroRNAs: potential biomarkers for cancer diagnosis, prognosis and targets for therapy. Int J Biochem Cell Biol 2010; 42(8): 1273-81.
[http://dx.doi.org/10.1016/j.biocel.2009.12.014] [PMID: 20026422]
[125]
Sabarimurugan S, Kumarasamy C, Baxi S, Devi A, Jayaraj R. Systematic review and meta-analysis of prognostic microRNA biomarkers for survival outcome in nasopharyngeal carcinoma. PLoS One 2019; 14(2): e0209760
[http://dx.doi.org/10.1371/journal.pone.0209760] [PMID: 30735523]
[126]
Mazumder S, Datta S, Ray JG, Chaudhuri K, Chatterjee R. Liquid biopsy: miRNA as a potential biomarker in oral cancer. Cancer Epidemiol 2019; 58: 137-45.
[http://dx.doi.org/10.1016/j.canep.2018.12.008] [PMID: 30579238]
[127]
Wang Y, Zhang G, Hao X, et al. Potential biomarker for breast cancer screening: a systematic review and meta-analysis. Future Gener Comput Syst 2019; 91: 518-26.
[http://dx.doi.org/10.1016/j.future.2018.09.030]
[128]
Bertoli G, Cava C, Castiglioni I. MicroRNAs: new biomarkers for diagnosis, prognosis, therapy prediction and therapeutic tools for breast cancer. Theranostics 2015; 5(10): 1122-43.
[http://dx.doi.org/10.7150/thno.11543] [PMID: 26199650]
[129]
Wang X, Kong D, Wang C, et al. Circulating microRNAs as novel potential diagnostic biomarkers for ovarian cancer: a systematic review and updated meta-analysis. J Ovarian Res 2019; 12(1): 24.
[http://dx.doi.org/10.1186/s13048-019-0482-8] [PMID: 30898156]
[130]
Madhavan B, Yue S, Galli U, et al. Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer 2015; 136(11): 2616-27.
[http://dx.doi.org/10.1002/ijc.29324] [PMID: 25388097]
[131]
Schneider A, Victoria B, Lopez YN, et al. Tissue and serum microRNA profile of oral squamous cell carcinoma patients. Sci Rep 2018; 8(1): 675.
[http://dx.doi.org/10.1038/s41598-017-18945-z] [PMID: 29330429]
[132]
Margue C, Reinsbach S, Philippidou D, et al. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer? Oncotarget 2015; 6(14): 12110-27.
[http://dx.doi.org/10.18632/oncotarget.3661] [PMID: 25883223]
[133]
Fleming NH, Zhong J, da Silva IP, et al. Serum-based miRNAs in the prediction and detection of recurrence in melanoma patients. Cancer 2015; 121(1): 51-9.
[http://dx.doi.org/10.1002/cncr.28981] [PMID: 25155861]
[134]
Guo S, Guo W, Li S, et al. Serum miR-16: a potential biomarker for predicting melanoma prognosis. J Invest Dermatol 2016; 136(5): 985-93.
[http://dx.doi.org/10.1016/j.jid.2015.12.041] [PMID: 26829037]
[135]
Ross CL, Kaushik S, Valdes-Rodriguez R, Anvekar R. MicroRNAs in cutaneous melanoma: Role as diagnostic and prognostic biomarkers. J Cell Physiol 2018; 233(7): 5133-41.
[http://dx.doi.org/10.1002/jcp.26395] [PMID: 29226953]
[136]
Van Laar R, Lincoln M, Van Laar B. Development and validation of a plasma-based melanoma biomarker suitable for clinical use. Br J Cancer 2018; 118(6): 857-66.
[http://dx.doi.org/10.1038/bjc.2017.477] [PMID: 29360813]
[137]
Chand M, Keller DS, Mirnezami R, et al. Novel biomarkers for patient stratification in colorectal cancer: A review of definitions, emerging concepts, and data. World J Gastrointest Oncol 2018; 10(7): 145-58.
[http://dx.doi.org/10.4251/wjgo.v10.i7.145] [PMID: 30079141]
[138]
Karkhane M, Marzban A, Lashgarian HE, Zali MR. Genetic variations in host factors and their critical role on HCV medication. Res Mol Med 2017; 5(1): 6-16.
[http://dx.doi.org/10.29252/rmm.5.1.6]
[139]
Karkhane M, Mohebbi SR, Sharifian A, Ghaemi A, Asadzadeh Aghdaei H, Zali MR. A gene variation of Interferon Gamma Receptor-I promoter (rs1327474A>G) and chronic hepatitis C virus infection. Gastroenterol Hepatol Bed Bench 2019; 12(1): 46-51.
[PMID: 30949319]
[140]
Roy S, Trautwein C, Luedde T, Roderburg C. A general overview on non-coding RNA-based diagnostic and therapeutic approaches for liver diseases. Front Pharmacol 2018; 9: 805.
[http://dx.doi.org/10.3389/fphar.2018.00805] [PMID: 30158867]
[141]
Jost I, Shalamova LA, Gerresheim GK, Niepmann M, Bindereif A, Rossbach O. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol 2018; 15(8): 1032-9.
[http://dx.doi.org/10.1080/15476286.2018.1435248] [PMID: 29486652]
[142]
Pagotto S, Veronese A, Soranno A, et al. Hsa-miR-155-5p drives aneuploidy at early stages of cellular transformation. Oncotarget 2018; 9(16): 13036-47.
[http://dx.doi.org/10.18632/oncotarget.24437] [PMID: 29560129]
[143]
Alivernini S, Gremese E, McSharry C, et al. MicroRNA-155—at the critical interface of innate and adaptive immunity in arthritis. Front Immunol 2018; 8: 1932.
[http://dx.doi.org/10.3389/fimmu.2017.01932] [PMID: 29354135]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 3
Year: 2020
Page: [198 - 215]
Pages: 18
DOI: 10.2174/2211536608666191104103834

Article Metrics

PDF: 19
HTML: 5