Studies on In vitro Interaction of Ampicillin and Polyalthia longifolia Leaf Ethyl Acetate Fraction (PLEAF) by Checkerboard Method Against Methicillin Resistant Staphylococcus aureus (MRSA)

Author(s): Balasupramaniam Kirubakari, Yeng Chen, Jagat R. Kanwar, Lai N. Shin, Sreenivasan Sasidharan*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 7 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Polyalthia longifolia which originates from India is rich with various useful phytochemicals which are valuable for human health. Accordingly, the current study was conducted to evaluate the combinational antimicrobial activity of P. longifolia Ethyl Acetate Fraction (PLEAF) with ampicillin, antioxidant and cytotoxicity activities.

Methods: The evaluation of the synergistic activity of PLEAF fraction and ampicillin against MRSA local isolate was conducted with various antimicrobial assays.

Results: The Minimum Inhibitory Concentration (MIC) values of PLEAF fraction (62.5 μg/mL) and ampicillin (5000 μg/mL) were found to decrease to 15.63 μg/mL for PLEAF and 2500 μg/mL for ampicillin respectively in the Fractional Inhibitory Concentration (FIC) assay against the MRSA bacteria. The 2,2-diphenyl1-picrylhydrazyl (DPPH) and nitric oxide free radical scavenging activities showed that PLEAF fraction possessed high antioxidant activity and the combinational of PLEAF fraction and ampicillin exhibited moderate antioxidant activity. The total phenolic content (TPC) of PLEAF was 168.22 ± 0.00407 μg GAE/g of PLEAF fraction.

Discussion: Phenolic compounds might be responsible for the observed antioxidant and antimicrobial activity of PLEAF fraction. In addition, in 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity test against Vero cells the PLEAF fraction was proven to be non-toxic (98.14% of cell viability) and the combination of PLEAF fraction and ampicillin treatment against the Vero cells showed an improved cell viability (52.44%) as compared with ampicillin alone in the treated group.

Conclusion: The PLEAF fraction works well in combination with ampicillin to kill the MRSA local resistance strain. PLEAF fraction also showed favourable antioxidant activity and improved Vero cell viability in the presence of ampicillin which is an important attribute of PLEAF fraction to be used in the future combinational therapy.

Keywords: Combinational therapy, Polyalthia longifolia, resistant Staphylococcus aureus, antibacterial agent, natural product, nonsusceptibility.

Basak, S.; Priyanka Singh, P.; Rajurkar, M. Multidrug resistant and extensively drug resistant bacteria: A Study. J. Pathogens, 2016, 2016, 406560.
Giedraitienė, A.; Vitkauskienė, A.; Naginienė, R.; Pavilonis, A. Antibiotic resistance mechanisms of clinically important bacteria. Medicina (Kaunas), 2011, 47(3), 137-146.
O’Neill, J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations Rev Antimicrob.Resist.,20 , 1-16.
Worthington, R.J.; Melander, C. Combination approaches to combat multidrug-resistant bacteria. Trends Biotechnol., 2013, 31(3), 177-184.
de Lima, M.R.F.; de Souza Luna, J.; dos Santos, A.F.; de Andrade, M.C.C.; Sant’Ana, A.E.G.; Genet, J.P.; Marquez, B.; Neuville, L.; Moreau, N. Anti-bacterial activity of some Brazilian medicinal plants. J. Ethnopharmacol., 2006, 105(1-2), 137-147.
Sibanda, T.; Okoh, A.I. The challenges of overcoming antibiotic resistance: Plant extracts as potential sources of antimicrobial and resistance modifying agents. Afr. J. Biotechnol., 2007, 6(25), 2886-2896.
Sasidharan, N.K.; Sreekala, S.R.; Jacob, J.; Nambisan, B. In vitro synergistic effect of curcumin in combination with third generation cephalosporins against bacteria associated with infectious diarrhea BioMed; Res. Int, 2014.
Greco, F.; Vicent, M.J. Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Adv. Drug Deliv. Rev., 2009, 61(13), 1203-1213.
Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agents: Current methods and future trends. J. Med. Plants Res., 2010, 4(2), 104-111.
Moussaoui, F.; Alaoui, T. Evaluation of antibacterial activity and synergistic effect between antibiotic and the essential oils of some medicinal plants. Asian Pac. J. Trop. Biomed., 2016, 6(1), 32-37.
Ghosh, A.; Das, B.K.; Chatterjee, S.K.; Chandra, G. Antibacterial potentiality and phytochemical analysis of mature leaves of Polyalthia longifolia (Magnoliales: Annonaceae). South Pac. J. Nat. Appl. Sci., 2008, 26(1), 68-72.
Jothy, S.L.; Yeng, C.; Sasidharan, S. Chromatographic and spectral fingerprinting of Polyalthia longifolia, a source of phytochemicals. Bioresour., 2013, 8(4), 5102-5119.
Faizi, S.; Mughal, N.R.; Khan, R.A.; Khan, S.A.; Ahmad, A.; Bibi, N.; Ahmed, S.A. Evaluation of the antimicrobial property of Polyalthia longifolia var. pendula: Isolation of a lactone as the active antibacterial agent from the ethanol extract of the stem. Phytother. Res., 2003, 17(10), 1177-1181.
Vijayarathna, S.; Oon, C.E.; Chen, Y.; Kanwar, J.R.; Sasidharan, S. Polyalthia longifolia Methanolic Leaf Extracts (PLME) induce apoptosis, cell cycle arrest and mitochondrial potential depolarization by possibly modulating the redox status in hela cells. Biomed. Pharmacother., 2017, 89, 499-514.
Jothy, S.L.; Aziz, A.; Chen, Y.; Sasidharan, S. Antioxidant activity and hepatoprotective potential of Polyalthia longifolia and Cassia spectabilis leaves against paracetamol-induced liver injury. Evid. Based Complement. Alternat. Med., 2012, 2012, 561284.
Jothy, S.L.; Saito, T.; Kanwar, J.R.; Chen, Y.; Aziz, A.; Yin-Hui, L.; Sasidharan, S. Radioprotective activity of Polyalthia longifolia standardized extract against X-ray radiation injury in mice. Phys. Med., 2016, 32(1), 150-161.
Sampath, M. Optimization of the extraction process of phenolic antioxidant from Polyalthia longifolia (Sonn.). Thawaites. J. Appl. Pharm. Sci., 2013, 3(2), 148-152.
Guédé-Guina, F.; Vangah-Manda, M.; Harouna, D.; Bahi, C. Potencies of Misca, a plant source concentrate against fungi. J. Ethnopharmacol., 1993, 14, 45-53.
Meite, S.; N’guessan, J.D.; Bahi, C.; Yapi, H.F.; Djaman, A.J.; Guina, F.G. Antidiarrheal activity of the ethyl acetate extract of Morinda morindoides in rats. Trop. J. Pharm. Res., 2009, 8(3), 201-207.
Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement. Document M1–S23. 2013. Wayne, PA. 2013.
Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(4), 493-496.
CLSI-Clinical Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing M100-S20,
National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests Approved standard M2–A8; National Committee for Clinical Laboratory Standards Wayne: PA, 2003.
Hall, M.J.; Middleton, R.F.; Westmacott, D. The Fractional Inhibitory Concentration (FIC) index as a measure of synergy. J. Antimicrob. Chemother., 1983, 11(5), 427-433.
Smith, E.P.; Boyd, J.; Frank, G.R.; Takahashi, H.; Cohen, R.M.; Specker, B.; Williams, T.C.; Lubahn, D.B.; Korach, K.S. Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man. N. Engl. J. Med., 1994, 331(16), 1056-1061.
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(4617), 1199.
Green, L.C.; Wagner, D.A.; Glogowski, J.; Skipper, P.L.; Wishnok, J.S.; Tannenbaum, S.R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem., 1982, 126(1), 131-138.
Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents‎. Am. J. Enol. Vitic., 1965, 16(3), 144-158.
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
Chung, P.Y.; Navaratnam, P.; Chung, L.Y. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann. Clin. Microbiol. Antimicrob., 2011, 10(1), 25.
Zaidan, M.R.; Noor Rain, A.; Badrul, A.R.; Adlin, A.; Norazah, A.; Zakiah, I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop. Biomed., 2005, 22(2), 165-170.
Bonjean, M.; Hodille, E.; Dumitrescu, O.; Dupieux, C.; Nkoud Mongo, C.; Allam, C.; Beghin, M.; Paris, M.; Borrel, O.; Chardon, H.; Laurent, F.; Rasigade, J.P.; Lina, G. Disk diffusion testing for the detection of methicillin-resistant staphylococci: Does moxalactam improve upon cefoxitin? J. Clin. Microbiol., 2016, 54(12), 2905-2909.
Weese, J.S.; Zwambag, A.; Rosendal, T.; Reid-Smith, R.; Friendship, R. Longitudinal investigation of methicillin-resistant Staphylococcus aureus in piglets. Zoonoses Public Health, 2011, 58(4), 238-243.
Adaramola, B.; Otuneme, O.; Onigbinde, A.; Orodele, K.; Aleshinloye, A.; David, J.; Adewumi, A. Phytochemical analysis and in vitro antioxidant activity of fractions of methanol extract of Polyalthia longifolia var. pendula Leaf. European J. Med. Plants, 2017, 21(1), 1-10.
Mhlongo, N.Y.; Naidu, K.S.B.; Himakar, R.K.; Sershen, A.C.; Govender, P. Phytochemical screening, antioxidant and antimicrobial efficacy of Protorhus longifolia (Bernh. Ex C. Krauss) Engl. (Anacardiaceae) seed extracts. Curr. Trends Biotechnol. Pharm., 2018, 12(2), 128-138.
Pea, F.; Viale, P. Bench-to-bedside review: Appropriate antibiotic therapy in severe sepsis and septic shock-Does the dose matter? Crit. Care, 2009, 13(3), 214.
Vahdani, P.; Saifi, M.; Aslani, M.M.; Asarian, A.A.; Sharafi, K. Antibiotic resistant patterns in MRSA isolates from patients admitted in ICU and infectious ward. Tanaffos, 2004, 3(11), 37-44.
Pasquina, L.W.; Santa Maria, J.P.; Walker, S. Teichoic acid biosynthesis as an antibiotic target. Curr. Opin. Microbiol., 2013, 16(5), 531-537.
Hemaiswarya, S.; Doble, M. Synergistic interaction of phenylpropanoids with antibiotics against bacteria. J. Med. Microbiol., 2010, 59(Pt 12), 1469-1476.
Abedon, S. Phage therapy pharmacology: Calculating phage dosing. Adv. Appl. Microbiol., 2011, 77, 1-40.
Pankey, G.A.; Sabath, L.D. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin. Infect. Dis., 2004, 38(6), 864-870.
Lovering, A.M.; Reeves, D.S. Aminoglycosides and aminocyclitols In: Antibiotic and Chemotherapy, 9th ed; , 2011; pp. 145-169.
Aiyegoro, O.A.; Okoh, A.I. Use of bioactive plant products in combination with standard antibiotics: implications in antimicrobial chemotherapy. J. Med. Plants Res., 2009, 3(13), 1147-1152.
Appiah, T.; Agyare, C.; Luo, Y.; Boamah, V.E.; Boakye, Y.D. Antimicrobial and resistance modifying activities of cerevisterol isolated from Trametes Species Curr. Bioact. Compds, 2020, 16(2), 115-123.
Uysal, A.; Erdogan, G. Antimicrobial and Anti-MRSA effects of three extracts of some hypericum species against standard microorganisms and Methicillin Resistant Staphylococcus aureus (MRSA). Strains. Curr. Bioact. Compd., 2015, 11(3), 146-151.
Stermitz, F.R.; Lorenz, P.; Tawara, J.N.; Zenewicz, L.A.; Lewis, K. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA, 2000, 97(4), 1433-1437.
Santiago, C.; Pang, E.L.; Lim, K.H.; Loh, H.S.; Ting, K.N. Inhibition of Penicillin-Binding Protein 2a (PBP2a) in Methicillin Resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC Complement. Altern. Med., 2015, 15, 178.
Konaté, K.; Hilou, A.; Mavoungou, J.F.; Lepengué, A.N.; Souza, A.; Barro, N.; Datté, J.Y.; M’batchi, B.; Nacoulma, O.G. Antimicrobial activity of polyphenol-rich fractions from Sida alba L. (Malvaceae) against co-trimoxazol-resistant bacteria strains. Ann. Clin. Microbiol. Antimicrob., 2012, 11(1), 5.
Cheesman, M.J.; Ilanko, A.; Blonk, B.; Cock, I.E. Developing new antimicrobial therapies: Are synergistic combinations of plant extracts/compounds with conventional antibiotics the solution? Pharmacogn. Rev., 2017, 11(22), 57-72.
Inui, T.; Wang, Y.; Deng, S.; Smith, D.C.; Franzblau, S.G.; Pauli, G.F. Counter-current chromatography based analysis of synergy in an anti-tuberculosis ethnobotanical. J. Chromatogr. A, 2007, 1151(1-2), 211-215.
Madigan, M.T.; Jung, D.O.; Woese, C.R.; Achenbach, L.A. Rhodoferax antarcticus sp. nov., a moderately psychrophilic purple nonsulfur bacterium isolated from an Antarctic microbial mat. Arch. Microbiol., 2000, 173(4), 269-277.
Dukan, S.; Nyström, T. Bacterial senescence: Stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes Dev., 1998, 12(21), 3431-3441.
Wilson, P.D.G.; Wilson, D.R.; Brocklehurst, T.F.; Coleman, H.P.; Mitchell, G.; Waspe, C.R.; Jukes, S.A.; Robins, M.M. Batch growth of Salmonella typhimurium LT2: stoichiometry and factors leading to cessation of growth. Int. J. Food Microbiol., 2003, 89(2-3), 195-203.
French, G.L. Bactericidal agents in the treatment of MRSA infections-The potential role of daptomycin. J. Antimicrob. Chemother., 2006, 58(6), 1107-1117.
Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol., 2011, 48(4), 412-422.
Prior, R.L.; Wu, X.; Schaich, K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem., 2005, 53(10), 4290-4302.
Baliga, M.S.; Jagetia, G.C.; Rao, S.K.; Babu, S.K. Evaluation of nitric oxide scavenging activity of certain spices in vitro: A preliminary study. Food/Nahrung, 2003, 47(4), 261-264.
Parul, R.; Kundu, S.K.; Saha, P. In vitro nitric oxide scavenging activity of methanol extracts of three Bangladeshi medicinal plants. J. Pharm. Innov., 2013, 1(12, Part A), 83.
Wink, D.A.; Kasprzak, K.S.; Maragos, C.M.; Elespuru, R.K.; Misra, M.; Dunams, T.M.; Cebula, T.A.; Koch, W.H.; Andrews, A.W.; Allen, J.S. DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science, 1991, 254(5034), 1001-1003.
Ivanov, A.V.; Bartosch, B.; Isaguliants, M.G. Oxidative stress in infection and consequent disease. Oxid. Med. Cell. Longev., 2017, 2017, 3496043.
Eberhardt, M.V.; Lee, C.Y.; Liu, R.H. Antioxidant activity of fresh apples. Nature, 2000, 405(6789), 903-904.
Sanhueza, L.; Melo, R.; Montero, R.; Maisey, K.; Mendoza, L.; Wilkens, M. Synergistic interactions between phenolic compounds identified in grape pomace extract with antibiotics of different classes against Staphylococcus aureus and Escherichia coli. PLoS One, 2017, 12(2), e0172273.
Morobe, I.C.; Mthethwa, N.S.; Bisi-Johnson, M.A.; Vasaikar, S.D.; Obi, C.L.; Oyedeji, A.O.; Kambizi, L.; Eloff, J.N.; Hattori, T. Cytotoxic effects and safety profiles of extracts of active medicinal plants from South Africa. J. Microbiol. Res. (Rosemead Calif.), 2012, 2(6), 176-182.
Ammerman, N.C.; Beier-Sexton, M.; Azad, A.F. Growth and maintenance of Vero cell lines. Curr. Protoc. Microbiol., 2008, 4(Appendix), 4E.
Nemudzivhadi, V.; Masoko, P. In vitro assessment of cytotoxicity, antioxidant, and anti-inflammatory activities of Ricinus communis (Euphorbiaceae) leaf extracts. J. Evid. Based. Complement. Alternat. Med., 2014, 2014, 625961.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 October, 2020
Page: [1049 - 1062]
Pages: 14
DOI: 10.2174/1573407215666191102161341
Price: $65

Article Metrics

PDF: 9
PRC: 1