In Vitro Genotoxicity and Molecular Docking Study of Ellagic Acid

Author(s): Tuba C. Dördü, Rüştü Hatipoğlu, Mehmet Topaktaş, Erman S. İstifli*

Journal Name: Current Bioactive Compounds

Volume 16 , Issue 7 , 2020

Become EABM
Become Reviewer
Call for Editor

Graphical Abstract:


Background: Ellagic Acid (EA) is a polyphenolic compound that is classified in the natural antioxidants group. Polyphenolic compounds that exert antioxidant activity possess particular importance for scientists, food producers and consumers due to their positive effects on human health. However, despite considerable evidence that EA shows antigenotoxic activity by binding to DNA, there is no systematic genotoxicity study of this substance, which can covalently bind to DNA. This study aims to reveal the possible genotoxic activity of EA using widely accepted assays for the assessment of DNA clastogenic activity: sister chromatid exchange, chromosome aberration, micronucleus and comet assays as well as to predict the interactions among EA and DNA through molecular docking.

Methods: Different assays were carried out to identify the clastogenic activity of EA on human lymphocyte DNA using Sister Chromatid Exchange (SCE), Chromosome Aberration (CA), Micronucleus (MN) and single-cell gel electrophoresis (SCGE/comet) assays. For this aim, human peripheral blood lymphocytes were treated with EA (60, 80 and 100 μg/ml) for 24 and 48 hrs in the SCE, CA and MN assays and for 1 hr in the comet assay. Furthermore, molecular docking experiments were also performed to calculate the binding energy of EA on human B-DNA structure (B-DNA dodecamer) as well as to predict noncovalent interactions among these macromolecules.

Results: At the concentrations and treatment times (24- or 48-hr) tested, EA did not induce either SCE or Chromosome Aberrations (CAs) as compared to the negative and solvent controls. Although EA slightly increased the percentage of Micronucleated Binuclear (%MNBN) cells as well as the percentage of Micronucleus (%MN) in 24 or 48-hr treatment periods at all concentrations, this increase was not statistically significant as compared to both controls. The effect of EA on DNA replication (nuclear division) was determined by the Proliferation Index (PI), the Nuclear Division Index (NDI) and the Mitotic Index (MI). No statistically significant differences were observed in the PI or NDI in 24- or 48-hr treatment periods in human lymphocyte cultures treated with EA at various concentrations. EA generally had no significant effect on the MI, as observed with the PI and NDI.

Discussion: Although the concentrations of 60 and 80 μg/mL at a 24-hr treatment period and the concentrations of 60 μg/mL and 100 μg/mL at 48-hr treatment period generally decreased the MI, those decreases were not statistically significant when compared to negative and solvent controls. Moreover, none of the concentrations of EA tested in this study were able to increase DNA damage determined by the tail DNA length, %DNA in tail and tail moment parameters in the comet assay. Although the amount of DNA damage in the comet assay decreased with increasing concentrations of EA, this decrease was not statistically significant as compared to both controls. However, molecular docking experiments interestingly showed that the binding free energy of EA with B-DNA was -7.84 kcal/mol-1, indicating a strong interaction between the two molecules.

Conclusion: Although the findings of our study show that EA does not have genotoxic potential in human chromosomes, molecular docking experiments revealed strong hydrogen bonding between EA and B-DNA molecules. Therefore, it has been proposed that the prevailing information suggesting that the molecules that bind to DNA cause genotoxic effects should be reconsidered from a wider perspective.

Keywords: Ellagic acid, sister chromatid exchange, chromosome aberration, micronucleus, single-cell gel electrophoresis, molecular docking.

Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci., 1997, 2, 152-159.
Kopáni, M.; Celec, P.; Danisovic, L.; Michalka, P.; Biró, C. Oxidative stress and electron spin resonance. Clin. Chim. Acta, 2006, 364(1-2), 61-66.
Surveswaran, S.; Cai, Y.Z.; Corke, H.; Sun, M. Systematic evaluation of natural phenolic antioxidants from 133 Indian medicinal plants. Food Chem., 2007, 102, 938-953.
Lako, J.; Trenerry, V.C.; Wahlqvist, M.; Wattanapenpaiboon, N.; Sotheeswaran, S.; Premier, R. Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of fijian fruit, vegetables and other readily available foods. Food Chem., 2007, 101(4), 1727-1741.
Perry, P.; Evans, H.J. Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature, 1975, 258(5531), 121-125.
Sonoda, E.; Sasaki, M.S.; Morrison, C.; Yamaguchi-Iwai, Y.; Takata, M.; Takeda, S. Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol. Cell. Biol., 1999, 19(7), 5166-5169.
Helleday, T. Pathways for mitotic homologous recombination in mammalian cells. Mutat. Res., 2003, 532(1-2), 103-115.
Albertini, R.J.; Anderson, D.; Douglas, G.R.; Hagmar, L.; Hemminki, K.; Merlo, F.; Natarajan, A.T.; Norppa, H.; Shuker, D.E.; Tice, R.; Waters, M.D.; Aitio, A. Ipcs guidelines for the monitoring of genotoxic effects of carcinogens in humans. international programme on chemical safety. Mutat. Res., 2000, 463(2), 111-172.
Savage, J.R. Update on target theory as applied to chromosomal aberrations. Environ. Mol. Mutagen., 1993, 22(4), 198-207.
Bonassi, S.; Hagmar, L.; Strömberg, U.; Montagud, A.H.; Tinnerberg, H.; Forni, A.; Heikkilä, P.; Wanders, S.; Wilhardt, P.; Hansteen, I.L.; Knudsen, L.E.; Norppa, H. Chromosomal aberrations in lymphocytes predict human cancer independently of exposure to carcinogens. Cancer Res., 2000, 60(6), 1619-1625.
Bonassi, S.; Ugolini, D.; Kirsch-Volders, M.; Strömberg, U.; Vermeulen, R.; Tucker, J.D. Human population studies with cytogenetic biomarkers: review of the literature and future prospectives. Environ. Mol. Mutagen., 2005, 45(2-3), 258-270.
Bonassi, S.; Znaor, A.; Norppa, H.; Hagmar, L. Chromosomal aberrations and risk of cancer in humans: an epidemiologic perspective. Cytogenet. Genome Res., 2004, 104(1-4), 376-382.
Bonassi, S.; Znaor, A.; Ceppi, M.; Lando, C.; Chang, W.P.; Holland, N.; Kirsch-Volders, M.; Zeiger, E.; Ban, S.; Barale, R.; Bigatti, M.P.; Bolognesi, C.; Cebulska-Wasilewska, A.; Fabianova, E.; Fucic, A.; Hagmar, L.; Joksic, G.; Martelli, A.; Migliore, L.; Mirkova, E.; Scarfi, M.R.; Zijno, A.; Norppa, H.; Fenech, M. An increased micronucleus frequency in peripheral blood lymphocytes predicts the risk of cancer in humans. Carcinogenesis, 2007, 28(3), 625-631.
Heddle, J.A.; Cimino, M.C.; Hayashi, M.; Romagna, F.; Shelby, M.D.; Tucker, J.D.; Vanparys, P.; Macgregor, J.T. Micronuclei as an index of cytogenetic damage: past, present, and future. Environ. Mol. Mutagen., 1991, 18(4), 277-291.
Surrallés, J.; Xamena, N.; Creus, A.; Marcos, R. The suitability of the micronucleus assay in human lymphocytes as a new biomarker of excision repair. Mutat. Res., 1995, 342(1-2), 43-59.
Fenech, M. Biomarkers of genetic damage for cancer epidemiology. Toxicology, 2002, 181-182, 411-416.
Topaktaş, M.; Rencüzoğullari, E. Sitogenetik; Nobel Yayınevi: Ankara,. 2010.
Rydberg, G.; Johanson, K. J. Estimation of DNA strand breaks in single mammalian cells. DNA Repair Mechanisms, Academic Press: New York , 1978.
Ostling, O.; Johanson, K.J. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem. Biophys. Res. Commun., 1984, 123(1), 291-298.
Bandyopadhyaya, G.; Sinha, S.; Chattopadhyay, B.D.; Chakraborty, A. Protective role of curcumin against nicotine-induced genotoxicity on rat liver under restricted dietary protein. Eur. J. Pharmacol., 2008, 588(2-3), 151-157.
Singh, N.P.; Mccoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of dna damage in individual cells. Exp. Cell Res., 1988, 175(1), 184-191.
Nasab, R.R.; Hassanzadeh, F.; Khodarahmi, G.A.; Rostami, M.; Mirzaei, M.; Jahanian-Najafabadi, A.; Mansourian, M. Docking study, synthesis and antimicrobial evaluation of some novel 4-anilinoquinazoline derivatives. Res. Pharm. Sci., 2017, 12(5), 425-433.
Ricci, C.G.; Netz, P.A. Docking studies on DNA-ligand interactions: building and application of a protocol to identify the binding mode. J. Chem. Inf. Model., 2009, 49(8), 1925-1935.
Vattem, D.A.; Shetty, K. Biological functionality of ellagic acid: A review. J. Food Biochem., 2005, 29(3), 234-266.
Rogerio, A.P.; Fontanari, C.; Borducchi, E.; Keller, A.C.; Russo, M.; Soares, E.G.; Albuquerque, D.A.; Faccioli, L.H. Anti-inflammatory effects of lafoensia pacari and ellagic acid in a murine model of asthma. Eur. J. Pharmacol., 2008, 580(1-2), 262-270.
Chao, P.C.; Hsu, C.C.; Yin, M.C. anti-inflammatory and anti-coagulatory activities of caffeic acid and ellagic acid in cardiac tissue of diabetic mice. Nutr. Metab. (Lond.), 2009, 6, 33.
Lee, W.J.; Ou, H.C.; Hsu, W.C.; Chou, M.M.; Tseng, J.J.; Hsu, S.L.; Tsai, K.L.; Sheu, W.H. Ellagic acid inhibits oxidized ldl-mediated lox-1 expression, ros generation, and inflammation in human endothelial cells. J. Vasc. Surg., 2010, 52(5), 1290-1300.
Malini, P.; Kanchan, G.; Rajadurai, M. Antidiabetic efficacy of ellagic acid in streptozotocin induced diabetes mellitus in albino wistar rats. Asian J Pharm Clin Res, 2011, 4, 124-128.
Rosillo, M.A.; Sanchez-Hidalgo, M.; Cárdeno, A.; De La Lastra, C.A. Protective effect of ellagic acid, a natural polyphenolic compound, in a murine model of Crohn’s disease. Biochem. Pharmacol., 2011, 82(7), 737-745.
Test, No 487: In Vitro Mammalian Cell Micronucleus Test , OECD Publishing: Paris, . 2010.
Evans, H.J.; O’Riordan, M.L. Human peripheral blood lymphocytes for the analysis of chromosome aberrations in mutagen tests. Mutat. Res., 1975, 31(3), 135-148.
Perry, P.; Thomson, E.J. The methodology of sister chromatid exchanges;, Elsevier: Amsterdam,. 1984.
Rencüzoğullari, E.; Topaktaş, M. The relationship between quantities of bromodeoxyuridine and human peripheral blood with determination of the best differantial staining of sister chromatids using chromosome medium-B. Fen ve Mühendislik Bilimleri Dergisi , 1991, 5, 19-24.
Speit, G.; Haupter, S. On the mechanism of differential giemsa staining of bromodeoxyuridine-substituted chromosomes. ii. differences between the demonstration of sister chromatid differentiation and replication patterns. Hum. Genet., 1985, 70(2), 126-129.
Mace, M.L., Jr; Daskal, Y.; Wray, W. Scanning-electron microscopy of chromosome aberrations. Mutat. Res., 1978, 52(2), 199-206.
Rothfuss, A.; Schütz, P.; Bochum, S.; Volm, T.; Eberhardt, E.; Kreienberg, R.; Vogel, W.; Speit, G. Induced micronucleus frequencies in peripheral lymphocytes as a screening test for carriers of a BRCA 1 mutation in breast cancer families. Cancer Res., 2000, 60(2), 390-394.
Kirsch-Volders, M.; Sofuni, T.; Aardema, M.; Albertini, S.; Eastmond, D.; Fenech, M.; Ishidate, M., Jr; Kirchner, S.; Lorge, E.; Morita, T.; Norppa, H.; Surrallés, J.; Vanhauwaert, A.; Wakata, A. Report from the in vitro micronucleus assay working group. Mutat. Res., 2003, 540(2), 153-163.
Fenech, M. The in vitro micronucleus technique. Mutat. Res., 2000, 455(1-2), 81-95.
Sanner, M.F. Python: a programming language for software integration and development. J. Mol. Graph. Model., 1999, 17(1), 57-61.
Cozzi, R.; Ricordy, R.; Bartolini, F.; Ramadori, L.; Perticone, P.; De Salvia, R. Taurine and ellagic acid: two differently-acting natural antioxidants. Environ. Mol. Mutagen., 1995, 26(3), 248-254.
Teel, R.W. Ellagic acid binding to DNA as a possible mechanism for its antimutagenic and anticarcinogenic action. Cancer Lett., 1986, 30(3), 329-336.
Whitley, A.C.; Stoner, G.D.; Darby, M.V.; Walle, T. Intestinal epithelial cell accumulation of the cancer preventive polyphenol ellagic acid-extensive binding to protein and DNA. Biochem. Pharmacol., 2003, 66(6), 907-915.
Thulstrup, P.W.; Thormann, T.; Spanget-Larsen, J.; Bisgaard, H.C. Interaction between ellagic acid and calf thymus DNA studied with flow linear dichroism uv-vis spectroscopy. Biochem. Biophys. Res. Commun., 1999, 265(2), 416-421.
Perera, F.; Mayer, J.; Jaretzki, A.; Hearne, S.; Brenner, D.; Young, T.L.; Fischman, H.K.; Grimes, M.; Grantham, S.; Tang, M.X. Comparison of dna adducts and sister chromatid exchange in lung cancer cases and controls. Cancer Res., 1989, 49(16), 4446-4451.
Sudheer, A.R.; Muthukumaran, S.; Devipriya, N.; Menon, V.P. Ellagic acid, a natural polyphenol protects rat peripheral blood lymphocytes against nicotine-induced cellular and DNA damage in vitro: with the comparison of n-acetylcysteine. Toxicology, 2007, 230(1), 11-21.
Kumar, A.; Tyagi, Y.K.; Ponnan, P.; Rohil, V.; Prasad, A.K.; Dwarkanath, B.S.; Parmar, V.S.; Raj, H.G. Ellagic acid peracetate is superior to ellagic acid in the prevention of genotoxicity due to aflatoxin b1 in bone marrow and lung cells. J. Pharm. Pharmacol., 2007, 59(1), 81-86.
Gurova, K. New hopes from old drugs: revisiting DNA-binding small molecules as anticancer agents. Future Oncol., 2009, 5(10), 1685-1704.
Vanella, L.; Barbagallo, I.; Acquaviva, R.; Di Giacomo, C.; Cardile, V.; Abraham, N.G.; Sorrenti, V. Ellagic acid: cytodifferentiating and antiproliferative effects in human prostatic cancer cell lines. Curr. Pharm. Des., 2013, 19(15), 2728-2736.
Khanduja, K.L.; Avti, P.K.; Kumar, S.; Mittal, N.; Sohi, K.K.; Pathak, C.M. Anti-apoptotic activity of caffeic acid, ellagic acid and ferulic acid in normal human peripheral blood mononuclear cells: a bcl-2 independent mechanism. Biochim. Biophys. Acta, 2006, 1760(2), 283-289.
Salimi, A.; Roudkenar, M.H.; Sadeghi, L.; Mohseni, A.; Seydi, E.; Pirahmadi, N.; Pourahmad, J. ellagic acid, a polyphenolic compound, selectively induces ros-mediated apoptosis in cancerous b-lymphocytes of cll patients by directly targeting mitochondria. Redox Biol., 2015, 6, 461-471.
Chung, Y.C.; Lu, L.C.; Tsai, M.H.; Chen, Y.J.; Chen, Y.Y.; Yao, S.P.; Hsu, C.P. The inhibitory effect of ellagic acid on cell growth of ovarian carcinoma cells. Evid. Based Complement. Alternat. Med., 2013, 2013, 306705
Fjaeraa, C.; Nånberg, E. Effect of ellagic acid on proliferation, cell adhesion and apoptosis in sh-sy5y human neuroblastoma cells. Biomed. Pharmacother., 2009, 63(4), 254-261.
Ahire, V.; Kumar, A.; Mishra, K.P.; Kulkarni, G. Ellagic acid enhances apoptotic sensitivity of breast cancer cells to γ-radiation. Nutr. Cancer, 2017, 69(6), 904-910.
Li, L.W.; Na, C.; Tian, S.Y.; Chen, J.; Ma, R.; Gao, Y.; Lou, G. Ellagic acid induces hela cell apoptosis via regulating signal transducer and activator of transcription 3 signaling. Exp. Ther. Med., 2018, 16(1), 29-36.
Obaidat, A.; Roth, M.; Hagenbuch, B. The expression and function of organic anion transporting polypeptides in normal tissues and in cancer. Annu. Rev. Pharmacol. Toxicol., 2012, 52, 135-151.
Nigam, S.K.; Bush, K.T.; Martovetsky, G.; Ahn, S.Y.; Liu, H.C.; Richard, E.; Bhatnagar, V.; Wu, W. The organic anion transporter (oat) family: a systems biology perspective. Physiol. Rev., 2015, 95(1), 83-123.
Roth, M.; Obaidat, A.; Hagenbuch, B. Oatps, oats and octs: the organic anion and cation transporters of the slco and slc22a gene superfamilies. Br. J. Pharmacol., 2012, 165(5), 1260-1287.
Koepsell, H. The na+-d-glucose cotransporters sglt1 and sglt2 are targets for the treatment of diabetes and cancer. Pharmacol. Ther., 2017, 170, 148-165.
Fiske, J.L.; Fomin, V.P.; Brown, M.L.; Duncan, R.L.; Sikes, R.A. Voltage-sensitive ion channels and cancer. Cancer Metastasis Rev., 2006, 25(3), 493-500.
Deberardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv., 2016, 2(5), E1600200
Zhou, H.; Bi, S.; Wang, Y.; Wu, J. Characterization of the binding of neomycin/paromomycin sulfate with dna using acridine orange as fluorescence probe and molecular docking technique. J. Biomol. Struct. Dyn., 2017, 35(10), 2077-2089.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2020
Published on: 27 October, 2020
Page: [1072 - 1082]
Pages: 11
DOI: 10.2174/1573407215666191102130417
Price: $65

Article Metrics

PDF: 15
PRC: 1