Stress Corrosion Cracking of Structural Nuclear Materials: Influencing Factors and Materials Selection

Author(s): Renato Altobelli Antunes*, Mara Cristina Lopes de Oliveira

Journal Name: Innovations in Corrosion and Materials Science (Discontinued)
Formerly Recent Patents on Corrosion Science

Volume 10 , Issue 1 , 2020


Graphical Abstract:


Abstract:

Stress Corrosion Cracking (SCC) plays a central role in the development of improved structural nuclear materials. Complex interactions between microstructure, alloy composition, manufacturing and environmental factors make the understanding of this phenomenon difficult. This work aimed at reviewing the scientific literature on the SCC behavior of structural nuclear materials in order to identify the main factors that govern this phenomenon. Additionally, the interaction between these factors and materials selection is discussed in order to provide a comprehensive basis for the successful design of metallic materials with improved resistance to SCC.

Keywords: Stress corrosion cracking, structural nuclear materials, materials selection, nuclear energy, CO2 emmiting technologies, climatic changes.

[1]
N. Maïzi, and E. Assoumou, "Future prospects for nuclear power in French", Appl. Energy, vol. 136, pp. 849-859, 2014.
[http://dx.doi.org/10.1016/j.apenergy.2014.03.056]
[2]
S. Hong, C.J.A. Bradshaw, and B.W. Brook, "Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis", Energy Policy, vol. 56, pp. 418-424, 2013.
[http://dx.doi.org/10.1016/j.enpol.2013.01.002]
[3]
P.L. Kunsch, and J. Friesewinckel, "Nuclear energy in Belgium after Fukushima", Energy Policy, vol. 66, pp. 462-474, 2014.
[http://dx.doi.org/10.1016/j.enpol.2013.11.035]
[4]
A. Dalla Valle, and C. Furlan, "Diffusion of nuclear energy in some developing countries", Technol. Forecast. Soc. Change, vol. 81, pp. 143-153, 2014.
[http://dx.doi.org/10.1016/j.techfore.2013.04.019]
[5]
S. Grape, S.J. Svärd, C. Hellesen, P. Jansson, and M.A. Lindell, "New perspectives on nuclear power – Generation IV nuclear energy systems to strengthen nuclear non-proliferation and support nuclear disarmament", Energy Policy, vol. 73, pp. 815-819, 2014.
[http://dx.doi.org/10.1016/j.enpol.2014.06.026]
[6]
B.W. Brook, A. Alonso, D.A. Meneley, J. Misak, T. Blees, and J.B. Van Erp, "Why nuclear energy is sustainable and must be part of the energy mix", Sust. Mater. Technol., vol. 1-2, pp. 8-16, 2014.
[http://dx.doi.org/10.1016/j.susmat.2014.11.001]]
[7]
A. Omri, N.B. Mabrouk, and A. Sassi-Imar, "Modeling the causal linkages between nuclear energy, renewable energy and economic growth in developed and developing countries", Renew. Sustain. Energy Rev., vol. 42, pp. 1012-1022, 2015.
[http://dx.doi.org/10.1016/j.rser.2014.10.046]
[8]
S.J. Zinkle, and G.S. Was, "Materials challenges in nuclear energy", Acta Mater., vol. 61, pp. 735-758, 2013.
[http://dx.doi.org/10.1016/j.actamat.2012.11.004]
[9]
Y. Guérin, G.S. Was, and S.J. Zinkle, "Materials challenges for advanced nuclear energy systems", MRS Bull., vol. 34, pp. 10-14, 2009.
[http://dx.doi.org/10.1017/S0883769400100028]]
[10]
T. Allen, J. Busby, M. Meyers, and D. Petit, "Materials challenges for nuclear systems", Mater. Today, vol. 13, pp. 14-23, 2010.
[http://dx.doi.org/10.1016/S1369-7021(10)70220-0]
[11]
G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, and C. Pister, "Corrosion and stress corrosion cracking in supercritical water", J. Nucl. Mater., vol. 371, pp. 176-201, 2007.
[http://dx.doi.org/10.1016/j.jnucmat.2007.05.017]
[12]
R.W. Staehle, and J.A. Gorman, "Quantitative assessment of submodes of stress corrosion cracking on the secondary side of steam generator tubing in pressurized water reactors: Part 3", Corrosion, vol. 60, pp. 115-180, 2004.
[http://dx.doi.org/10.5006/1.3287716]
[13]
V. Francon, M. Fregonese, H. Abe, and Y. Watanabe, "Iodine induced stress corrosion cracking of Zircaloy-4: Identification of critical parameters involved in intergranular to transgranular propagation", Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., vol. 183, pp. 49-56, 2011.
[http://dx.doi.org/10.4028/www.scientific.net/SSP.183.49]
[14]
T.K. Yeh, G.R. Huang, M.Y. Wang, and C.H. Tsai, "Stress corrosion cracking in dissimilar metal welds with 304lL stainless steel and Alloy 82 in high temperature water", Prog. Nucl. Energy, vol. 63, pp. 7-11, 2013.
[http://dx.doi.org/10.1016/j.pnucene.2012.10.001]
[15]
F. Hernandez-Valle, A.R. Clough, and R.S. Edwards, "Stress corrosion cracking detection using non-contact ultrasonic techniques", Corros. Sci., vol. 78, pp. 335-342, 2014.
[http://dx.doi.org/10.1016/j.corsci.2013.10.018]
[16]
C. Sun, R. Hui, W. Qu, and S. Yick, "Progress in corrosion resistant materials for supercritical water reactors", Corros. Sci., vol. 51, pp. 2508-2523, 2009.
[http://dx.doi.org/10.1016/j.corsci.2009.07.007]
[17]
J. Li, W. Zheng, S. Penttilä, P. Liu, O.T. Woo, and D. Guzonas, "Microstructural stability of candidate stainless steels for Gen-IV SCWR fuel cladding application", J. Nucl. Mater., vol. 454, pp. 7-11, 2014.
[http://dx.doi.org/10.1016/j.jnucmat.2014.06.043]
[18]
A. Turnbull, K. Mingard, J.D. Lord, B. Roebuck, D.R. Tice, K.J. Mottershead, N.D. Fairweather, and A.K. Bradbury, "Sensitivity of stress corrosion cracking of stainless steel to surface machining and grinding procedure", Corros. Sci., vol. 53, pp. 3398-3415, 2011.
[http://dx.doi.org/10.1016/j.corsci.2011.06.020]
[19]
R.W. Bosch, M. Vankeerberghen, R. Gérard, and F. Somville, "Crack initiation testing of thimble tube under PWR conditions to determine a stress threshold for IASCC", J. Nucl. Mater., vol. 461, pp. 112-121, 2015.
[http://dx.doi.org/10.1016/j.jnucmat.2015.02.038]
[20]
T.R. Allen, L. Tan, G.S. Was, and E.A. Kenik, "Thermal and radiation-induced segregation in model Ni-base alloys", J. Nucl. Mater., vol. 361, pp. 174-183, 2007.
[http://dx.doi.org/10.1016/j.jnucmat.2006.12.004]
[21]
R.S. Wang, C.L. Xu, X.B. Liu, P. Huang, and Y. Chen, "The studies of irradiation assisted stress corrosion cracking on reactor internals stainless steel under Xe irradiation", J. Nucl. Mater., vol. 457, pp. 130-134, 2015.
[http://dx.doi.org/10.1016/j.jnucmat.2014.11.019]
[22]
S.M. Bruemmer, E.P. Simonen, P.M. Scott, P.L. Andresen, G.S. Was, and J.L. Nelson, "Radiation-induced material changes and susceptibility to intergranular failure of light-water-reactor core internals", J. Nucl. Mater., vol. 274, pp. 299-314, 1999.
[http://dx.doi.org/10.1016/S0022-3115(99)00075-6]
[23]
P. Scott, "A review of irradiation assisted stress corrosion cracking", J. Nucl. Mater., vol. 211, pp. 101-122, 1994.
[http://dx.doi.org/10.1016/0022-3115(94)90360-3]
[24]
H. Nishioka, K. Fukuya, K. Fuji, and T. Torimaru, "IASCC initiation in highly irradiated stainless steels under uniaxial constant load conditions", J. Nucl. Sci. Technol., vol. 45, pp. 1072-1077, 2008.
[http://dx.doi.org/10.1080/18811248.2008.9711894]
[25]
T. Tsukada, S. Jitsukawa, K. Shiba, Y. Sato, I. Shibahara, and H. Nakajima, "Evaluation of irradiation assisted stress corrosion cracking (IASCC) of type 316 stainless steel irradiated in FBR", J. Nucl. Mater., vol. 207, pp. 159-168, 1993.
[http://dx.doi.org/10.1016/0022-3115(93)90258-Z]
[26]
H.M. Chung, W.E. Ruther, J.E. Sanecki, A. Hins, N.J. Zaluzec, and T.F. Kassner, "Irradiation-assisted stress corrosion cracking of austenitic stainless steels: recent progress and new approaches", J. Nucl. Mater., vol. 239, pp. 61-79, 1996.
[http://dx.doi.org/10.1016/S0022-3115(96)00677-0]
[27]
S.M. Bruemmer, and E.P. Simonen, "Radiation-hardening and radiation-induced chromium depletion effects on intergranular stress corrosion cracking in austenitic stainless steels", Corrosion, vol. 50, pp. 940-946, 1994.
[http://dx.doi.org/10.5006/1.3293485]
[28]
J.T. Busby, G.S. Was, and E.A. Kenik, "Isolating the effect of radiation-induced segregation in irradiation-assisted stress corrosion cracking of austenitic stainless steels", J. Nucl. Mater., vol. 302, pp. 20-40, 2002.
[http://dx.doi.org/10.1016/S0022-3115(02)00719-5]
[29]
T. Tsukada, Y. Miwa, H. Tsuji, and H. Nakajima, "Effect of irradiation temperature o non irradiation assisted stress corrosion cracking of model austenitic stainless steels", J. Nucl. Mater., vol. 263, pp. 1669-1674, 1998.
[http://dx.doi.org/10.1016/S0022-3115(98)00317-1]
[30]
Z. Jiao, and G.S. Was, "The role of irradiated microstructure in the localized deformation of austenitic stainless steels", J. Nucl. Mater., vol. 407, pp. 34-43, 2010.
[http://dx.doi.org/10.1016/j.jnucmat.2010.07.006]
[31]
Z. Jiao, and G.S. Was, "Impact of localized deformation on IASCC in austenitic stainless steels", J. Nucl. Mater., vol. 408, pp. 246-256, 2011.
[http://dx.doi.org/10.1016/j.jnucmat.2010.10.087]
[32]
R.A. Antunes, and M.C.L. De Oliveira, "Materials selection for hot stamped automotive body parts: An application of the Ashby approach based on the strain hardening exponent and stacking fault energy of materials", Mater. Des., vol. 63, pp. 247-256, 2014.
[http://dx.doi.org/10.1016/j.matdes.2014.06.011]
[33]
G.S. Was, and J.T. Busby, "Role of irradiated microstructure and microchemistry in irradiation-assisted stress corrosion cracking", Philos. Mag., vol. 85, pp. 443-465, 2005.
[http://dx.doi.org/10.1080/02678370412331320224]
[34]
M.D. McMurtrey, G.S. Was, L. Patrick, and D. Farkas, "Relationship between localized strain and irradiation assisted stress corrosion cracking in an austenitic alloy", Mater. Sci. Eng. A, vol. 528, pp. 3730-3740, 2011.
[http://dx.doi.org/10.1016/j.msea.2011.01.073]
[35]
P. Ahmedabadi, V. Kain, K. Akora, I. Samajdar, S.C. Sharma, and P. Bhagwat, "Radiation-induced segregation in desensitized type 304 austenitic stainless steel", J. Nucl. Mater., vol. 416, pp. 335-344, 2011.
[http://dx.doi.org/10.1016/j.jnucmat.2011.06.024]
[36]
C.M. Barr, G.A. Vetterick, K.A. Unocic, K. Hattar, X.M. Bai, and M.L. Taheri, "Anisotropic radiation-induced segregation in 316L austenitic stainless steel with grain boundary character", Acta Mater., vol. 67, pp. 145-155, 2014.
[http://dx.doi.org/10.1016/j.actamat.2013.11.060]
[37]
S. Teysseyre, Z. Jiao, E. West, and G.S. Was, "Effect of irradiation on stress corrosion cracking in supercritical water", J. Nucl. Mater., vol. 371, pp. 107-117, 2007.
[http://dx.doi.org/10.1016/j.jnucmat.2007.05.008]
[38]
A.S. Rao, "Degradation of austenitic stainless steel (SS) light water reactor (LWR) core internals due to neutron irradiation", Nucl. Eng. Des., vol. 269, pp. 78-82, 2014.
[http://dx.doi.org/10.1016/j.nucengdes.2013.08.010]
[39]
Z. Jiao, and G.S. Was, "Novel features of irradiation-induced segregation and radiation-induced precipitation in austenitic stainless steels", Acta Mater., vol. 59, pp. 1220-1238, 2011.
[http://dx.doi.org/10.1016/j.actamat.2010.10.055]
[40]
T.R. Allen, J.T. Busby, G.S. Was, and E.A. Kenik, "On the mechanism of radiation-induced segregation in austenitic Fe-Cr-Ni alloys", J. Nucl. Mater., vol. 255, pp. 44-58, 1998.
[http://dx.doi.org/10.1016/S0022-3115(98)00010-5]
[41]
D.S. Bae, S.H. Nahm, H.M. Lee, H. Kinoshita, T. Shibayama, and H. Takahashi, "Effect of electron-beam irradiation temperature on irradiation damage of high Mn-Cr steel", J. Nucl. Mater., vol. 329-333, pp. 1038-1042, 2004.
[http://dx.doi.org/10.1016/j.jnucmat.2004.04.131]
[42]
G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, and G.S. Was, "Microstructural evolution of proton irradiated T91", J. Nucl. Mater., vol. 351, pp. 162-173, 2006.
[http://dx.doi.org/10.1016/j.jnucmat.2006.02.028]
[43]
E.A. Marquis, R. Hu, and T. Rousseau, "A systematic approach for the study of radiation-induced segregation/depletion at grain boundaries in steels", J. Nucl. Mater., vol. 413, pp. 1-4, 2011.
[http://dx.doi.org/10.1016/j.jnucmat.2011.03.023]
[44]
R. Hu, G.D.W. Smith, and E.A. Marquis, "Atom probe study of radiation induced grain boundary segregation/depletion in a Fe-12%Cr alloy", Prog. Nucl. Energy, vol. 57, pp. 14-19, 2012.
[http://dx.doi.org/10.1016/j.pnucene.2011.10.011]
[45]
R. Hu, G.D.W. Smith, and E.A. Marquis, "Effect of grain boundary orientation on radiation-induced segregation in a Fe-15.2at% Cr alloy", Acta Mater., vol. 61, pp. 3490-3498, 2013.
[http://dx.doi.org/10.1016/j.actamat.2013.02.043]
[46]
K.G. Field, B.D. Miller, H.J.M. Chichester, K. Sridharan, and T.R. Allen, "Relationship between lath boundary structure and radiation induced segregation in a neutron irradiated 9 wt.% Cr model ferritic/martensitic steel", J. Nucl. Mater., vol. 445, pp. 143-148, 2014.
[http://dx.doi.org/10.1016/j.jnucmat.2013.10.056]
[47]
P. Ahmedabadi, V. Kain, K. Akora, and I. Samajdar, "Effect of residual strain on radiation induced segregation in SS 304", Corros. Sci., vol. 53, pp. 1465-1475, 2011.
[http://dx.doi.org/10.1016/j.corsci.2011.01.024]
[48]
M.A. Ashworth, D.I.R. Norris, and I.P. Jones, "Radiation-induced segregation in Fe-20Cr-25Ni-Nb based austenitic stainless steels", J. Nucl. Mater., vol. 189, pp. 289-302, 1992.
[http://dx.doi.org/10.1016/0022-3115(92)90383-V]
[49]
A. Etienne, B. Radiguet, N.J. Cunningham, G.R. Odette, R. Valiev, and P. Pareige, "Comparison of radiation-induced segregation in ultrafine-grained and conventional 316 austenitic stainless steels", Ultramicroscopy, vol. 111, no. 6, pp. 659-663, 2011.
[http://dx.doi.org/10.1016/j.ultramic.2010.12.026 PMID: 21216102]
[50]
N. Sakaguchi, M. Endo, S. Watanabe, H. Kinoshita, S. Yamashita, and H. Kokawa, "Radiation-induced segregation and corrosion behavior on Σ3 coincidence site lattice and random grain boundaries in proton-irradiated type-316L austenitic stainless steel", J. Nucl. Mater., vol. 434, pp. 65-71, 2013.
[http://dx.doi.org/10.1016/j.jnucmat.2012.11.036]
[51]
J.H. Kim, and I.S. Hwang, "Electroless nickel-plating for the PWSCC mitigation of nickel-base alloys in nuclear power plants", Nucl. Eng. Des., vol. 238, pp. 2529-2535, 2008.
[http://dx.doi.org/10.1016/j.nucengdes.2008.03.019]
[52]
S.S. Kim, D.W. Kim, and Y.S. Kim, "Primary water stress corrosion cracking (PWSCC) mechanism based on ordering reaction in Alloy 600", Met. Mater. Int., vol. 19, pp. 969-974, 2013.
[http://dx.doi.org/10.1007/s12540-013-5037-8]
[53]
S.S. Kang, S.S. Hwang, H.P. Kim, Y.S. Lim, and J.S. Kim, "The experience and analysis of vent pipe PWSCC (primary water stress corrosion cracking) in PWR vessel head penetration", Nucl. Eng. Des., vol. 269, pp. 291-298, 2014.
[http://dx.doi.org/10.1016/j.nucengdes.2013.08.043]
[54]
O.M. Aly, M.M. Neto, M.M.A.M. Schvartzman, and L.I.L. Lima, "Modeling of tests of primary water stress corrosion cracking of Alloy 182 of pressurized water reactor according to EPRI and USNRC recommendations", J. Technol. Innov. Renew. Energy, vol. 3, pp. 214-220, 2014.
[http://dx.doi.org/10.6000/1929-6002.2014.03.04.8]
[55]
J.H. Jeon, Y.J. Kim, and J.S. Kim, "Multiple axial surface PWSCC growth assessment of steam generator tube using the PWSCC initiation model and damage mechanics approach", Prog. Mater. Sci., vol. 3, pp. 811-816, 2014.
[56]
P.M. Scott, Proceedings Of The Specialists’ Meeting On Steam Generator Failure and Failure Propagation Experience., International Atomic Energy Agency En Brussels: Belgium, 1991, pp. 5-6.
[57]
S.S. Hwang, "Review of PWSCC and mitigation management strategies of Alloy 600 materials of PWRs", J. Nucl. Mater., vol. 443, pp. 321-330, 2013.
[http://dx.doi.org/10.1016/j.jnucmat.2013.07.032]
[58]
G.S. Was, "Grain boundary chemistry and intergranular fracture in austenitic nickel-base alloys – A review", Corrosion, vol. 46, pp. 319-330, 1990.
[http://dx.doi.org/10.5006/1.3585110]
[59]
Y.S. Lim, H.P. Kim, and S.S. Hwang, "Microstructural characterization on intergranular stress corrosion cracking of Alloy 600 in PWR primary water environment", J. Nucl. Mater., vol. 440, pp. 46-54, 2013.
[http://dx.doi.org/10.1016/j.jnucmat.2013.03.088]
[60]
M. Sennour, P. Laghoutaris, C. Guerre, and R. Molins, "Advanced TEM characterization of stress corrosion cracking of Alloy 600 in pressurized water reactor primary water environment", J. Nucl. Mater., vol. 393, pp. 254-266, 2009.
[http://dx.doi.org/10.1016/j.jnucmat.2009.06.014]
[61]
S. Lozano-Perez, and J.M. Tichmarsh, "TEM investigations of intergranular stress corrosion cracking of austenitic alloys in PWR environmental conditions", Mater. High Temp., vol. 20, pp. 573-579, 2003.
[http://dx.doi.org/10.1179/mht.2003.066]
[62]
J. Shi, J. Wang, and D.D. Macdonald, "Prediction of stress corrosion crack growth rates in Alloy 600 using artificial neural networks", Corros. Sci., vol. 92, pp. 217-227, 2015.
[http://dx.doi.org/10.1016/j.corsci.2014.12.007]
[63]
L.Y. Xu, and Y.F. Cheng, "An experimental investigation of corrosion of X100 pipeline steel under uniaxial elastic stress in a near-neutral pH solution", Corros. Sci., vol. 59, pp. 103-109, 2012.
[http://dx.doi.org/10.1016/j.corsci.2012.02.022]
[64]
F. Yang, H. Xue, L. Zhao, and X. Fang, "Effects of stress intensity fator on electrochemical corrosion potential at crack tip of nickel-based alloys in high temperature water environments", Rare Met. Mater. Eng., vol. 43, pp. 513-518, 2014.
[http://dx.doi.org/10.1016/S1875-5372(14)60067-9]
[65]
S. Yamazaki, Z. Lu, Y. Ito, Y. Takeda, and T. Shoji, "The effect of prior deformation on stress corrosion cracking growth rates of Alloy 600 materials in a simulated pressurized water reactor primary water", Corros. Sci., vol. 50, pp. 835-846, 2008.
[http://dx.doi.org/10.1016/j.corsci.2007.07.012]
[66]
L. Zhang, and J. Wang, "Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment", J. Nucl. Mater., vol. 446, pp. 15-26, 2014.
[http://dx.doi.org/10.1016/j.jnucmat.2013.11.027]
[67]
F. Meng, Z. Lu, T. Shoji, J. Wang, E.H. Han, and W. Ke, "Stress corrosion cracking of unidirectionally cold-worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations", Corros. Sci., vol. 53, pp. 2558-2565, 2011.
[http://dx.doi.org/10.1016/j.corsci.2011.04.013]
[68]
D.D. Macdonald, and M. Urquidi-Macdonald, "A coupled environment model for stress corrosion cracking in sensitized type 304 stainless steel in LWR environments", Corros. Sci., vol. 32, pp. 51-81, 1991.
[http://dx.doi.org/10.1016/0010-938X(91)90063-U]
[69]
P.L. Andresen, "Emerging issues and fundamental processes in environmental cracking in hot water", Corrosion, vol. 64, pp. 439-464, 2008.
[http://dx.doi.org/10.5006/1.3278483]
[70]
C.S. Kumai, and T.M. Devine, "Influence of oxygen concentration of 288°C water and alloy composition on the films formed on Fe-Ni-Cr alloys", Corrosion, vol. 63, pp. 1101-1113, 2007.
[http://dx.doi.org/10.5006/1.3278328]
[71]
W.J. Kuang, E.H. Han, X.Q. Wu, and J.C. Rao, "Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water", Corros. Sci., vol. 52, pp. 3654-3660, 2010.
[http://dx.doi.org/10.1016/j.corsci.2010.07.015]
[72]
R.L. Jones, J.D. Gilman, and J.L. Nelson, "Controlling stress corrosion cracking in boiling water reactors", Nucl. Eng. Des., vol. 143, pp. 111-123, 1993.
[http://dx.doi.org/10.1016/0029-5493(93)90279-I]
[73]
T. Terachi, T. Yamada, T. Miyamoto, K. Arioka, and K. Fukuya, "Corrosion behavior of stainless steel in simulated PWR primary water – effect of chromium content in alloys and dissolved hydrogen", J. Nucl. Sci. Technol., vol. 45, pp. 975-984, 2008.
[http://dx.doi.org/10.1080/18811248.2008.9711883]
[74]
Y. Qiu, T. Shoji, and Z. Lu, "Effect of dissolved hydrogen on the electrochemical behaviour of Alloy 600 in simulated PWR primary water at 290°C", Corros. Sci., vol. 53, pp. 1983-1989, 2011.
[http://dx.doi.org/10.1016/j.corsci.2011.02.020]
[75]
F. Meng, Z. Lu, T. Shoji, J. Wang, E-H. Han, and W. Ke, "Stress corrosion cracking of uni-directionally cold worked 316NG stainless steel in simulated PWR primary water with various dissolved hydrogen concentrations", Corros. Sci., vol. 53, pp. 2558-2565, 2011.
[http://dx.doi.org/10.1016/j.corsci.2011.04.013]
[76]
P.L. Andresen, J. Hickling, A. Ahluwalia, and J. Wilson, "Effects of hydrogen on stress corrosion crack growth rate of nickel alloys in high-temperature water", Corrosion, vol. 64, pp. 707-720, 2008.
[http://dx.doi.org/10.5006/1.3278508]
[77]
T. Terachi, N. Totsuka, T. Yamada, T. Nakagawa, H. Deguchi, M. Horiuchi, and M. Oshitani, "Influence of dissolved hydrogen on structure of oxide film on Alloy 600 formed in primary water of pressurized water reactors", J. Nucl. Sci. Technol., vol. 40, pp. 509-516, 2003.
[http://dx.doi.org/10.1080/18811248.2003.9715385]
[78]
J. Xu, T. Shoji, and C. Jang, "The effects of dissolved hydrogen on the corrosion behavior of Alloy 182 in the simulated primary water", Corros. Sci., vol. 97, pp. 115-125, 2015.
[http://dx.doi.org/10.1016/j.corsci.2015.04.021]
[79]
Q. Peng, J. Hou, K. Sakaguchi, Y. Takeda, and T. Shoji, "Effect of dissolved hydrogen on corrosion of Inconel Alloy 600 in high temperature hydrogenated water", Electrochim. Acta, vol. 56, pp. 8375-8386, 2011.
[http://dx.doi.org/10.1016/j.electacta.2011.07.032]
[80]
Z. Zhang, J. Wang, E-H. Han, and W. Ke, "Effects of surface state and applied stress on stress corrosion cracking of Alloy 690TT in lead-containing caustic solution", J. Mater. Sci. Technol., vol. 28, pp. 785-792, 2012.
[http://dx.doi.org/10.1016/S1005-0302(12)60131-5]
[81]
D.G. Briceño, and M.L. Castaño, "Ma.S. García, Stress corrosion cracking susceptibility of steam generator tube materials in AVT (all volatile treatment) chemistry contaminated with lead", Nucl. Eng. Des., vol. 165, pp. 161-169, 1996.
[http://dx.doi.org/10.1016/0029-5493(96)01195-8]
[82]
B.T. Lu, L.P. Tian, R.K. Zhu, J.L. Luo, and Y.C. Lu, "Effects of dissolved calcium and magnesium ions on lead-induced stress corrosion cracking susceptibility of nuclear steam generator tubing alloy in high temperature crevice solutions", Electrochim. Acta, vol. 56, pp. 1848-1855, 2011.
[http://dx.doi.org/10.1016/j.electacta.2010.09.104]
[83]
G.D. Song, W-I. Choi, S-H. Jeon, J.G. Kim, and D.H. Hur, "Combined effects of lead and magnetite on the stress corrosion cracking of alloy 600 in simulated PWR secondary water", J. Nucl. Mater., vol. 512, pp. 8-14, 2018.
[http://dx.doi.org/10.1016/j.jnucmat.2018.09.046]
[84]
G.D. Song, J. Han, S-H. Jeon, and D.H. Hur, "Stress corrosion cracking behavior of Alloy 600 coupled to magnetite under high-temperature caustic conditions", Materials (Basel), vol. 12, no. 13, p. 2091, 2019.
[http://dx.doi.org/10.3390/ma12132091 PMID: 31261731]
[85]
J. Chen, Z. Lu, F. Meng, X. Xu, Q. Xiao, H-S. Kim, and C. Jang, "The corrosion behaviour of alloy 690 tube in simulated PWR secondary water with the effect of solid diffusing hydrogen", J. Nucl. Mater., vol. 517, pp. 179-191, 2019.
[http://dx.doi.org/10.1016/j.jnucmat.2019.02.019]
[86]
R.A. Antunes, and M.C.L. De Oliveira, "Hydrogen embrittlement of zirconium-based alloys for nuclear fuel cladding", Innov. Corros. Mater. Sci., vol. 4, pp. 96-106, 2014.
[http://dx.doi.org/10.2174/2352094904666141009225156]
[87]
M.L. Rossi, and C.D. Taylor, "First-principles insights into the nature of zirconium-iodine interactions and the initiation of iodine-induced stress-corrosion cracking", J. Nucl. Mater., vol. 458, pp. 1-10, 2015.
[http://dx.doi.org/10.1016/j.jnucmat.2014.11.114]
[88]
B. Cox, "Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding – A review", J. Nucl. Mater., vol. 172, pp. 249-292, 1990.
[http://dx.doi.org/10.1016/0022-3115(90)90282-R]
[89]
S.W. Sharawy, F.H. Hammad, A.A. Abou-Zahara, and K. Videm, "Influence of some factors on the susceptibility of Zircaloy-2 tubes to iodine stress corrosion cracking", J. Nucl. Mater., vol. 165, pp. 184-192, 1989.
[http://dx.doi.org/10.1016/0022-3115(89)90248-1]
[90]
A. Serres, F. Fournier, M. Frégonèse, Q. Auzoux, and D. Leboulch, "The effect of iodine content and specimen orientation on stress corrosion crack growth rate in Zircaloy-4", Corros. Sci., vol. 52, pp. 2001-2009, 2010.
[http://dx.doi.org/10.1016/j.corsci.2010.02.008]
[91]
K.N. Choo, S.I. Pyun, and J.K. Choi, "A study on the mechanism of iodine-induced stress-corrosion cracking of Zircaloy-4", J. Nucl. Mater., vol. 149, pp. 289-295, 1987.
[http://dx.doi.org/10.1016/0022-3115(87)90529-0]
[92]
Y.K. Babilashvili, A.V. Medvedev, B.I. Nesterov, V.V. Novikov, V.N. Golovanov, S.G. Eremin, and A.D. Yurtchenko, "Influence of irradiation on KISCC of Zr-1% Nb claddings", J. Nucl. Mater., vol. 280, pp. 106-110, 2000.
[http://dx.doi.org/10.1016/S0022-3115(00)00012-X]
[93]
F. Fournier, A. Serres, Q. Auzoux, D. Leboulch, and G.S. Was, "Proton irradiation effect on microstructure, strain localization and iodine-induced stress corrosion cracking in Zircaloy-4", J. Nucl. Mater., vol. 384, pp. 38-47, 2009.
[http://dx.doi.org/10.1016/j.jnucmat.2008.10.001]
[94]
F. Ominus, I. Monnet, J.L. Béchade, C. Prioul, and P.A. Pilvin, "A statistical TEM investigation of dislocation channeling mechanism in neutron irradiated zirconium alloys", J. Nucl. Mater., vol. 328, pp. 165-179, 2004.
[http://dx.doi.org/10.1016/j.jnucmat.2004.04.337]
[95]
A. Garlick, and P.D. Wolfenden, "Fracture of zirconium alloys in iodine vapour", J. Nucl. Mater., vol. 41, pp. 274-292, 1971.
[http://dx.doi.org/10.1016/0022-3115(71)90165-6]
[96]
S.B. Goryachev, A.R. Gritsuk, P.F. Prasolov, M.G. Snegirev, and V.E. Shestak, "Iodine-induced SCC of Zr alloys at constant strain rate", J. Nucl. Mater., vol. 199, pp. 50-60, 1992.
[http://dx.doi.org/10.1016/0022-3115(92)90439-R]
[97]
I. Schuster, and C. Lemaignan, "Influence of texture in iodine-induced stress corrosion cracking of Zircaloy-4 cladding tubes", J. Nucl. Mater., vol. 189, pp. 157-166, 1992.
[http://dx.doi.org/10.1016/0022-3115(92)90528-S]
[98]
V.V. Likhanskii, and L.V. Matweev, "The development of the crack growth model in zirconium claddings in iodine environments", Nucl. Eng. Des., vol. 213, pp. 133-140, 2002.
[http://dx.doi.org/10.1016/S0029-5493(01)00516-7]
[99]
M. Fregonese, C. Olagnon, N. Godin, A. Hamel, and T. Douillard, "Strain-hardening influence on iodine induced stress corrosion cracking of Zircaloy-4", J. Nucl. Mater., vol. 373, pp. 59-70, 2008.
[http://dx.doi.org/10.1016/j.jnucmat.2007.04.052]
[100]
P. Jacques, F. Lefebvre, and C. Lemaigna, "Deformation-corrosion interactions for zirconium alloys during I-SCC crack initiation. Part I: Chemical contributions", J. Nucl. Mater., vol. 264, pp. 239-248, 1999.
[http://dx.doi.org/10.1016/S0022-3115(98)00501-7]
[101]
P. Jacques, F. Lefebvre, and C. Lemaignan, "Deformation-corrosion interactions for zirconium alloys during I-SCC crack initiation. Part II: Localised stress and strain contributions", J. Nucl. Mater., vol. 264, pp. 249-256, 1999.
[http://dx.doi.org/10.1016/S0022-3115(98)00500-5]
[102]
S.Y. Park, J.H. Kim, B.K. Choi, and Y.H. Jeong, "Crack initiation and propagation behavior of zirconium cladding under an environment of iodine-induced stress corrosion", Met. Mater. Int., vol. 13, pp. 155-163, 2007.
[http://dx.doi.org/10.1007/BF03027567]
[103]
T.T. Yang, and C.H. Tsai, "On the susceptibility to stress corrosion cracking of zircaloy in an iodine containing environment", J. Nucl. Mater., vol. 166, pp. 252-264, 1989.
[http://dx.doi.org/10.1016/0022-3115(89)90222-5]
[104]
S.Y. Park, J.H. Kim, M.H. Lee, and Y.H. Jeong, "Effects of the microstructure and alloying elements on the iodine-induced stress corrosion cracking behavior of nuclear fuel claddings", J. Nucl. Mater., vol. 376, pp. 98-107, 2008.
[http://dx.doi.org/10.1016/j.jnucmat.2008.01.024]
[105]
B.J. Lewis, W.T. Thompson, M.R. Kleczek, K. Shaheeen, M. Juhas, and F.C. Iglesias, "Modeling of iodine-induced stress corrosion cracking in CANDU fuel", J. Nucl. Mater., vol. 408, pp. 209-223, 2011.
[http://dx.doi.org/10.1016/j.jnucmat.2010.10.063]
[106]
A.V.G. Sanchez, S.B. Farina, and G.S. Duffó, "Effect of temperature on the stress corrosion cracking of zircaloy-4 in iodine alcoholic solutions", Corros. Sci., vol. 49, pp. 3112-3117, 2007.
[http://dx.doi.org/10.1016/j.corsci.2007.01.005]
[107]
W.S. Ryu, J.Y. Lee, Y.H. Kang, and H.C. Suk, "Strain rate dependence of iodine-induced stress corrosion cracking of Zircaloy-4 under internal pressurization tests", J. Mater. Sci., vol. 25, pp. 3167-3172, 1990.
[http://dx.doi.org/10.1007/BF00587669]
[108]
R.L. Klueh, "Chromium-molybdenum steels for fusion reactors first walls – A review", Nucl. Eng. Des., vol. 72, pp. 329-344, 1982.
[http://dx.doi.org/10.1016/0029-5493(82)90047-4]
[109]
D.T. Blagoeva, L. Debarberis, M. Jong, and P. ten Pierick, "Stability of ferritic steel to higher doses: Survey of reactor pressure vessel steel data with candidate materials for future nuclear systems", Int. J. Press. Vessels Piping, vol. 122, pp. 1-5, 2014.
[http://dx.doi.org/10.1016/j.ijpvp.2014.06.001]
[110]
R.L. Klueh, D.J. Alexander, and E.A. Kenik, "Development of low-chromium, chromium-tungsten steels for fusion", J. Nucl. Mater., vol. 227, pp. 11-23, 1995.
[http://dx.doi.org/10.1016/0022-3115(95)00143-3]
[111]
R.L. Klueh, and D.J. Alexander, "Impact of 9Cr-1MoVNb and 12Cr-1MoVW for irradiated in HFIR", J. Nucl. Mater., vol. 179-181, pp. 733-736, 1991.
[http://dx.doi.org/10.1016/0022-3115(91)90193-B]
[112]
P. Amportnrat, G. Gupta, and G.S. Was, "Tensile and stress corrosion cracking behavior of ferritic-martensitic steels in supercritical water", J. Nucl. Mater., vol. 395, pp. 30-36, 2009.
[http://dx.doi.org/10.1016/j.jnucmat.2009.09.012]
[113]
S.S. Hwang, B.H. Lee, J.G. Kim, and J. Jang, "SCC and corrosion evaluations of the F/M steels for a supercritical water reactor", J. Nucl. Mater., vol. 372, pp. 177-181, 2008.
[http://dx.doi.org/10.1016/j.jnucmat.2007.03.168]
[114]
J. Heldt, and H.P. Seifert, "Stress corrosion cracking of low alloy, reactor-pressure-vessel steels in oxygenated, high temperature water", Nucl. Eng. Des., vol. 206, pp. 57-89, 2001.
[http://dx.doi.org/10.1016/S0029-5493(00)00381-2]
[115]
Y. Miwa, S. Jitsukawa, and T. Tsukada, "Stress corrosion cracking susceptibility of a reduced activation martensitic steel F82H", J. Nucl. Mater., vol. 386-388, pp. 703-707, 2009.
[http://dx.doi.org/10.1016/j.jnucmat.2008.12.332]
[116]
T. Hirose, K. Shiba, M. Enoeda, and M. Akiba, "Corrosion and stress corrosion cracking of ferritic/martensitic steel in super critical pressurized water", J. Nucl. Mater., vol. 367-370, pp. 1185-1189, 2007.
[http://dx.doi.org/10.1016/j.jnucmat.2007.03.212]
[117]
Q.X. Sun, Y. Zhou, Q.F. Fang, R. Gao, T. Zhang, and X.P. Wang, "Development of 9Cr-ODS-ferritic-martensitic steel prepared by chemical reduction and mechanical milling", J. Alloys Compd., vol. 598, pp. 243-247, 2014.
[http://dx.doi.org/10.1016/j.jallcom.2014.02.030]
[118]
E. Gaganidze, and J. Aktaa, "Assessment of neutron irradiation effects on RAFM steels", Fusion Eng. Des., vol. 88, pp. 118-128, 2013.
[http://dx.doi.org/10.1016/j.fusengdes.2012.11.020]
[119]
H.S. Cho, and A. Kimura, "Corrosion resistance of high-Cr oxide dispersion strengthened ferritic steels in super-critical pressurized water", J. Nucl. Mater., vol. 367-370, pp. 1180-1184, 2007.
[http://dx.doi.org/10.1016/j.jnucmat.2007.03.211]
[120]
C. Keller, M.M. Margulies, Z. Hadjem-Hamouche, and I. Guillot, "Influence of the temperature on the tensile behavior of a modified 9Cr-1Mo T91 martensitic steel", Mater. Sci. Eng. A, vol. 527, pp. 6758-6764, 2010.
[http://dx.doi.org/10.1016/j.msea.2010.07.021]
[121]
H. Je, and A. Kimura, "Stress corrosion cracking susceptibility of oxide dispersion strengthened ferritic steel in supercritical pressurized water dissolved with different hydrogen and oxygen contents", Corros. Sci., vol. 78, pp. 193-199, 2014.
[http://dx.doi.org/10.1016/j.corsci.2013.09.016]
[122]
R. Novotny, P. Janík, S. Penttilä, P. Hähner, J. Macák, J. Siegl, and P. Hausild, "High Cr ODS steel performance under supercritical water environment", J. Supercrit. Fluids, vol. 81, pp. 147-156, 2013.
[http://dx.doi.org/10.1016/j.supflu.2013.04.014]
[123]
K. Fukuya, "Current understanding of radiation-induced degradation in light-water reactor structural materials", J. Nucl. Sci. Technol., vol. 50, pp. 213-254, 2013.
[http://dx.doi.org/10.1080/00223131.2013.772448]
[124]
M.D. McMurtrey, B. Cui, I. Robertson, D. Farkas, and G.S. Was, "Mechanism of dislocation-channel induced irradiation assisted stress corrosion crack initiation in austenitic stainless steel", Curr. Opin. Solid State Mater. Sci., vol. 19, pp. 305-314, 2015.
[http://dx.doi.org/10.1016/j.cossms.2015.04.001]
[125]
B.A. Gurovich, E.A. Kuleshova, A.S. Frolov, D.A. Maltsev, K.E. Prikhodko, S.V. Fedotova, B.Z. Margolin, and A.A. Sorokin, "Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18Cr-10Ni-Ti austenitic stainless steels", J. Nucl. Mater., vol. 465, pp. 565-581, 2015.
[http://dx.doi.org/10.1016/j.jnucmat.2015.06.045]
[126]
W. Karlsen, G. Diego, and B. Devrient, "Localized deformation as a key precursor to initiation of intergranular stress corrosion cracking of austenitic stainless steels employed in nuclear power plants", J. Nucl. Mater., vol. 406, pp. 138-151, 2010.
[http://dx.doi.org/10.1016/j.jnucmat.2010.01.029]
[127]
W. Karlsen, and S. van Dyck, "The effect of prior cold-work on the deformation behavior of neutron irradiated AISI 304 stainless steel", J. Nucl. Mater., vol. 406, pp. 127-137, 2010.
[http://dx.doi.org/10.1016/j.jnucmat.2010.01.028]
[128]
D.T. Spencer, M.R. Edwards, M.R. Wenman, C. Tsitsios, G.G. Scatigno, and P.R. Chard-Tuckey, "The initiation and propagation of chloride-induced transgranular stress corrosion cracking (TGSCC) of 304L austenitic stainless steel under atmospheric conditions", Corros. Sci., vol. 88, pp. 76-88, 2014.
[http://dx.doi.org/10.1016/j.corsci.2014.07.017]
[129]
T. Magnin, A. Chambreuil, and B. Bayle, "The corrosion-enhanced plasticity model for stress corrosion cracking in ductile fcc alloys", Acta Mater., vol. 44, pp. 1457-1470, 1996.
[http://dx.doi.org/10.1016/1359-6454(95)00301-0]
[130]
D.A. Horner, B.J. Connolly, S. Zhou, L. Crocker, and A. Turnbull, "Novel images of the evolution of stress corrosion cracks from corrosion pits", Corros. Sci., vol. 53, pp. 3466-3485, 2011.
[http://dx.doi.org/10.1016/j.corsci.2011.05.050]
[131]
A. Turnbull, L. Wright, and L. Crocker, "New insight into the pit-to-crack transition from finite element analysis and strain distribution around a corrosion pit", Corros. Sci., vol. 52, pp. 1492-1498, 2010.
[http://dx.doi.org/10.1016/j.corsci.2009.12.004]
[132]
K.J. Stephenson, and G.S. Was, "Crack initiation behavior of neutron irradiated model and commercial stainless steels in high temperature water", J. Nucl. Mater., vol. 444, pp. 331-341, 2014.
[http://dx.doi.org/10.1016/j.jnucmat.2013.10.008]
[133]
K. Fukuya, S. Shima, H. Kayano, and M. Narui, "Stress corrosion cracking and intergranular corrosion of neutron irradiated austenitic stainless steels", J. Nucl. Mater., vol. 191-194, pp. 1007-1011, 1992.
[http://dx.doi.org/10.1016/0022-3115(92)90626-V]
[134]
F.B. Pickering, Proceedings of the Conference on Stainless Steels Gothenburg, 1985, pp. 2,
[135]
T. Terachi, T. Yamada, T. Miyamoto, and K. Arioka, "SCC growth behaviors of austenitic stainless steels in simulated PWR primary water", J. Nucl. Mater., vol. 426, pp. 59-70, 2012.
[http://dx.doi.org/10.1016/j.jnucmat.2012.03.013]
[136]
D. Du, K. Chen, L. Yu, H. Lu, L. Zhang, X. Shi, and X. Xu, "SCC crack growth rate of cold worked 316L stainless steel in PWR environment", J. Nucl. Mater., vol. 456, pp. 228-234, 2015.
[http://dx.doi.org/10.1016/j.jnucmat.2014.09.054]
[137]
K. Arioka, T. Yamada, T. Terachi, and G. Chiba, "Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water", Corrosion, vol. 63, pp. 1114-1123, 2007.
[http://dx.doi.org/10.5006/1.3278329]
[138]
R. Soulas, M. Cheynet, E. Rauch, T. Nelsius, L. Legras, C. Domain, and Y. Brechet, "TEM investigations of the oxide layers formed on a 316L alloy in simulated PWR environment", J. Mater. Sci., vol. 48, pp. 2861-2871, 2013.
[http://dx.doi.org/10.1007/s10853-012-6975-0]
[139]
J.J. Kai, C.H. Tsai, T.A. Huang, and M.N. Liu, "The effects of heat treatment on the sensitization and SCC behavior of Inconel 600 alloy", Metall. Trans., A, Phys. Metall. Mater. Sci., vol. 20A, pp. 1077-1088, 1989.
[http://dx.doi.org/10.1007/BF02650143]
[140]
D.H. Hur, and D.H. Lee, "Effect of solid solution carbon on stress corrosion cracking of Alloy 600 in a primary water at 360°C", Mater. Sci. Eng. A, vol. 603, pp. 129-133, 2014.
[http://dx.doi.org/10.1016/j.msea.2014.02.063]
[141]
L. Tan, X. Ren, K. Sridharan, and T.R. Allen, "Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants", Corros. Sci., vol. 50, pp. 3056-3062, 2008.
[http://dx.doi.org/10.1016/j.corsci.2008.08.024]
[142]
H. Hirano, H. Takaku, and T. Kurosawa, "The relationship between the characteristics of oxide film and stress corrosion susceptibility of Ni-Cr-Fe alloy in high temperature water", Corros. Sci., vol. 31, pp. 557-562, 1990.
[http://dx.doi.org/10.1016/0010-938X(90)90162-X]
[143]
S.Y. Persaud, A.G. Carcea, and R.C. Newman, "Electrochemical aspects of stress corrosion cracking of Ni-Fe-Cr alloys in acid sulfate solutions relevant to nuclear steam generators", ECS Trans., vol. 53, pp. 3-14, 2013.
[http://dx.doi.org/10.1149/05321.0003ecst]
[144]
R.S. Dutta, "Corrosion aspects of Ni-Cr-Fe based and Ni-Cu based steam generator tube materials", J. Nucl. Mater., vol. 393, pp. 343-349, 2009.
[http://dx.doi.org/10.1016/j.jnucmat.2009.06.020]
[145]
V.N. Shah, D.B. Lowenstein, A.P.L. Turner, S.R. Ward, J.A. Gorman, P.E. MacDonald, and G.H. Weidenhamer, "Assessment of primary water stress corrosion cracking of PWR steam generator tubes", Nucl. Eng. Des., vol. 134, pp. 199-215, 1992.
[http://dx.doi.org/10.1016/0029-5493(92)90139-M]
[146]
G. Sui, J.M. Titchmarsh, G.B. Heys, and J. Congleton, "Stress corrosion cracking of Alloy 600 and Alloy 690 in hydrogen/steam at 380°C", Corros. Sci., vol. 39, pp. 565-587, 1997.
[http://dx.doi.org/10.1016/S0010-938X(97)86103-3]
[147]
P.K. De, and S.K. Ghosal, "A comparative study of stress corrosion cracking of steam generator tube materials in water at 315°C", Corrosion, vol. 37, pp. 341-349, 1981.
[http://dx.doi.org/10.5006/1.3577283]
[148]
G.S. Was, and K. Lian, "Role of carbides in stress corrosion cracking resistance of Alloy 600 and controlled-purity Ni16%-Cr9%Fe in primary water at 360°C", Corrosion, vol. 54, pp. 675-688, 1998.
[http://dx.doi.org/10.5006/1.3284887]
[149]
S.Y. Persaud, A.G. Carcea, J. Huang, A. Korinek, G.A. Botton, and R.C. Newman, "Analytical electron microscopy of a crack tip extracted from a stressed Alloy 800 sample exposed to an acid sulfate environment", Micron, vol. 61, pp. 62-69, 2014.
[http://dx.doi.org/10.1016/j.micron.2014.02.011 PMID: 24792448]
[150]
J.J. Kai, G.P. Yu, C.H. Tsai, M.N. Liu, and S.C. Yao, "The effects of heat treatment on the chromium depletion, precipitate evolution and corrosion resistance of Inconel Alloy 690", Metall. Trans., A, Phys. Metall. Mater. Sci., vol. 20A, pp. 2057-2067, 1989.
[http://dx.doi.org/10.1007/BF02650292]
[151]
R.B. Rebak, and Z. Szklarska-Smialowska, "The mechanism of stress corrosion cracking of Alloy 600in high temperature water", Corros. Sci., vol. 38, pp. 971-988, 1996.
[http://dx.doi.org/10.1016/0010-938X(96)00183-7]
[152]
M. Sennour, L. Marchetti, F. Martin, S. Perrin, R. Molins, and M. Pijolat, "A detailed TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactors", J. Nucl. Mater., vol. 402, pp. 147-156, 2010.
[http://dx.doi.org/10.1016/j.jnucmat.2010.05.010]
[153]
Y.M. Ferng, "Predicting growth rate of wall-thinning for severely degraded SG tubes using a statistical methodology", Nucl. Eng. Des., vol. 240, pp. 129-131, 2010.
[http://dx.doi.org/10.1016/j.nucengdes.2009.10.010]
[154]
J. Hu, F. Liu, G. Cheng, and Z. Zhang, "Life prediction of steam generator tubing due to stress corrosion crack using Monte Carlo simulation", Nucl. Eng. Des., vol. 241, pp. 4289-4298, 2011.
[http://dx.doi.org/10.1016/j.nucengdes.2011.08.016]
[155]
S.S. Hwang, H.P. Kim, Y.S. Lim, J.S. Kim, and L. Thomas, "Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead", Corros. Sci., vol. 49, pp. 3797-3811, 2007.
[http://dx.doi.org/10.1016/j.corsci.2007.03.040]
[156]
D.J. Kim, H.P. Kim, and S.S. Hwang, "Relation between surface oxide and SCC of Alloy 600", Curr. Nanosci., vol. 10, pp. 81-85, 2014.
[http://dx.doi.org/10.2174/1573413709666131111235817]
[157]
Z.M. Zhang, J.Q. Wang, E.H. Han, and W. Ke, "Trans-twins stress corrosion cracking behaviors of Alloy 690TT in lead-containing caustic solution at 330°C", Nucl. Eng. Des., vol. 241, pp. 4944-4952, 2011.
[http://dx.doi.org/10.1016/j.nucengdes.2011.09.025]
[158]
S.S. Hwang, and H.P. Kim, "SCC analysis of Alloy 600 tubes from a retired steam generator", J. Nucl. Mater., vol. 440, pp. 129-135, 2013.
[http://dx.doi.org/10.1016/j.jnucmat.2013.04.061]
[159]
J. Panter, B. Viguier, J.M. Cloué, M. Foucault, P. Combrade, and E. Andrieu, "Influence of oxide films on primary water stress corrosion cracking initiation of alloy 600", J. Nucl. Mater., vol. 348, pp. 213-221, 2006.
[http://dx.doi.org/10.1016/j.jnucmat.2005.10.002]
[160]
Q. Peng, J. Hou, Y. Takeda, and T. Shoji, "Effect of chemical composition on grain boundary microchemistry and stress corrosion cracking in Alloy 182", Corros. Sci., vol. 67, pp. 91-99, 2013.
[http://dx.doi.org/10.1016/j.corsci.2012.10.012]
[161]
S.B. Farina, G.S. Duffo, and J.R. Galvele, "Stress corrosion cracking of zirconium and Zircaloy-4 in halide aqueous solutions", Corros. Sci., vol. 45, pp. 2497-2512, 2003.
[http://dx.doi.org/10.1016/S0010-938X(03)00075-1]
[162]
S.B. Farina, and G.S. Duffó, "Intergranular do transgranular transition in the stress corrosion cracking of Zircaloy-4", Corros. Sci., vol. 46, pp. 2255-2264, 2004.
[http://dx.doi.org/10.1016/j.corsci.2004.01.004]
[163]
A.B. Rozhnov, V.A. Belo, S.A. Nikulin, and V.G. Khanzhin, "Stress corrosion cracking of zirconium cladding tubes: II. Mechanisms and kinetics", Russ. Metall., vol. 2010, pp. 984-990, 2010.
[http://dx.doi.org/10.1134/S0036029510100198]
[164]
A.B. Rozhnov, S.A. Nikulin, V.G. Khanzhin, and V.A. Belov, "Stress corrosion cracking of zirconium cladding tubes: IV. Effect of hydrogen saturation", Russ. Metall., vol. 2011, pp. 391-395, 2011.
[http://dx.doi.org/10.1134/S0036029511040185]
[165]
A.B. Rozhnov, S.A. Nikulin, V.G. Khanzhin, and V.A. Belov, "Stress corrosion cracking of zirconium cladding tubes: III. Effect of the alloy strength", Russ. Metall., vol. 2011, pp. 387-390, 2011.
[http://dx.doi.org/10.1134/S0036029511040173]
[166]
S.A. Nikulin, S.O. Rogachev, A.B. Rozhnov, M.V. Gorshenkov, V.I. Kopylov, and S.V. Dobatkin, "Resistance of alloy Zr-2.5%Nb with ultrafine-grain structure to stress corrosion cracking", Metal Sci. Heat Treat., vol. 54, pp. 407-413, 2012.
[http://dx.doi.org/10.1007/s11041-012-9522-3]
[167]
Y. Ishijima, C. Kato, T. Motooka, M. Yamamoto, Y. Kano, and T. Ebina, "Stress corrosion cracking behavior of zirconium in boiling nitric acid solutions at oxide formation potentials", Mater. Trans., vol. 54, pp. 1001-1005, 2013.
[http://dx.doi.org/10.2320/matertrans.M2012341]
[168]
E. Durif, M. Fregonese, J. Réthoré, A. Combescure, and C. Alemany-Dumont, "Methodology for a mechano-electrochemical evaluation of the coupling at the crack tip. Application of halide-induced stress corrosion cracking of Zircaloy-4", Corros. Sci., vol. 93, pp. 39-47, 2015.
[http://dx.doi.org/10.1016/j.corsci.2015.01.010]
[169]
K.J. Stephenson, and G.S. Was, "Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons", J. Nucl. Mater., vol. 456, pp. 85-98, 2015.
[http://dx.doi.org/10.1016/j.jnucmat.2014.08.021]
[170]
F. Fournier, M. Savoie, and D. Delafosse, "Influence of localized deformation on A-286 austenitic stainless steel stress corrosion cracking in PWR primary water", J. Nucl. Mater., vol. 366, pp. 187-197, 2007.
[http://dx.doi.org/10.1016/j.jnucmat.2007.01.001]
[171]
X. Li, and A. Almazouzi, "Deformation and microstructure of neutron irradiated stainless steels with different stacking fault energy", J. Nucl. Mater., vol. 385, pp. 329-333, 2009.
[http://dx.doi.org/10.1016/j.jnucmat.2008.12.008]
[172]
G.S. Was, T.R. Allen, J.T. Busby, J. Gan, D. Damcott, D. Carter, M. Atzmon, and E.A. Kenik, "Microchemistry and microstructure of proton-irradiated austenitic alloys: Toward an understanding of irradiation effects in LWR core components", J. Nucl. Mater., vol. 270, pp. 96-114, 1999.
[http://dx.doi.org/10.1016/S0022-3115(98)00897-6]
[173]
V. Kuksenko, C. Pareige, and P. Pareige, "Intra granular precipitation and grain boundary segregation under neutron irradiation in a low purity Fe-Cr based alloy", J. Nucl. Mater., vol. 425, pp. 125-129, 2012.
[http://dx.doi.org/10.1016/j.jnucmat.2011.10.031]
[174]
C.C. Bampton, I.P. Jones, and M.H. Loretto, "Stacking fault energy measurements in some austenitic stainless steels", Acta Metall., vol. 26, pp. 39-51, 1978.
[http://dx.doi.org/10.1016/0001-6160(78)90200-6]
[175]
T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, and S.J. Kim, "Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels", Acta Mater., vol. 58, pp. 3173-3186, 2010.
[http://dx.doi.org/10.1016/j.actamat.2010.01.056]
[176]
S. Lu, Q.M. Hu, B. Johansson, and L. Vitos, "Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels", Acta Mater., vol. 59, pp. 5728-5734, 2011.
[http://dx.doi.org/10.1016/j.actamat.2011.05.049]
[177]
C.G. Rhodes, and A.W. Thompson, "The composition dependence of stacking fault energy in austenitic stainless steels", Metall. Trans., A, Phys. Metall. Mater. Sci., vol. 8A, pp. 1901-1906, 1977.
[http://dx.doi.org/10.1007/BF02646563]
[178]
M. Wang, Z. Zhou, H. Sun, H. Hu, and S. Li, "Microstructural observation and tensile properties of ODS-304 austenitic stainless steel", Mater. Sci. Eng. A, vol. 559, pp. 287-292, 2013.
[http://dx.doi.org/10.1016/j.msea.2012.08.099]
[179]
R. Chaouadi, M. Ramesh, and S. Gavrilov, "Effect of crack length-to-width ratio on crack resistance of high Cr-ODS steels at high temperature for fuel cladding application", J. Nucl. Mater., vol. 442, pp. 425-433, 2013.
[http://dx.doi.org/10.1016/j.jnucmat.2013.02.017]
[180]
T. Watanabe, "An approach to grain boundary design of strong and ductile polycrystals", Res. Mech., vol. 11, pp. 47-84, 1984.
[181]
S.M. Schlegel, S. Hopkins, and M. Frary, "Effect of grain boundary engineering on microstructural stability during annealing", Scr. Mater., vol. 61, pp. 88-91, 2009.
[http://dx.doi.org/10.1016/j.scriptamat.2009.03.013]
[182]
V.Y. Gertsman, and S.M. Bruemmer, "Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys", Acta Mater., vol. 49, pp. 1589-1598, 2001.
[http://dx.doi.org/10.1016/S1359-6454(01)00064-7]
[183]
L. Tan, T.R. Allen, and J.T. Busby, "Grain boundary engineering for structure materials of nuclear reactors", J. Nucl. Mater., vol. 441, pp. 661-666, 2013.
[http://dx.doi.org/10.1016/j.jnucmat.2013.03.050]
[184]
B. Alexandreanu, B.H. Sencer, V. Thaveeprungsriporn, and G.S. Was, "The effect of grain boundary character distribution on the high temperature deformation behavior of Ni-16Cr-9Fe alloys", Acta Mater., vol. 51, pp. 3831-3848, 2003.
[http://dx.doi.org/10.1016/S1359-6454(03)00207-6]
[185]
B.S. Kumar, B.S. Prasad, V. Kain, and J. Reddy, "Methods for making alloy 600 resistant to sensitization and intergranular corrosion", Corros. Sci., vol. 70, pp. 55-61, 2013.
[http://dx.doi.org/10.1016/j.corsci.2012.12.021]
[186]
B. Li, and S. Tin, "The role of deformation temperature and strain on grain boundary engineering of Inconel 600", Mater. Sci. Eng. A, vol. 603, pp. 104-113, 2014.
[http://dx.doi.org/10.1016/j.msea.2014.02.078]
[187]
D.V. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P.K. De, "Resistance to sensitization and intergranular corrosion through extreme randomization of grain boundaries", Acta Mater., vol. 50, pp. 4587-4601, 2002.
[http://dx.doi.org/10.1016/S1359-6454(02)00306-3]
[188]
Q.J. Peng, J. Hou, T. Yonezawa, T. Shoji, Z.M. Zhang, F. Huang, F.H. Han, and W. Ke, "Environmentally assisted crack growth in one-dimensionally cold worked Alloy 690TT in primary water", Corros. Sci., vol. 57, pp. 81-88, 2012.
[http://dx.doi.org/10.1016/j.corsci.2011.12.031]
[189]
S.M. Bruemmer, M.J. Olstza, M.B. Toloczko, and L.E. Thomas, "Linking grain boundary microstructure to stress corrosion cracking of cold-rolled Alloy 690 in pressurized water reactor primary water", Corrosion, vol. 69, pp. 953-963, 2013.
[http://dx.doi.org/10.5006/0808]
[190]
G.S. Was, D. Farkas, and I.M. Robertson, "Micromechanics of dislocation channeling in intergranular stress corrosion crack nucleation", Curr. Opin. Solid State Mater. Sci., vol. 16, pp. 134-142, 2012.
[http://dx.doi.org/10.1016/j.cossms.2012.03.003]
[191]
M.F. Ashby, Materials selection in mechanical design., 4th ed Elsevier: Oxford, UK, 2010.
[192]
J. Nakano, Y. Nemoto, T. Tsukada, and T. Uchimoto, "SCC susceptibility of cold-worked stainless steel with minor element addition", J. Nucl. Mater., vol. 417, pp. 883-886, 2011.
[http://dx.doi.org/10.1016/j.jnucmat.2010.12.151]
[193]
M. Mizouchi, Y. Yamazaki, Y. Iijima, and K. Arioka, "Low temperature grain boundary diffusion of chromium in SUS316 and 316L stainless steels", Mater. Trans., vol. 45, pp. 2945-2950, 2004.
[http://dx.doi.org/10.2320/matertrans.45.2945]
[194]
S. Lozano-Perez, T. Yamada, T. Terachi, M. Schröder, C.A. English, G.D.W. Smith, C.R.M. Grovenor, and B.L. Eyre, "Multi-scale characterization of stress corrosion cracking of cold-worked stainless steels and the influence of Cr content", Acta Mater., vol. 57, pp. 5361-5381, 2009.
[http://dx.doi.org/10.1016/j.actamat.2009.07.040]
[195]
W. Kuang, and G.S. Was, "The effects of grain boundary carbide density and strain rate on the stress corrosion cracking behavior of cold rolled Alloy 690", Corros. Sci., vol. 97, pp. 107-114, 2015.
[http://dx.doi.org/10.1016/j.corsci.2015.04.020]
[196]
J. Hou, Q.J. Peng, T. Shoji, J.Q. Wang, E.H. Han, and W. Ke, "Effects of cold working path on strain concentration, grain boundary microstructure and stress corrosion cracking in Alloy 600", Corros. Sci., vol. 53, pp. 2956-2962, 2011.
[http://dx.doi.org/10.1016/j.corsci.2011.05.037]
[197]
S. Ghosh, V.P.S. Rana, V. Kain, V. Mittal, and S.K. Baveja, "Role of residual stresses induced by industrial fabrication on stress corrosion cracking susceptibility of austenitic stainless steel", Mater. Des., vol. 32, pp. 3823-3831, 2011.
[http://dx.doi.org/10.1016/j.matdes.2011.03.012]
[198]
S. Uchida, and Y. Katsumura, "Water chemistry technology – one of the key technologies for safe and reliable nuclear power plant operation", J. Nucl. Sci. Technol., vol. 50, pp. 346-362, 2013.
[http://dx.doi.org/10.1080/00223131.2013.773171]
[199]
D. Lister, and S. Uchida, "Determining water chemistry conditions in nuclear reactor coolants", J. Nucl. Sci. Technol., vol. 52, pp. 451-466, 2015.
[http://dx.doi.org/10.1080/00223131.2014.973460]


open access plus

Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 10
ISSUE: 1
Year: 2020
Published on: 11 September, 2020
Page: [5 - 24]
Pages: 20
DOI: 10.2174/2352094909666191030111523

Article Metrics

PDF: 22
HTML: 1