The Increase of HIV-1 Infection, Neurocognitive Impairment, and Type 2 Diabetes in The Rio Grande Valley

Author(s): Roberto De La Garza, Hansapani Rodrigo, Francisco Fernandez, Upal Roy*

Journal Name: Current HIV Research

Volume 17 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The Human Immunodeficiency Virus (HIV-1) infection remains a persistent predicament for the State of Texas, ranking seventh among the most documented HIV cases in the United States. In this regard, the Rio Grande Valley (RGV) in South Texas is considered as one of the least investigated areas of the state with respect to HIV infection and HIV associated comorbidities. Considering the 115% increase in average HIV incidence rates per 100,000 within the RGV from 2007-2015, it is worth characterizing this population with respect to their HIV-1 infection, HIV-1 Associated Neurocognitive Disorders (HAND), and the association of treatment with combined antiretroviral therapy (cART). Moreover, the increased rate of Type-2 Diabetes (T2D) in the RGV population is intertwined with that of HIV-1 infection facing challenges due to the lack of knowledge about prevention to inadequate access to healthcare. Hence, the role of T2D in the development of HAND among the people living with HIV (PLWH) in the RGV will be reviewed to establish a closer link between T2D and HAND in cART-treated patients of the RGV.

Keywords: HIV-1, T2D, Hispanics, cART, HAND, diabetes, incidence rate, prevalence rate, CNS, Brain, MoCA, MMSE.

[1]
Center for Disease Prevention. HIV Surveillance Report 2016.http://www.cdc.gov/hiv/library/reports/hiv-surveillance.html
[2]
United States Census Bureau. Community Facts: Texas 2016.https://factfinder.census.gov/faces/nav/jsf/pages/community_facts.xhtml?src=bkmk
[3]
Texas State Library and Archive Commission. Population Estimates of Texas Counties, 2010-2017: Arranged in Alphabetical Order 2018.https://www.tsl.texas.gov/ref/abouttx/popcnty 201011.html
[4]
Texas State Library and Archive Commission. Population Estimates of Texas Counties, 2000-2009: Arranged in Alphabetical Order 2011.https://www.tsl.texas.gov/ref/abouttx/popcnty 201011.html
[5]
Texas Health and Human Services. Texas HIV Surveillance Report2016 2016.https://www. dshs.texas. gov/hivstd/reports/HIVSurveillanceReport.pdf
[6]
Manusov EG, Diego VP, Smith J, et al. UniMóvil: A Mobile Health Clinic Providing Primary Care to the Colonias of the Rio Grande Valley, South Texas. Front Public Health 2019; 7: 215.
[http://dx.doi.org/10.3389/fpubh.2019.00215] [PMID: 31497586]
[7]
Balasubramaniam M, Pandhare J, Dash C. Immune Control of HIV. J Life Sci (Westlake Village) 2019; 1(1): 4-37.
[http://dx.doi.org/10.36069/JoLS/20190603] [PMID: 31468033]
[8]
Kumar S, Himanshu D, Tandon R, Atam V, Sawlani KK, Verma SK. Prevalence of HIV Associated Neurocognitive Disorder using Modified Mini Mental State Examination and its Correlation with CD4 Counts and Anti-retroviral Therapy. J Assoc Physicians India 2019; 67(4): 47-51.
[PMID: 31299839]
[9]
Elbirt D, Mahlab-Guri K, Bezalel-Rosenberg S, Gill H, Attali M, Asher I. HIV-associated neurocognitive disorders (HAND). Isr Med Assoc J 2015; 17(1): 54-9.
[PMID: 25739180]
[10]
Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis 2013; 13(11): 976-86.
[http://dx.doi.org/10.1016/S1473-3099(13)70269-X] [PMID: 24156898]
[11]
Olivier IS, Cacabelos R, Naidoo V. Risk Factors and Pathogenesis of HIV-Associated Neurocognitive Disorder: The Role of Host Genetics. Int J Mol Sci 2018; 19(11)E3594
[http://dx.doi.org/10.3390/ijms19113594] [PMID: 30441796]
[12]
Tierney S, Woods SP, Verduzco M, Beltran J, Massman PJ, Hasbun R. Semantic Memory in HIV-associated Neurocognitive Disorders: An Evaluation of the “Cortical” Versus “Subcortical” Hypothesis. Arch Clin Neuropsychol 2018; 33(4): 406-16.
[http://dx.doi.org/10.1093/arclin/acx083] [PMID: 29028880]
[13]
Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 2015; 45: 1-12.
[http://dx.doi.org/10.1016/j.bbi.2014.10.008] [PMID: 25449672]
[14]
Adle-Biassette H, Levy Y, Colombel M, et al. Neuronal apoptosis in HIV infection in adults. Neuropathol Appl Neurobiol 1995; 21(3): 218-27.
[http://dx.doi.org/10.1111/j.1365-2990.1995.tb01053.x] [PMID: 7477730]
[15]
Garden GA, Budd SL, Tsai E, et al. Caspase cascades in human immunodeficiency virus-associated neurodegeneration. J Neurosci 2002; 22(10): 4015-24.
[http://dx.doi.org/10.1523/JNEUROSCI.22-10-04015.2002] [PMID: 12019321]
[16]
Epstein LG. HIV neuropathogenesis and therapeutic strategies. Acta Paediatr Jpn 1998; 40(2): 107-11.
[http://dx.doi.org/10.1111/j.1442-200X.1998.tb01892.x] [PMID: 9581298]
[17]
Lipton SA. HIV-related neurotoxicity. Brain Pathol 1991; 1(3): 193-9.
[http://dx.doi.org/10.1111/j.1750-3639.1991.tb00659.x] [PMID: 1669708]
[18]
Pittaluga A, Pattarini R, Severi P, Raiteri M. Human brain N-methyl-D-aspartate receptors regulating noradrenaline release are positively modulated by HIV-1 coat protein gp120. AIDS 1996; 10(5): 463-8.
[http://dx.doi.org/10.1097/00002030-199605000-00003] [PMID: 8724036]
[19]
Eggers C, Arendt G, Hahn K, et al. HIV-1-associated neurocognitive disorder: epidemiology, pathogenesis, diagnosis, and treatment. J Neurol 2017; 264(8): 1715-27.
[http://dx.doi.org/10.1007/s00415-017-8503-2] [PMID: 28567537]
[20]
Schrack JA, Jacobson LP, Althoff KN, et al. Effect of HIV-infection and cumulative viral load on age-related decline in grip strength. AIDS 2016; 30(17): 2645-52.
[http://dx.doi.org/10.1097/QAD.0000000000001245] [PMID: 27603294]
[21]
Planès R, Serrero M, Leghmari K, BenMohamed L, Bahraoui E. HIV-1 Envelope Glycoproteins Induce the Production of TNF-α and IL-10 in Human Monocytes by Activating Calcium Pathway. Sci Rep 2018; 8(1): 17215.
[http://dx.doi.org/10.1038/s41598-018-35478-1] [PMID: 30464243]
[22]
Pozniak PD, Darbinyan A, Khalili K. TNF-α/TNFR2 Regulatory Axis Stimulates EphB2-Mediated Neuroregeneration Via Activation of NF-κB. J Cell Physiol 2016; 231(6): 1237-48.
[http://dx.doi.org/10.1002/jcp.25219] [PMID: 26492598]
[23]
Rawat P, Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus Type-1 single-stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia 2019; 67(5): 802-24.
[24]
Guha D, M.C.E. Wagner, and V. Ayyavoo. Human immunodeficiency virus type 1 (HIV1)-mediated neuroinflammation dysregulates neurogranin and induces synaptodendritic injury. J Neuroinflammation 2018; 15(1): 126.
[PMID: 29703241]
[25]
Marks WD, Paris JJ, Schier CJ, et al. HIV-1 Tat causes cognitive deficits and selective loss of parvalbumin, somatostatin, and neuronal nitric oxide synthase expressing hippocampal CA1 interneuron subpopulations. J Neurovirol 2016; 22(6): 747-62.
[http://dx.doi.org/10.1007/s13365-016-0447-2] [PMID: 27178324]
[26]
Kim BH, Kelschenbach J, Borjabad A, et al. Intranasal insulin therapy reverses hippocampal dendritic injury and cognitive impairment in a model of HIV-associated neurocognitive disorders in EcoHIV-infected mice. AIDS 2019; 33(6): 973-84.
[http://dx.doi.org/10.1097/QAD.0000000000002150] [PMID: 30946151]
[27]
Wu M, Fatukasi O, Yang S, et al. HIV disease and diabetes interact to affect brain white matter hyperintensities and cognition. AIDS 2018; 32(13): 1803-10.
[http://dx.doi.org/10.1097/QAD.0000000000001891] [PMID: 29794829]
[28]
Lovelace MD, et al. Recent evidence for an expanded role of the kynurenine pathway of tryptophan metabolism in neurological diseases. Neuropharmacology 2017; 112(Pt B): 373-88.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.024]
[29]
Falasca F, Di Carlo D, De Vito C, et al. Evaluation of HIV-DNA and inflammatory markers in HIV-infected individuals with different viral load patterns. BMC Infect Dis 2017; 17(1): 581.
[http://dx.doi.org/10.1186/s12879-017-2676-2] [PMID: 28830393]
[30]
Hoel H, Ueland T, Knudsen A, et al. Soluble markers of IL-1 activation as predictors of first-time myocardial infarction in HIV-infected individuals. J Infect Dis 2019. Epub ahead of print
[http://dx.doi.org/10.1093/infdis/jiz253] [PMID: 31077280]
[31]
Vance DE, Fazeli PL, Dodson JE, Ackerman M, Talley M, Appel SJ. The synergistic effects of HIV, diabetes, and aging on cognition: implications for practice and research. J Neurosci Nurs 2014; 46(5): 292-305.
[http://dx.doi.org/10.1097/JNN.0000000000000074] [PMID: 25099061]
[32]
Dufouil C, Richert L, Thiébaut R, et al. Diabetes and cognitive decline in a French cohort of patients infected with HIV-1. Neurology 2015; 85(12): 1065-73.
[http://dx.doi.org/10.1212/WNL.0000000000001815] [PMID: 26156515]
[33]
McCutchan JA, Marquie-Beck JA, Fitzsimons CA, et al. Role of obesity, metabolic variables, and diabetes in HIV-associated neurocognitive disorder. Neurology 2012; 78(7): 485-92.
[http://dx.doi.org/10.1212/WNL.0b013e3182478d64] [PMID: 22330412]
[34]
Roberts RO, Geda YE, Knopman DS, et al. Association of duration and severity of diabetes mellitus with mild cognitive impairment. Arch Neurol 2008; 65(8): 1066-73.
[http://dx.doi.org/10.1001/archneur.65.8.1066] [PMID: 18695056]
[35]
Valcour VG, Shikuma CM, Shiramizu BT, et al. Diabetes, insulin resistance, and dementia among HIV-1-infected patients. J Acquir Immune Defic Syndr 2005; 38(1): 31-6.
[http://dx.doi.org/10.1097/00126334-200501010-00006] [PMID: 15608521]
[36]
Velayudhan L, Poppe M, Archer N, Proitsi P, Brown RG, Lovestone S. Risk of developing dementia in people with diabetes and mild cognitive impairment. Br J Psychiatry 2010; 196(1): 36-40.
[http://dx.doi.org/10.1192/bjp.bp.109.067942] [PMID: 20044657]
[37]
Danna SM, Graham E, Burns RJ, Deschênes SS, Schmitz N. Association between Depressive Symptoms and Cognitive Function in Persons with Diabetes Mellitus: A Systematic Review. PLoS One 2016; 11(8) e0160809
[http://dx.doi.org/10.1371/journal.pone.0160809] [PMID: 27526176]
[38]
Moheet A, Mangia S, Seaquist ER. Impact of diabetes on cognitive function and brain structure. Ann N Y Acad Sci 2015; 1353: 60-71.
[http://dx.doi.org/10.1111/nyas.12807] [PMID: 26132277]
[39]
Palta P, Carlson MC, Crum RM, et al. Diabetes and Cognitive Decline in Older Adults: The Ginkgo Evaluation of Memory Study. J Gerontol A Biol Sci Med Sci 2017; 73(1): 123-30.
[http://dx.doi.org/10.1093/gerona/glx076] [PMID: 28510619]
[40]
Risacher SL, Saykin AJ. Neuroimaging biomarkers of neurodegenerative diseases and dementia. Semin Neurol 2013; 33(4): 386-416.
[http://dx.doi.org/10.1055/s-0033-1359312] [PMID: 24234359]
[41]
de la Monte SM, Wands JR. Alzheimer’s disease is type 3 diabetes-evidence reviewed. J Diabetes Sci Technol 2008; 2(6): 1101-13.
[http://dx.doi.org/10.1177/193229680800200619] [PMID: 19885299]
[42]
Canet G, Dias C, Gabelle A, et al. HIV Neuroinfection and Alzheimer’s Disease: Similarities and Potential Links? Front Cell Neurosci 2018; 12: 307.
[http://dx.doi.org/10.3389/fncel.2018.00307] [PMID: 30254568]
[43]
Kandimalla R, Thirumala V, Reddy PH. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2017; 1863(5): 1078-89.
[http://dx.doi.org/10.1016/j.bbadis.2016.08.018] [PMID: 27567931]
[44]
Leszek J, Trypka E, Tarasov VV, Ashraf GM, Aliev G. Type 3 Diabetes Mellitus: A Novel Implication of Alzheimers Disease. Curr Top Med Chem 2017; 17(12): 1331-5.
[http://dx.doi.org/10.2174/1568026617666170103163403] [PMID: 28049395]
[45]
Milanini B, Valcour V, Differentiating H. Differentiating HIV-Associated Neurocognitive Disorders From Alzheimer’s Disease: an Emerging Issue in Geriatric NeuroHIV. Curr HIV/AIDS Rep 2017; 14(4): 123-32.
[http://dx.doi.org/10.1007/s11904-017-0361-0] [PMID: 28779301]
[46]
Salminen A, Kaarniranta K, Kauppinen A, et al. Impaired autophagy and APP processing in Alzheimer’s disease: The potential role of Beclin 1 interactome. Prog Neurobiol 2013; 106-107: 33-54.
[http://dx.doi.org/10.1016/j.pneurobio.2013.06.002] [PMID: 23827971]
[47]
Saedi E, Gheini MR, Faiz F, Arami MA. Diabetes mellitus and cognitive impairments. World J Diabetes 2016; 7(17): 412-22.
[http://dx.doi.org/10.4239/wjd.v7.i17.412] [PMID: 27660698]
[48]
Umegaki H. Type 2 diabetes as a risk factor for cognitive impairment: current insights. Clin Interv Aging 2014; 9: 1011-9.
[http://dx.doi.org/10.2147/CIA.S48926] [PMID: 25061284]
[49]
Millard AV, Graham MA, Mier N, et al. Diabetes Screening and Prevention in a High-Risk, Medically Isolated Border Community. Front Public Health 2017; 5: 135.
[http://dx.doi.org/10.3389/fpubh.2017.00135] [PMID: 28660184]
[50]
Samji H, Cescon A, Hogg RS, et al. Closing the gap: increases in life expectancy among treated HIV-positive individuals in the United States and Canada. PLoS One 2013; 8(12)e81355
[http://dx.doi.org/10.1371/journal.pone.0081355] [PMID: 24367482]
[51]
Marban C, Forouzanfar F, Ait-Ammar A, et al. Targeting the Brain Reservoirs: Toward an HIV Cure. Front Immunol 2016; 7: 397.
[http://dx.doi.org/10.3389/fimmu.2016.00397] [PMID: 27746784]
[52]
Roy U, Bulot C, Honer zu Bentrup K, Mondal D. Specific increase in MDR1 mediated drug-efflux in human brain endothelial cells following co-exposure to HIV-1 and saquinavir. PLoS One 2013; 8(10) e75374
[http://dx.doi.org/10.1371/journal.pone.0075374] [PMID: 24098380]
[53]
Kanmogne GD, Singh S, Roy U, et al. Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells. Int J Nanomedicine 2012; 7: 2373-88.
[http://dx.doi.org/10.2147/IJN.S29454] [PMID: 22661891]
[54]
Grant I. Neurocognitive disturbances in HIV. Int Rev Psychiatry 2008; 20(1): 33-47.
[http://dx.doi.org/10.1080/09540260701877894] [PMID: 18240061]
[55]
Robinson-Papp J, Byrd D, Mindt MR, Oden NL, Simpson DM, Morgello S. Motor function and human immunodeficiency virus-associated cognitive impairment in a highly active antiretroviral therapy-era cohort. Arch Neurol 2008; 65(8): 1096-101.
[http://dx.doi.org/10.1001/archneur.65.8.1096] [PMID: 18695060]
[56]
Smurzynski M, Wu K, Letendre S, et al. Effects of central nervous system antiretroviral penetration on cognitive functioning in the ALLRT cohort. AIDS 2011; 25(3): 357-65.
[http://dx.doi.org/10.1097/QAD.0b013e32834171f8] [PMID: 21124201]
[57]
Herskovitz J, Gendelman HE. HIV and the Macrophage: From Cell Reservoirs to Drug Delivery to Viral Eradication. J Neuroimmune Pharmacol 2019; 14(1): 52-67.
[http://dx.doi.org/10.1007/s11481-018-9785-6] [PMID: 29572681]
[58]
Ibarra-Barrueta O, Palacios-Zabalza I, Mora-Atorrasagasti O, Mayo-Suarez J. Effect of concomitant use of montelukast and efavirenz on neuropsychiatric adverse events. Ann Pharmacother 2014; 48(1): 145-8.
[http://dx.doi.org/10.1177/1060028013510396] [PMID: 24259633]
[59]
Scourfield A, Zheng J, Chinthapalli S, et al. Discontinuation of Atripla as first-line therapy in HIV-1 infected individuals. AIDS 2012; 26(11): 1399-401.
[http://dx.doi.org/10.1097/QAD.0b013e328353b047] [PMID: 22441251]
[60]
De Clercq E. Tenofovir alafenamide (TAF) as the successor of tenofovir disoproxil fumarate (TDF). Biochem Pharmacol 2016; 119: 1-7.
[http://dx.doi.org/10.1016/j.bcp.2016.04.015] [PMID: 27133890]
[61]
Lamorde M, Byakika-Kibwika P, Tamale WS, et al. Effect of Food on the Steady-State Pharmacokinetics of Tenofovir and Emtricitabine plus Efavirenz in Ugandan Adults. Aids Res Treat 2012; 2012 105980
[http://dx.doi.org/10.1155/2012/105980] [PMID: 22454762]
[62]
Ogbuagu O. Rilpivirine, emtricitabine and tenofovir alafenamide: single-tablet combination for the treatment of HIV-1 infection in selected patients. Expert Rev Anti Infect Ther 2016; 14(12): 1113-26.
[http://dx.doi.org/10.1080/14787210.2016.1255551] [PMID: 27797606]
[63]
Goodkin K, Fletcher MA, Cohen N. Clinical aspects of psychoneuroimmunology. Lancet 1995; 345(8943): 183-4.
[http://dx.doi.org/10.1016/S0140-6736(95)90180-9] [PMID: 7823677]
[64]
Esiri MM, Biddolph SC, Morris CS. Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 1998; 65(1): 29-33.
[http://dx.doi.org/10.1136/jnnp.65.1.29] [PMID: 9667557]
[65]
Hui L, Ye Y, Soliman ML, et al. Antiretroviral Drugs Promote Amyloidogenesis by De-Acidifying Endolysosomes. J Neuroimmune Pharmacol 2019.
[http://dx.doi.org/10.1007/s11481-019-09862-1] [PMID: 31338753]
[66]
Maschke M, Kastrup O, Esser S, Ross B, Hengge U, Hufnagel A. Incidence and prevalence of neurological disorders associated with HIV since the introduction of highly active antiretroviral therapy (HAART). J Neurol Neurosurg Psychiatry 2000; 69(3): 376-80.
[http://dx.doi.org/10.1136/jnnp.69.3.376] [PMID: 10945813]
[67]
Schouten J, Cinque P, Gisslen M, Reiss P, Portegies P. HIV-1 infection and cognitive impairment in the cART era: a review. AIDS 2011; 25(5): 561-75.
[http://dx.doi.org/10.1097/QAD.0b013e3283437f9a] [PMID: 21160410]
[68]
Robertson K, Liner J, Meeker RB. Antiretroviral neurotoxicity. J Neurovirol 2012; 18(5): 388-99.
[http://dx.doi.org/10.1007/s13365-012-0120-3] [PMID: 22811264]
[69]
Valcour VG. Evaluating cognitive impairment in the clinical setting: practical screening and assessment tools. Top Antivir Med 2011; 19(5): 175-80.
[PMID: 22298886]
[70]
Oshinaike OO, Akinbami AA, Ojo OO, Ojini IF, Okubadejo UN, Danesi AM. Comparison of the Minimental State Examination Scale and the International HIV Dementia Scale in Assessing Cognitive Function in Nigerian HIV Patients on Antiretroviral Therapy. Aids Res Treat 2012; 2012 581531
[http://dx.doi.org/10.1155/2012/581531] [PMID: 23050130]
[71]
Joska JA, Witten J, Thomas KG, et al. A Comparison of Five Brief Screening Tools for HIV-Associated Neurocognitive Disorders in the USA and South Africa. AIDS Behav 2016; 20(8): 1621-31.
[http://dx.doi.org/10.1007/s10461-016-1316-y] [PMID: 26860536]
[72]
Monroe T, Carter M. Using the Folstein Mini Mental State Exam (MMSE) to explore methodological issues in cognitive aging research. Eur J Ageing 2012; 9(3): 265-74.
[http://dx.doi.org/10.1007/s10433-012-0234-8] [PMID: 28804426]
[73]
Yoelin AB, Saunders NW. Score Disparity Between the MMSE and the SLUMS. Am J Alzheimers Dis Other Demen 2017; 32(5): 282-8.
[http://dx.doi.org/10.1177/1533317517705222] [PMID: 28503934]
[74]
Kang IW, Beom IG, Cho JY, Son HR. Accuracy of Korean-Mini-Mental Status Examination Based on Seoul Neuro-Psychological Screening Battery II Results. Korean J Fam Med 2016; 37(3): 177-81.
[http://dx.doi.org/10.4082/kjfm.2016.37.3.177] [PMID: 27274389]
[75]
Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005; 53(4): 695-9.
[http://dx.doi.org/10.1111/j.1532-5415.2005.53221.x] [PMID: 15817019]
[76]
Zhou Y, Ortiz F, Nuñez C, et al. Use of the MoCA in Detecting Early Alzheimer’s Disease in a Spanish-Speaking Population with Varied Levels of Education. Dement Geriatr Cogn Disord Extra 2015; 5(1): 85-95.
[http://dx.doi.org/10.1159/000365506] [PMID: 25873930]
[77]
Mondragón JD, Celada-Borja C, Barinagarrementeria-Aldatz F, Burgos-Jaramillo M, Barragán-Campos HM. Hippocampal Volumetry as a Biomarker for Dementia in People with Low Education. Dement Geriatr Cogn Disord Extra 2016; 6(3): 486-99.
[http://dx.doi.org/10.1159/000449424] [PMID: 27920792]
[78]
Boone KB, Victor TL, Wen J, Razani J, Pontón M. The association between neuropsychological scores and ethnicity, language, and acculturation variables in a large patient population. Arch Clin Neuropsychol 2007; 22(3): 355-65.
[http://dx.doi.org/10.1016/j.acn.2007.01.010] [PMID: 17320344]
[79]
Milani SA, Marsiske M, Striley CW. Discriminative Ability of Montreal Cognitive Assessment Subtests and Items in Racial and Ethnic Minority Groups. Alzheimer Dis Assoc Disord 2019; 33(3): 226-32.
[http://dx.doi.org/10.1097/WAD.0000000000000310] [PMID: 31058685]
[80]
Stumvoll M, Goldstein BJ, van Haeften TW. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005; 365(9467): 1333-46.
[http://dx.doi.org/10.1016/S0140-6736(05)61032-X] [PMID: 15823385]
[81]
Gibert RO. Statistical Methods for Environmental Pollution Monitoring. Wiley NY 1987.
[82]
Kendall MG. Rank Correlation Methods. Charles Griffin London 1975.
[83]
Mann HB. Non-parametric tests against trend. Econometrica 1945; 13: 163-71.
[http://dx.doi.org/10.2307/1907187]
[84]
Center for Disease Control and Prevention. County Data Indicators Diagnosed Diabetes Incidence 2013.https://www.cdc. gov/diabetes/data/countydata/countydataindicators.html
[85]
Grigolon RB, Brietzke E, Mansur RB, et al. Association between diabetes and mood disorders and the potential use of anti-hyperglycemic agents as antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2019; 95 109720
[http://dx.doi.org/10.1016/j.pnpbp.2019.109720] [PMID: 31352032]
[86]
Hajek T, Calkin C, Blagdon R, Slaney C, Alda M. Type 2 diabetes mellitus: a potentially modifiable risk factor for neurochemical brain changes in bipolar disorders. Biol Psychiatry 2015; 77(3): 295-303.
[http://dx.doi.org/10.1016/j.biopsych.2013.11.007] [PMID: 24331546]
[87]
Khan NM, Ahmad A, Tiwari RK, Kamal MA, Mushtaq G, Ashraf GM. Current challenges to overcome in the management of type 2 diabetes mellitus and associated neurological disorders. CNS Neurol Disord Drug Targets 2014; 13(8): 1440-57.
[http://dx.doi.org/10.2174/1871527313666141023160448] [PMID: 25345504]
[88]
Zhang D, Shi L, Song X, et al. Neuroimaging endophenotypes of type 2 diabetes mellitus: a discordant sibling pair study. Quant Imaging Med Surg 2019; 9(6): 1000-13.
[http://dx.doi.org/10.21037/qims.2019.05.18] [PMID: 31367554]
[89]
Zhou Z, Zhu Y, Liu Y, Yin Y. Comprehensive transcriptomic analysis indicates brain regional specific alterations in type 2 diabetes. Aging (Albany NY) 2019; 11(16): 6398-421.
[http://dx.doi.org/10.18632/aging.102196] [PMID: 31449493]
[90]
Harrison ML, Wolfe AS, Fordyce J, Rock J, García AA, Zuñiga JA. The additive effect of type 2 diabetes on fibrinogen, von Willebrand factor, tryptophan and threonine in people living with HIV. Amino Acids 2019; 51(5): 783-93.
[http://dx.doi.org/10.1007/s00726-019-02715-4] [PMID: 30868261]
[91]
Hove-Skovsgaard M, Gaardbo JC, Kolte L, et al. HIV-infected persons with type 2 diabetes show evidence of endothelial dysfunction and increased inflammation. BMC Infect Dis 2017; 17(1): 234.
[http://dx.doi.org/10.1186/s12879-017-2334-8] [PMID: 28356058]
[92]
Masenga SK, Toloka P, Chiyenu K, et al. Type 2 diabetes mellitus prevalence and risk scores in treated PLWHIV: a cross-sectional preliminary study. BMC Res Notes 2019; 12(1): 145.
[http://dx.doi.org/10.1186/s13104-019-4183-6] [PMID: 30876484]
[93]
Prioreschi A, Munthali RJ, Soepnel L, et al. Incidence and prevalence of type 2 diabetes mellitus with HIV infection in Africa: a systematic review and meta-analysis. BMJ Open 2017; 7(3) e013953
[http://dx.doi.org/10.1136/bmjopen-2016-013953] [PMID: 28360243]
[94]
Ahmed D, Roy D, Cassol E. Examining Relationships between Metabolism and Persistent Inflammation in HIV Patients on Antiretroviral Therapy. Mediators Inflamm 2018; 2018 6238978
[http://dx.doi.org/10.1155/2018/6238978] [PMID: 30363715]
[95]
Lin SP, Wu CY, Wang CB, Li TC, Ko NY, Shi ZY. Risk of diabetes mellitus in HIV-infected patients receiving highly active antiretroviral therapy: A nationwide population-based study. Medicine (Baltimore) 2018; 97(36) e12268
[http://dx.doi.org/10.1097/MD.0000000000012268] [PMID: 30200166]
[96]
Aaron E, Alvare T, Gracely EJ, Riviello R, Althoff A. Predictors of Linkage to Care for Newly Diagnosed HIV-Positive Adults. West J Emerg Med 2015; 16(4): 535-42.
[http://dx.doi.org/10.5811/westjem.2015.4.25345] [PMID: 26265965]
[97]
Paul R. Neurocognitive Phenotyping of HIV in the Era of Antiretroviral Therapy. Curr HIV/AIDS Rep 2019; 16(3): 230-5.
[http://dx.doi.org/10.1007/s11904-019-00426-9] [PMID: 31168712]
[98]
De Wit S, Sabin CA, Weber R, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. Diabetes Care 2008; 31(6): 1224-9.
[http://dx.doi.org/10.2337/dc07-2013] [PMID: 18268071]
[99]
Yarasheski KE, Tebas P, Sigmund C, et al. Insulin resistance in HIV protease inhibitor-associated diabetes. J Acquir Immune Defic Syndr 1999; 21(3): 209-16.
[http://dx.doi.org/10.1097/00126334-199907010-00005] [PMID: 10421244]
[100]
Hruz PW. Molecular mechanisms for insulin resistance in treated HIV-infection. Best Pract Res Clin Endocrinol Metab 2011; 25(3): 459-68.
[http://dx.doi.org/10.1016/j.beem.2010.10.017] [PMID: 21663839]
[101]
Center for Disease Prevention. Diagnosed Diabetes Prevelance 2014.https://www.cdc.gov/diabetes/data/countydata/countydataindicators.
[102]
Center for Disease Prevention. Diagnosed Diabetes Incidence 2014.https://www.cdc.gov/diabetes/data/countydata/countydata indicators.html
[103]
United States Census Bureau. Resident Population of the United States 2002.
[104]
United States Census Bureau. Annual estimates of the population by sex, race and Hispanic or Latino origin for the United States: April 1, 2000 to July 1 2006.
[105]
Center for Disease Prevention. HIV/AIDS Surveillance Report 2005.http://www.cdc.gov/hiv/topics/surveillance/resources/reports
[106]
United States Census Bureau. Community Facts: Texas 2017.https://factfinder.census.gov/faces/nav/jsf/pages/community_facts.xhtml?src=bkmk


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 17
ISSUE: 6
Year: 2019
Page: [377 - 387]
Pages: 11
DOI: 10.2174/1570162X17666191029162235

Article Metrics

PDF: 20
HTML: 7