Lipid and PLGA Microparticles for Sustained Delivery of Protein and Peptide Drugs

Author(s): Chengyu Wu*, Huiling Mu

Journal Name: Pharmaceutical Nanotechnology

Volume 8 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Solid lipid particles have a great potential in sustained drug delivery, the lipid excipients are solid at room temperature with a slow degradation rate. Poly (D, L-lactic-coglycolic acid) (PLGA) has been successfully clinically applied for the sustained delivery of peptide drugs. A recent study showed the advantage of hybrid PLGA-lipid microparticles (MPs) over PLGA MPs for the sustained delivery of peptide drug in vivo. In this paper, we briefly present PLGA MPs, solid lipid MPs and PLGA lipid hybrid MP prepared by the double emulsion method and the spray drying method and discuss the effects of excipients on encapsulation efficiency of protein and peptide drugs in the MPs. The pros and cons of PLGA MPs, solid lipid MPs and PLGA lipid hybrid MP as carriers for sustained delivery of protein and peptide drugs are also discussed.

Keywords: Drug delivery, hybrid polymer-lipid microparticles, PLGA microparticles, protein and peptide drugs, solid lipid microparticles, sustained release.

[1]
Putney SD, Burke PA. Improving protein therapeutics with sustained-release formulations. Nat Biotechnol 1998; 16(2): 153-7.
[http://dx.doi.org/10.1038/nbt0298-153] [PMID: 9487521]
[2]
Wu F, Jin T. Polymer-based sustained-release dosage forms for protein drugs, challenges, and recent advances. AAPS PharmSciTech 2008; 9(4): 1218-29.
[http://dx.doi.org/10.1208/s12249-008-9148-3] [PMID: 19085110]
[3]
Pisal DS, Kosloski MP, Balu-Iyer SV. Delivery of therapeutic proteins. J Pharm Sci 2010; 99(6): 2557-75.
[http://dx.doi.org/10.1002/jps.22054] [PMID: 20049941]
[4]
Patel A, Cholkar K, Mitra AK. Recent developments in protein and peptide parenteral delivery approaches. Ther Deliv 2014; 5(3): 337-65.
[http://dx.doi.org/10.4155/tde.14.5] [PMID: 24592957]
[5]
Vaishya R, Khurana V, Patel S, Mitra AK. Long-term delivery of protein therapeutics. Expert Opin Drug Deliv 2015; 12(3): 415-40.
[http://dx.doi.org/10.1517/17425247.2015.961420] [PMID: 25251334]
[6]
Wu C, Zhang M, Zhang Z, et al. Thymopentin nanoparticles engineered with high loading efficiency, improved pharmacokinetic properties, and enhanced immunostimulating effect using soybean phospholipid and PHBHHx polymer. Mol Pharm 2014; 11(10): 3371-7.
[http://dx.doi.org/10.1021/mp400722r] [PMID: 24641274]
[7]
Zhang L, Ding L, Tang C, Li Y, Yang L. Liraglutide-loaded multivesicular liposome as a sustained-delivery reduces blood glucose in SD rats with diabetes. Drug Deliv 2016; 23(9): 3358-63.
[http://dx.doi.org/10.1080/10717544.2016.1180723] [PMID: 27099000]
[8]
Wright JC, Tao Leonard S, Stevenson CL, et al. An in vivo/in vitro comparison with a leuprolide osmotic implant for the treatment of prostate cancer. J Control Release 2001; 75(1-2): 1-10.
[http://dx.doi.org/10.1016/S0168-3659(01)00358-3] [PMID: 11451492]
[9]
Mohammadi-Samani S, Taghipour B. PLGA micro and nanoparticles in delivery of peptides and proteins; problems and approaches. Pharm Dev Technol 2015; 20(4): 385-93.
[http://dx.doi.org/10.3109/10837450.2014.882940] [PMID: 24483777]
[10]
van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharm Res 2000; 17(10): 1159-67.
[http://dx.doi.org/10.1023/A:1026498209874] [PMID: 11145219]
[11]
Houchin ML, Topp EM. Chemical degradation of peptides and proteins in PLGA: a review of reactions and mechanisms. J Pharm Sci 2008; 97(7): 2395-404.
[http://dx.doi.org/10.1002/jps.21176] [PMID: 17828756]
[12]
Giteau A, Venier-Julienne MC, Aubert-Pouëssel A, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm 2008; 350(1-2): 14-26.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.012] [PMID: 18162341]
[13]
Mu H, Holm R. Solid lipid nanocarriers in drug delivery: characterization and design. Expert Opin Drug Deliv 2018; 15(8): 771-85.
[http://dx.doi.org/10.1080/17425247.2018.1504018] [PMID: 30064267]
[14]
Maschke A, Becker C, Eyrich D, Kiermaier J, Blunk T, Göpferich A. Development of a spray congealing process for the preparation of insulin-loaded lipid microparticles and characterization thereof. Eur J Pharm Biopharm 2007; 65(2): 175-87.
[http://dx.doi.org/10.1016/j.ejpb.2006.08.008] [PMID: 17070025]
[15]
Zaky A, Elbakry A, Ehmer A, Breunig M, Goepferich A. The mechanism of protein release from triglyceride microspheres. J Control Release 2010; 147(2): 202-10.
[http://dx.doi.org/10.1016/j.jconrel.2010.07.110] [PMID: 20659511]
[16]
Yang J, Han S, Zheng H, Dong H, Liu J. Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr Polym 2015; 123: 53-66.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.029] [PMID: 25843834]
[17]
Han FY, Thurecht KJ, Whittaker AK, Smith MT. Bioerodable PLGA-Based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Front Pharmacol 2016; 7(185): 185.
[http://dx.doi.org/10.3389/fphar.2016.00185] [PMID: 27445821]
[18]
Gamboa CK, Samir R, Wu C, Mu H. Solid lipid particles as drug carriers - effects of particle preparation methods and lipid excipients on particle characteristics. Pharm Nanotechnol 2018; 6(2): 124-32.
[http://dx.doi.org/10.2174/2211738506666180420165547] [PMID: 29683102]
[19]
van der Graaf S, Schroën CGPH, Boom RM. Preparation of double emulsions by membrane emulsification-a review. J Membr Sci 2005; 251(1): 7-15.
[http://dx.doi.org/10.1016/j.memsci.2004.12.013]
[20]
Zhang Z, Feng S-S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 2006; 27(21): 4025-33.
[http://dx.doi.org/10.1016/j.biomaterials.2006.03.006] [PMID: 16564085]
[21]
Kumar R, Palmieri MJ Jr. Points to consider when establishing drug product specifications for parenteral microspheres. AAPS J 2010; 12(1): 27-32.
[http://dx.doi.org/10.1208/s12248-009-9156-6] [PMID: 19921439]
[22]
Jyothi NVN, Prasanna PM, Sakarkar SN, Prabha KS, Ramaiah PS, Srawan GY. Microencapsulation techniques, factors influencing encapsulation efficiency. J Microencapsul 2010; 27(3): 187-97.
[http://dx.doi.org/10.3109/02652040903131301] [PMID: 20406093]
[23]
Yeo Y, Park K. Control of encapsulation efficiency and initial burst in polymeric microparticle systems. Arch Pharm Res 2004; 27(1): 1-12.
[http://dx.doi.org/10.1007/BF02980037] [PMID: 14969330]
[24]
Wu C, Baldursdottir S, Yang M, Mu H. Lipid and PLGA hybrid microparticles as carriers for protein delivery. J Drug Deliv Sci Technol 2018; 43: 65-72.
[http://dx.doi.org/10.1016/j.jddst.2017.09.006]
[25]
Xie S, Wang S, Zhao B, Han C, Wang M, Zhou W. Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles. Colloids Surf B Biointerfaces 2008; 67(2): 199-204.
[http://dx.doi.org/10.1016/j.colsurfb.2008.08.018] [PMID: 18829272]
[26]
Iqbal M, Zafar N, Fessi H, Elaissari A. Double emulsion solvent evaporation techniques used for drug encapsulation. Int J Pharm 2015; 496(2): 173-90.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.057] [PMID: 26522982]
[27]
Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release 2001; 73(2-3): 121-36.
[http://dx.doi.org/10.1016/S0168-3659(01)00248-6] [PMID: 11516493]
[28]
Huang Y-Y, Chung T-W, Tzeng T-W. A method using biodegradable polylactides/polyethylene glycol for drug release with reduced initial burst. Int J Pharm 1999; 182(1): 93-100.
[http://dx.doi.org/10.1016/S0378-5173(99)00060-5] [PMID: 10332078]
[29]
Vehring R. Pharmaceutical particle engineering via spray drying. Pharm Res 2008; 25(5): 999-1022.
[http://dx.doi.org/10.1007/s11095-007-9475-1] [PMID: 18040761]
[30]
Sollohub K, Cal K. Spray drying technique: II. Current applications in pharmaceutical technology. J Pharm Sci 2010; 99(2): 587-97.
[http://dx.doi.org/10.1002/jps.21963] [PMID: 19862804]
[31]
Sosnik A, Seremeta KP. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Adv Colloid Interface Sci 2015; 223: 40-54.
[http://dx.doi.org/10.1016/j.cis.2015.05.003] [PMID: 26043877]
[32]
Mu L, Feng SS. Fabrication, characterization and in vitro release of paclitaxel (Taxol) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J Control Release 2001; 76(3): 239-54.
[http://dx.doi.org/10.1016/S0168-3659(01)00440-0] [PMID: 11578739]
[33]
Wu C, van de Weert M, Baldursdottir SG, Yang M, Mu H. Effect of excipients on encapsulation and release of insulin from spray-dried solid lipid microparticles. Int J Pharm 2018; 550(1-2): 439-46.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.007] [PMID: 30196139]
[34]
Wu C, Luo X, Baldursdottir SG, Yang M, Sun X, Mu H. In vivo evaluation of solid lipid microparticles and hybrid polymer-lipid microparticles for sustained delivery of leuprolide. Eur J Pharm Biopharm 2019; 142: 315-21.
[http://dx.doi.org/10.1016/j.ejpb.2019.07.010] [PMID: 31299277]
[35]
Devrim B, Bozkar A. Design and evaluation of hydrophobic ion-pairing complexation of lysozyme with sodium dodecyl sulfate for improved encapsulation of hydrophilic peptides/proteins by lipid-polymer hybrid nanoparticles. J Nanomed Nanotechnol 2015; 6(1)
[http://dx.doi.org/10.4172/2157-7439.1000259]
[36]
Choi SH, Park TG. Hydrophobic ion pair formation between leuprolide and sodium oleate for sustained release from biodegradable polymeric microspheres. Int J Pharm 2000; 203(1-2): 193-202.
[http://dx.doi.org/10.1016/S0378-5173(00)00457-9] [PMID: 10967441]
[37]
Anandharamakrishnan C, Ishwarya SP. Spray drying techniques for food ingredient encapsulation. Wiley: Hoboken, NJ 2015; pp. 156-79.
[http://dx.doi.org/10.1002/9781118863985.ch7]
[38]
Tupuna DS, Paese K, Guterres SS, Jablonski A, Flôres SH, Rios AO. Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Ind Crops Prod 2018; 111: 846-55.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.001]
[39]
Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 2004; 384(Pt 2): 201-32.
[http://dx.doi.org/10.1042/BJ20041142] [PMID: 15450003]
[40]
Johnson WC. Analyzing protein circular dichroism spectra for accurate secondary structures. Proteins 1999; 35(3): 307-12.
[http://dx.doi.org/10.1002/(SICI)1097-0134(19990515)35:3<307:AID-PROT4>3.0.CO;2-3] [PMID: 10328265]
[41]
Pérez C, Castellanos IJ, Costantino HR, Al-Azzam W, Griebenow K. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol 2002; 54(3): 301-13.
[http://dx.doi.org/10.1211/0022357021778448] [PMID: 11902796]
[42]
Ji S, Thulstrup PW, Mu H, et al. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme. Int J Pharm 2016; 513(1-2): 175-82.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.025] [PMID: 27620335]
[43]
Mok H, Park TG. Water-free microencapsulation of proteins within PLGA microparticles by spray drying using PEG-assisted protein solubilization technique in organic solvent. Eur J Pharm Biopharm 2008; 70(1): 137-44.
[http://dx.doi.org/10.1016/j.ejpb.2008.04.006] [PMID: 18515053]
[44]
Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel) 2011; 3(3): 1377-97.
[http://dx.doi.org/10.3390/polym3031377] [PMID: 22577513]
[45]
Johnson OL, Cleland JL, Lee HJ, et al. A month-long effect from a single injection of microencapsulated human growth hormone. Nat Med 1996; 2(7): 795-9.
[http://dx.doi.org/10.1038/nm0796-795] [PMID: 8673926]
[46]
Tracy MA. Development and scale-up of a microsphere protein delivery system. Biotechnol Prog 1998; 14(1): 108-15.
[47]
Pérez C, Castellanos IJ, Costantino HR, Al-Azzam W, Griebenow K. Recent trends in stabilizing protein structure upon encapsulation and release from bioerodible polymers. J Pharm Pharmacol 2002; 54(3): 301-13.
[http://dx.doi.org/10.1211/0022357021778448] [PMID: 11902796]
[48]
Fu K, Pack DW, Klibanov AM, Langer R. Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharm Res 2000; 17(1): 100-6.
[http://dx.doi.org/10.1023/A:1007582911958] [PMID: 10714616]
[49]
Giteau A, Venier-Julienne MC, Aubert-Pouëssel A, Benoit JP. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm 2008; 350(1-2): 14-26.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.012] [PMID: 18162341]
[50]
Rosenberg AS. Effects of protein aggregates: an immunologic perspective. AAPS J 2006; 8(3): E501-7.
[http://dx.doi.org/10.1208/aapsj080359] [PMID: 17025268]
[51]
Park TG. Degradation of poly(lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 1995; 16(15): 1123-30.
[http://dx.doi.org/10.1016/0142-9612(95)93575-X] [PMID: 8562787]
[52]
Guse C, Koennings S, Maschke A, et al. Biocompatibility and erosion behavior of implants made of triglycerides and blends with cholesterol and phospholipids. Int J Pharm 2006; 314(2): 153-60.
[http://dx.doi.org/10.1016/j.ijpharm.2005.12.050] [PMID: 16517106]
[53]
Guse C, Koennings S, Kreye F, Siepmann F, Goepferich A, Siepmann J. Drug release from lipid-based implants: elucidation of the underlying mass transport mechanisms. Int J Pharm 2006; 314(2): 137-44.
[http://dx.doi.org/10.1016/j.ijpharm.2005.08.030] [PMID: 16503388]
[54]
Jaspart S, Bertholet P, Piel G, Dogné J-M, Delattre L, Evrard B. Solid lipid microparticles as a sustained release system for pulmonary drug delivery. Eur J Pharm Biopharm 2007; 65(1): 47-56.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.006] [PMID: 16962749]
[55]
Vivek K, Reddy H, Murthy RSR. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech 2007; 8(4): E83
[http://dx.doi.org/10.1208/pt0804083] [PMID: 18181544]
[56]
Siepmann J, Siepmann F. Mathematical modeling of drug release from lipid dosage forms. Int J Pharm 2011; 418(1): 42-53.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.015] [PMID: 21802501]
[57]
Reithmeier H, Herrmann J, Göpferich A. Lipid microparticles as a parenteral controlled release device for peptides. J Control Release 2001; 73(2-3): 339-50.
[http://dx.doi.org/10.1016/S0168-3659(01)00354-6] [PMID: 11516510]
[58]
Le Meins JF, Schatz C, Lecommandoux S, Sandre O. Hybrid polymer/lipid vesicles: state of the art and future perspectives. Mater Today 2013; 16(10): 397-402.
[http://dx.doi.org/10.1016/j.mattod.2013.09.002]
[59]
Raemdonck K, Braeckmans K, Demeester J, De Smedt SC. Merging the best of both worlds: hybrid lipid-enveloped matrix nanocomposites in drug delivery. Chem Soc Rev 2014; 43(1): 444-72.
[http://dx.doi.org/10.1039/C3CS60299K] [PMID: 24100581]
[60]
Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid--polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano 2008; 2(8): 1696-702.
[http://dx.doi.org/10.1021/nn800275r] [PMID: 19206374]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 8
ISSUE: 1
Year: 2020
Page: [22 - 32]
Pages: 11
DOI: 10.2174/2211738507666191029160944

Article Metrics

PDF: 30
HTML: 7